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Abstract

This paper derives a fifth-order perturbation solution to DSGE models.
Solutions of this order are required in models with rare disasters (Barro 2006),
where lower order