
Estimation and inference in DSGE models

using derivatives of the likelihood

Marco Ratto and Nikolay Iskrev

Preliminary and incomplete. Comments are welcome.
This draft: September 18, 2012

Keywords: DSGE models, maximum likelihood, score, Hessian, Kalman
filter

JEL classification: C32, C51, C52, E32

Maximum likelihood is rarely the method of choice for estimating DSGE

models, partly because it requires the numerical solution of a highly non-

linear optimisation problems. Solving such problems is usually slow and is

likely to encounter convergence difficulties. It is well-known that the perfor-

mance of numerical optimization algorithms can be greatly improved if they

use information contained in the derivatives of the function. In particular,

methods using first and second order derivatives are much faster to converge

than search algorithms which do not use derivatives. In this paper we show

how to efficiently evaluate the derivatives of the log-likelihood function of

linear Gaussian DSGE models. The availability of such derivatives is benefi-

cial not only in terms of easier and more reliable likelihood-based estimation

Contact Information: Marco Ratto, Joint Research Centre, European Com-

mission, marco.ratto@jrc.ec.europa.eu; Nikolay Iskrev, Banco de Portugal, Niko-

lay.Iskrev@bportugal.pt

Prepared for the DYNARE 2012 Conference, Zurich, September 20-21, 2012.

of DSGE models, but also in the analysis of parameter identification as well

as for conducting inference in empirical applications.

The main challenge in computing the log-likelihood derivatives has to do

with the transformation of the parameters from the structural model to the

state space representation of the solution. While it has been shown that

the derivative of the transformation with respect to the vector of deep pa-

rameters can be computed analytically (Iskrev, 2010), the currently available

approach makes an extensive use of sparse Kronecker-product matrices that

are computationally inefficient and require a large amount of memory allo-

cation. As a result that method is not well suited for analysis of large-scale

models. In this paper we apply an alternative approach which computes

derivatives with respect to each deep parameter separately. This leads to a

system of generalized Sylvester equations that can be solved efficiently and

accurately using existing numerical algorithms. We show that this method

leads to a dramatic increase in the speed of computations at virtually no cost

in terms of accuracy.

Estimating DSGE models requires also a second transformation, from the

state-space representation to the objective function of the estimation prob-

lem. The latter may be the likelihood or the posterior distribution function,

or a function of the distance between model-implied and empirical quantities,

such as moments or impulse response functions. In this paper we focus on

the likelihood function, derivatives of which are computed trough the same

Kalman filtering recursion used to construct the log-likelihood function. Ex-

tensions to other objective functions are straightforward.

We demonstrate the usefulness of our method using several DSGE models

of different size and complexity. Specifically, we consider the use of first and

second order derivatives for, (1) local identification analysis, (2) maximizing

the likelihood function with Newton methods, (3) drawing from the posterior

distribution of the parameters, and (4) computing asymptotic covariances of

the parameter estimates. We compare our approach to numerical differentia-

tion and the method of Iskrev (2010) for computing analytic derivatives. All

computations have been integrated into DYNARE (Adjemian et al., 2011),

and our experience so far shows that our approach has substantial advantages

2

in terms of speed, reliability and accuracy over the alternative methods.

1 DSGE models

We recall here the notation adopted in Iskrev (2010) for linearized DSGE

models. A DSGE model can be expressed as a system g of m non-linear

equations:

Et

(

g(ẑt, ẑt+1, ẑt−1,ut|θ)
)

= 0 (1)

where ẑt is am−dimensional vector of endogenous variables, ut an n-dimensional

random vector of structural shocks with Eut = 0, Eutu
′

t = Σu and θ a

k−dimensional vector of deep parameters. Σu is n× n is a symmetric semi-

positive definite matrix. Here, θ is a point in Θ ⊂ R
k and the parameter

space Θ is defined as the set of all theoretically admissible values of θ.

Most studies involving either simulation or estimation of DSGE models

use linear approximations of the original models around the steady-state ẑ∗,

namely:

Γ0(θ)zt = Γ1(θ) Et zt+1 + Γ2(θ)zt−1 + Γ3(θ)ut (2)

where zt = ẑt − ẑ∗. The elements of the matrices Γ0, Γ1, Γ2 and Γ3 are

functions of θ.

Assuming that a unique solution exists, it can be written as:

zt = A(θ)zt−1 +B(θ)ut (3)

where the m×m matrix A and the m× n matrix B are functions of θ.

For a given value of θ, the matrices A, Ω := BΣuB
′, and ẑ∗ completely

characterize the equilibrium dynamics and steady state properties of all en-

dogenous variables in the linearized model. Typically, some elements of these

matrices are constant, i.e. independent of θ and it is useful to separate the

solution parameters that depend on θ from those that do not. Iskrev (2010)

uses τ to denote the vector collecting the non-constant elements of ẑ∗ , A,

and Ω, i.e. τ := [τ ′

z, τ ′

A, τ ′

Ω]
′, where τz, τA, and τΩ denote the elements of

ẑ∗, vec(A) and vech(Ω) that depend on θ.

3

In most applications the model in (3) cannot be taken to the data directly

since some of the variables in zt are not observed. Instead, the solution of

the DSGE model is expressed in a state space form, with transition equation

given by (3), and a measurement equation

xt = Czt +Dut + νt (4)

where xt is a l-dimensional vector of observed variables and νt is a l-dimensional

random vector with Eνt = 0, Eνtν
′

t = Q, where Q is l× l symmetric semi-

positive definite matrix 1.

2 Computing the first order derivatives of

linearized DSGE models

In order to compute first derivatives of DSGE models, the key element is to

take the derivatives of the transformation from θ to τ , i.e. the Jacobian of

the mapping between the deep parameters and the state space form of the

linearized DSGE model. In fact, any other derivative (theoretical moments,

likelihood, etc.) is directly obtained, by some form of the chain rule, from

the direct derivation w.r.t. the state space form τ (3)-(4) combined with the

derivatives of τ w.r.t. θ. The derivatives of the transformation from θ to τ

can be divided into three groups corresponding to the three blocks of τ : τz,

τA and τΩ.

2.1 The derivatives of the steady state

In Iskrev (2010) it is assumed that ẑ∗ is a known function of θ, implied by

the steady state of the model, so that the derivative of τz can be computed by

direct differentiation. This is in general not true, since one can implement a

non-linear DGSE model in packages like DYNARE, which provide the steady

state computation and linearization even when the former is not available

1In the DYNARE framework, the state-space and measurement equations are always

formulated such that D = 0

4

explicitly. Here we provide the extension to this case, by first noting that

the ‘static’ model g∗ = g(ẑ∗, ẑ∗, ẑ∗, 0|θ) = 0 provides and implicit function

between ẑ∗ and θ. Therefore, ∂ẑ∗

∂θ′
can be computed exploiting the analytic

derivatives of g∗ with respect to ẑ∗ and θ, provided by the symbolic pre-

processor of DYNARE:

∂ẑ∗

∂θ′
= −

(∂g∗

∂ẑ∗
′

)

−1

·
∂g∗

∂θ′
(5)

and finally ∂τz
∂θ′

is obtained by removing the zeros corresponding to the con-

stant elements of ẑ∗.

2.2 The derivatives of the state space matrices

In order to properly compute the derivatives of τA and τΩ, the structural

form (2) has to be re-written explicitly accounting for the dependency to ẑ∗:

Γ0(θ, ẑ
∗)zt = Γ1(θ, ẑ

∗) Et zt+1 + Γ2(θ, ẑ
∗)zt−1 + Γ3(θ, ẑ

∗)ut (6)

Also in this case, one can take advantage of the DYNARE symbolic pre-

processor. The latter provides derivatives ∂Γi(θ,ẑ
∗)

∂θ′
consistent with the form

(6). However, since the dependence of ẑ∗ to θ is not known explicitly to

the preprocessor, these derivatives miss the contribution of the steady state.

Therefore, one has to exploit the computation of the Hessian, provided by

DYNARE for the second order approximation of non-linear DSGE models.

The Hessian gives the missing derivatives ∂Γi(θ,ẑ
∗)

∂ẑ∗
′ , allowing one to perform

the correct derivation as:

∂Γi(θ)

∂θ′
=

∂Γi(θ, ẑ
∗(θ))

∂θ′
=

∂Γi(θ, ẑ
∗)

∂θ′
+

∂Γi(θ, ẑ
∗)

∂ẑ∗
′

·
∂ẑ∗

∂θ′
(7)

The derivatives of τA and τΩ can be obtained from the derivatives of

vec(A) and vech(Ω), by removing the zeros corresponding to the constant

elements of A and Ω. In Iskrev (2010) the derivative of vec(A) is computed

using the implicit function theorem. An implicit function of θ and vec(A) is

provided by the restrictions the structural model (2) imposes on the reduced

5

form (3). In particular, from (3) we have Et zt+1 = Azt, and substituting in

(2) yields

(Γ0 − Γ1A)zt = Γ2zt−1 + Γ3ut (8)

Combining the last equation with equation (3) gives to the following matrix

equation

F (θ, vec(A)) :=
(

Γ0(θ)− Γ1(θ)A
)

A− Γ2(θ) = O (9)

Vectorizing (9) and applying the implicit function theorem gives

∂vec(A)

∂θ′
= −

(

∂vec(F)

∂vec(A)′

)

−1
∂vec(F)

∂θ′
(10)

Closed-form expressions for computing the derivatives in (10) are provided

in Iskrev (2010). Such a derivation requires the use of Kronecker products,

implying a dramatic growth in memory allocation requirements and in com-

putational time as the size of the model increases. The typical size of matrices

to be handled in Iskrev (2010) is of m2 ×m2, which grows very rapidly with

m. Here we propose an alternative method to compute derivatives, allowing

to reduce both memory requirements and the computational time. Taking

the derivative of (9) with respect to each θj , for j = 1, . . . , k, one gets a set

of k equations in the unknowns ∂A
∂θj

of the form:

M(θ)
∂A

∂θj
+N(θ)

∂A

∂θj
P (θ) = Qj(θ) (11)

where

M(θ) =
(

Γ0(θ)− Γ1(θ)A(θ)
)

N(θ) = −Γ1(θ)

P (θ) = A(θ)

Qj(θ) =
∂Γ2

∂θj
−

(∂Γ0

∂θj
−

∂Γ1

∂θj
A(θ)

)

A(θ)

Equation (11) is a generalized Sylvester equation and can be solved using

6

available algebraic solvers. For example, in DYNARE, this kind of equations

is solved applying a QZ factorization for generalized eigenvalues of the ma-

trices M(θ) and N(θ) and solving recursively the factorized problem. It is

also interesting to note that the problems to be solved for different θj only

differ in the right-hand side Qj(θ), allowing to perform the QZ factorization

only once for all parameters in θ. In practice we replace here the single big

algebraic problem of dimension m2 × m2 of Iskrev (2010) with a set of k

problems of dimension m×m.

Using Ω = BB′, the differential of Ω is given by

dΩ = dBB′ +B dB′ (12)

Having dΩ in terms of dB is convenient since it shows how to obtain the

derivative of Ω from that of B. Note that from equations (8) and (3) we

have

(

Γ0 − Γ1A
)

B = Γ3 (13)

and therefore

dB =
(

Γ0 − Γ1A
)

−1(

dΓ3 − (dΓ0 − dΓ1A− Γ1 dA)
)

(14)

Thus, once ∂vec(A)
∂θ′

is available, it is straightforward to compute, first
∂vec(B)

∂θ′
and ∂vech(Ω)

∂θ′
, and then ∂τA

∂θ′
and ∂τΩ

∂θ′
.

3 Extension to second order derivatives

3.1 The derivatives of the steady state

In order to compute ∂2ẑ∗

∂θj∂θl
, we need the implicit second order derivative from

the implicit function g∗ = g(ẑ∗, ẑ∗, ẑ∗, 0|θ) = 0:

∂2ẑ∗

∂θj∂θl
= −

(∂g∗

∂ẑ∗
′

)

−1

·
(∂2g∗

∂θj∂θl
+ γ∗

)

(15)

7

where each element γ∗

h, h = 1, . . . , m, of the vector γ∗ is given by:

γ∗

h =
(∂

∂ẑ∗
′

(∂g∗h
∂ẑ∗

′

)

′

·
∂ẑ∗

∂θj

)

′

·
∂ẑ∗

∂θl

+
∂

∂θj

(∂g∗h
∂ẑ∗

′

)

·
∂ẑ∗

∂θl
+

∂

∂θl

(∂g∗h
∂ẑ∗

′

)

·
∂ẑ∗

∂θj

Here we need from the DYNARE preprocessor the second order derivatives

of g∗ with respect to θ and ẑ∗ and the first order derivative of the Jacobian
∂g∗

∂ẑ∗
′ with respect to θ.

3.2 The derivatives of the state space matrices

Computing second order derivatives of the model with respect to structural

parameters can be performed recursively, starting from knowing second order

derivatives of Γi:

∂2Γi(θ)

∂θj∂θl
=

∂2Γi(θ, ẑ
∗(θ))

∂θj∂θl
=

∂2Γi(θ, ẑ
∗)

∂θj∂θl

+
(∂

∂ẑ∗
′

(∂Γi(θ, ẑ
∗)

∂ẑ∗
′

)

′

·
∂ẑ∗

∂θj

)

′

·
∂ẑ∗

∂θl
+

∂Γi(θ, ẑ
∗)

∂ẑ∗
′

·
∂2ẑ∗

∂θj∂θl

+
∂

∂ẑ∗′

(∂Γi(θ, ẑ
∗)

∂θl

)

·
∂ẑ∗

∂θj
+

∂

∂θj

(∂Γi(θ, ẑ
∗)

∂ẑ∗′

)

·
∂ẑ∗

∂θl
(16)

Here we can use the second order derivatives of the steady state with respect

to θ and we also need from the DYNARE preprocessor the second order

derivatives of Γi with respect to θ and ẑ∗ (∂
2Γi(θ,ẑ∗)
∂θj∂θl

and ∂

∂ẑ∗
′

(

∂Γi(θ,ẑ∗)

∂ẑ∗
′

)

),

where the latter can be obtained from DYNARE third order approximation

of non-linear DSGE models. We also need the first order derivative of the

Hessian
(

∂Γi(θ,ẑ
∗)

∂ẑ∗
′

)

with respect to θ.

Having obtained the second order derivatives of Γi, we can work out the

second order derivatives of (9) with respect to θj and θl, for j, l = 1, . . . , k,

getting a set of k · (k + 1)/2 equations in the unknowns ∂2A
∂θl∂θj

again of the

form of a generalized Sylvester equation:

8

M(θ)
∂2A

∂θl∂θj
+N(θ)

∂2A

∂θl∂θj
P (θ) = Ql,j(θ) (17)

where

Ql,j(θ) =
∂Qj

∂θl

−
(∂M(θ)

∂θl

∂A

∂θj
+

∂N(θ)

∂θl

∂A

∂θj
P (θ) +N(θ)

∂A

∂θj

∂P (θ)

∂θl

)

(18)

and

∂M(θ)

∂θl
=

(∂Γ0(θ)

∂θl
−

∂Γ1(θ)

∂θl
A(θ)− Γ1(θ)

∂A(θ)

∂θl

)

∂N(θ)

∂θl
= −

∂Γ1(θ)

∂θl
∂P (θ)

∂θl
=

∂A(θ)

∂θl
∂Qj(θ)

∂θl
=

∂2Γ2

∂θl∂θj
−
(∂2Γ0

∂θl∂θj
−

∂2Γ1

∂θl∂θj
A(θ)

)

A(θ)

−
(∂Γ0

∂θj
−

∂Γ1

∂θj
A(θ)

)∂A(θ)

∂θl

+
∂Γ1

∂θj

∂A(θ)

∂θl
A(θ)

The problem (17) can be solved exactly in the same way as for first order

derivatives, still keeping the same QZ decomposition for matrices M and N

for all j, l = 1, . . . , k and only changing the right hand side term Ql,j.

3.3 Using analytic derivatives for inference: DYNARE

Implementation

Having solved the main problem of computing the derivatives of the state

space matrices of DSGE models with respect to parameters, it is possible

to compute the derivatives of theoretical moments (useful for identification

analysis and moment matching procedures) and the likelihood (useful for

identification and estimation).

9

The engine for computing first and second order analytic derivatives has

been implemented in DYNARE. The identification toolbox benefits from an-

alytic derivation in computing the Jacobian of the theoretical moments and

the asymptotic Hessian of the likelihood with respect to model parameters.

The likelihood computation also has the possibility to activate the option

analytic_derivation which allows to use the analytic gradient during op-

timization and compute the analytic Hessian at the posterior mode. This

feature in estimation is so far only available for stationary models.

4 Tests

We performed a number of tests for assessing the properties of analytic deriva-

tives in DSGEmodels. First, we evaluate the accuracy and the computational

time required to compute the first and second order derivatives of the vector

τ with respect to the estimated parameters. Second, we compare the use

of numerical and analytic derivatives for assessing identification of DSGE

models. Third, we compare the use of numerical and analytic derivatives for

likelihood based (ML or Bayesian) optimization and estimation.

4.1 Computing first order derivatives

We first summarize here the results and performance of the DYNARE im-

plementation of the computation of first derivatives of DSGE models. The

performed two types of checks: (i) consistency between the two analytical

approaches and the numerical one (by perturbation); (ii) gain in computa-

tional time of the Sylvester equation solution with respect to the approach in

Iskrev (2010). We considered a set of models of different size and complex-

ity: Kim (2003), An and Schorfheide (2007), Levine et al. (2008), Smets and

Wouters (2007), QUEST III (Ratto et al., 2009, 2010). The models of An

and Schorfheide (2007) and Smets and Wouters (2007) are linearized DSGE

models, and as such their DYNARE implementation already contains ex-

plicitly the steady state dependence on θ, thus not requiring the generalized

form discussed in (7). On the other hand, the models of Kim (2003), Levine

10

model Computing time (s) model size (m)
Sylvester Iskrev (2010)

Kim (2003) 0.0062 0.0447 4
An and Schorfheide (2007) 0.0075 0.054 5

Levine et al. (2008) 0.016 0.109 13
Smets and Wouters (2007) 0.183 5.9 40

Ratto et al. (2009) 1.6 907.6 107
Ratto et al. (2010) 11.1 ∞ 210

Table 1: Computational time required for the evaluation of first order ana-
lytic derivatives of models of growing size.

et al. (2008) and QUEST III (Ratto et al., 2009, 2010) are fed to DYNARE

in their full original non-linear form, thus allowing to test all elements of the

proposed computational procedure.

The consistency of all different methods for computing derivatives is ful-

filled in all models: in particular the maximum absolute relative difference be-

tween numerical derivatives and analytic ones was in the range (10−6−10−9)

across the different models, while the two analytic approaches are practically

identical, in terms of numerical accuracy (maximum absolute relative differ-

ence in the range (10−11−10−14)). Concerning computational time, the gain

of the approach proposed in this paper is evident looking at Table 1. The

computational cost for the Iskrev (2010) approach becomes unsustainable for

Ratto et al. (2009) and Ratto et al. (2010). Also note that we performed the

tests with a 64-bit version of MATLAB, on a powerful HP ProLiant machine

with 4 dual core processors (8 processors as a whole). This has a significant

effect on the speed of the algorithm based on Kronecker products, linked to

the multi-thread architecture of recent versions of MATLAB. Using only one

single dual core processor for Smets and Wouters (2007), the computational

cost doubles (11.24 s), while for Ratto et al. (2009) the computation of all

derivatives lasted 47.5 minutes!

The present results show that, with the algorithms proposed in this paper,

the evaluation of analytic derivatives is affordable also for DSGE models of

medium/large scale, enabling to perform detailed inference analysis for such

kind of models.

11

model Computing time (s) model size (m)
Sylvester numerical

Kim (2003) 0.22 0.15 4
An and Schorfheide (2007) 0.13 0.85 5

Levine et al. (2008) 0.95 1.02 13
Smets and Wouters (2007) 3.5 26.3 40

Ratto et al. (2009) 151.79 179.3 107

Table 2: Computational time required for the evaluation of second order
analytic derivatives of models of growing size.

model Maximum error model size (m)
absolute relative

Kim (2003) 17 9.5e3 4
An and Schorfheide (2007) 0.64 6.4e-4 5

Levine et al. (2008) 47 5.2e7 13
Smets and Wouters (2007) 0.0013 0.3121 40

Ratto et al. (2009) 0.12 370 107

Table 3: Error in the evaluation of second order analytic derivatives of models
of growing size.

4.2 Computing second order derivatives

When computing second order derivatives, we compare the computational

time to obtain the derivatives of τ with numerical differentiation and with

analytic derivatives (Table 2). Moreover, we compute the maximum absolute

and relative error in second order derivatives computed numerically with

respect to the analytic values (Table 3). As we can see, the numerical errors

in computing second order derivatives tend to grow quite significantly as the

model size or the non-linearity grows. It is also worth anticipating here that

such errors, which sometimes happen to be quite large for individual second

order derivatives of the model solution, happen to be much smaller in terms

of the likelihood Hessian, which is perhaps the most important quantity that

is evaluated for inference.

12

4.3 Identification analysis

In the case of identification analysis, one key issue is the detection of per-

fect collinearity among derivatives of theoretical moments of the observables

with respect to different deep parameters. In that case we have noted that

there is a clear advantage in the analytic derivation. The key issue is, in

fact, to be able to distinguish possible weak indentification, that is, near lin-

ear dependence, form true perfect collinearity. Errors related to numerical

differentiations introduce a non systematic component in the computation

of the Jacobian matrices. As a result, the rank test for singularity is much

more sensitive to the significance threshold set the by user in checking the

rank when numerical derivatives are used. One example of this is the An and

Schorfheide (2007) model: the identification of a specification of this model

where the output gap is targeted in the Taylor rule is analyzed in Komunjer

and Ng (2011), who study its identification failure. Repeating the identifica-

tion analysis for An and Schorfheide (2007) with analytic derivatives there

are several noticeable differences with respect to Komunjer and Ng (2011).

First, they associate the lack of identification with linear dependence among

the three Taylor rule parameters, which, as can be seen in the output from

Dynare, are highly but not perfectly collinear (exact collinearity occurs only

when the variance of the monetary shock is included). Second, they have

to set much larger level of tolerance for Matlab’s rank in order to correctly

detect lack of identification (1.e-3). In particular, they report that at the de-

fault level their condition wrongly indicates identifiability. This may be due

to the use of numerical derivatives although, on the computer we have tested

it, DYNARE (using numerical derivatives) gives correct answer at TOL =

1e-8 and larger (the default is larger) and fails at TOL = 1e-9 or smaller (nor-

malizing Jacobians with numerical derivatives, tolerance can be tightened at

1.e-11). Using analytic derivatives, DYNARE provides the right answer with

TOL=1.e-13 (and larger) which is also the default in DYNARE, while using

normalization (which is the default in DYNARE Identification) TOL can be

tightened at 1.e-17. This example shows that, when non-identification is due

to collinearity, numerical derivatives may imply a sensitivity with respect to

13

numerical tolerances in determining the rank in Jacobians. This can have

strong implications in the understanding of the sources of non-identification.

4.4 Likelihood inference

One interesting aspect of using analytical derivatives is to see whether there

are advantages in the estimation context. We report here some prelimi-

nary results. We have compared the estimation results of a number of

models, both using analytic and numerical derivatives. We first considered

the DYNARE implementations of Lubik and Schorfheide (2005, 2007) and

Schorfheide (2000). In both cases, using numerical and analytic derivatives

did not result in significant differences in terms of convergence of the opti-

mization and the Metropolis (results not reported here). We then tried to

move to larger models, where we report results in more detail: Smets and

Wouters (2007) and Ratto et al. (2009).

In the case of Smets and Wouters (2007) the MATLAB fmincon with

analytic scores provides the best speed of convergence to the posterior mode.

Using numerical derivatives with the same optimizers takes about 10% more

time. The computation of analytic scores is also more time consuming than

the numeric ones. Concerning accuracy, numerical gradient (scores) is rather

precise, while errors in the Hessian can be very large. This however does not

imply big errors in the estimation of standard errors of parameter estimates,

with relative errors smaller than 1%. Considering that the Hessian is just

the starting point of a Metropolis algorithm for full posterior estimation, the

use of analytic Hessian (much more time consuming than the numeric one,

at least in the current DYNARE implementation) does not provide special

advantages over the numeric ones.

In the case of Ratto et al. (2009) the portrait is more interesting. First,

for this model all optimizers except mode_compute=5 fail to converge to the

posterior mode with numerical derivatives. One reason for this is presumably

linked to scaling issues, where the values of estimated parameters may vary

in order of magnitude (e.g. large adjustment cost parameters a la Rothem-

berg vis à vis small standard deviations). The optimizer mode_compute=5

14

analytic deriv. numeric deriv.
mode_compute=1 mode_compute=1

iterations 56 59
optimization 112.2s 124.7s

scores 1.652s 1.834s
Hessian 273.6s 61.5s

Table 4: Speed in the estimation and in computing scores and Hessian for
Smets and Wouters (2007).

Maximum error
absolute relative

scores 0.0672 0.0467%
Hessian 152.9 93.9%
st.err 3.437e-4 0.317%

Table 5: Accuracy of numerical derivatives in computing scores, Hessian and
standard errors for Smets and Wouters (2007).

is a sort of ‘brute force’ algorithm, where at each iteration the increment of

each parameter to compute gradients is tuned according to its effect on the

objective function. This makes gradient computations longer but more adap-

tive to scaling. Moreover, this optimizer also allows to perform sequences of

univariate optimizations, one for each estimated parameter: this is very use-

ful when the direction for the line search has a bad angle. Using analytic

derivatives, the MATLAB fmincon algorithm works very efficiently, reduc-

ing the time to reach the posterior mode by about 66% (1 hour instead of

three hours). In terms of speed of computing scores, the analytical score take

about twice the time for the numerical gradient. However, the efficiency of

the optimizer combined with analytic scores results in a large improvement

in the speed of convergence. The Hessian is very time consuming to compute

(about 7 times longer).

In terms of accuracy, errors of numerical gradient can be larger than

100%, thus explaining the difficulties in getting to the posterior mode with

all types of optimizers. The errors in the numerical Hessian can also be

as large as 110% relative to the analytical ones. However, the resulting

estimates of standard errors of estimated parameters are quite close, with

15

analytic deriv. numeric deriv.
mode_compute=1 mode_compute=5

optimization 1h07m 3h02m
scores 9.34s 5.75s
Hessian 2780s 387s

Table 6: Speed in the estimation and in computing scores and Hessian for
Ratto et al. (2009).

Maximum error
absolute relative

scores 149.5 113%
Hessian 1.23e7 112%
st.err 0.269 4.6%

Table 7: Accuracy of numerical derivatives in computing scores, Hessian and
standard errors for Ratto et al. (2009).

the difference between analytical and numerical ones being most 4.5%. As a

result, Metropolis convergence is very similar when using numeric or analytic

Hessian to define the covariance of the proposal distribution.

5 Conclusions

We have discussed an efficient method to compute analytical derivatives of

linearized DSGEmodels with respect to estimated parameters. The proposed

method (based on solving a set of algebraic Sylvester equations) improves

with respect to previous methods that make large use oh Kronecker prod-

ucts and are therefore unsuitable for medium-large scale models. The use

of analytic derivatives provides clear advantages for analysing identification

of DSGE model, in which numerical derivations are prone to make weak-

and non-identification undistinguishable. The accuracy in detecting perfect

collinearity using analytic derivations, allows a more robust and cleaner in-

terpretation and diagnostics of model properties. In the case of estimation,

our preliminary tests showed that, for medium-large scale models, there can

be a clear speed-up in converging to the posterior mode when using MAT-

LAB fmincon coupled with analytic derivatives. So far, however, we did not

16

detect a clear advantage in using analytic Hessian (which is more time con-

suming) with respect to the numeric one both in determining the standard

errors of parameter estimates and in defining the covariance of the proposal

distribution for Metropolis algorithms.

17

References

Adjemian, S., H. Bastani, F. Karame, M. Juillard, J. Maih, F. Mi-

houbi, G. Perendia, M. Ratto, and S. Villemot (2011). Dynare:

Reference manual, version 4. Dynare Working Papers Series (1).

http://ideas.repec.org/p/cpm/dynare/001.html.

An, S. and F. Schorfheide (2007). Bayesian analysis of DSGE models. Econo-

metric Reviews 26 (2-4), 113–172. DOI:10.1080/07474930701220071.

Iskrev, N. (2010). Local identification in DSGE models. Journal of Monetary

Economics 57, 189–202.

Kim, J. (2003, February). Functional equivalence between intertemporal and

multisectoral investment adjustment costs. Journal of Economic Dynamics

and Control 27 (4), 533–549.

Komunjer, I. and S. Ng (2011, November). Dynamic identification of DSGE

models. Econometrica 79 (6), 1995–2032–1423.

Levine, P., J. Pearlman, and R. Pierse (2008). Linear-quadratic approxima-

tion, external habit and targeting rules. Journal of Economic Dynamics

and Control 32 (10), 3315 – 3349.

Lubik, T. and F. Schorfheide (2005, May). A bayesian look at new

open economy macroeconomics. Economics Working Paper Archive 521,

The Johns Hopkins University,Department of Economics. available at

http://ideas.repec.org/p/jhu/papers/521.html.

Lubik, T. A. and F. Schorfheide (2007, May). Do central banks respond to

exchange rate movements? a structural investigation. Journal of Monetary

Economics 54 (4), 1069–1087.

Ratto, M., W. Roeger, and J. in ’t Veld (2009). QUEST III: An estimated

open-economy DSGE model of the euro area with fiscal and monetary

policy. Economic Modelling 26 (1), 222 – 233.

18

Ratto, M., W. Roeger, and J. in ’t Veld (2010, January). Using a DSGE

model to look at the recent boom-bust cycle in the US. European Economy.

Economic Papers 397, European Commission, Brussels.

Schorfheide, F. (2000). Loss function-based evaluation of DSGE mod-

els. Journal of Applied Econometrics 15 (6), 645–670. available at

http://ideas.repec.org/a/jae/japmet/v15y2000i6p645-670.html.

Smets, F. and R. Wouters (2007, June). Shocks and frictions in US busi-

ness cycles: A Bayesian DSGE approach. The American Economic Re-

view 97 (3), 586–606.

19

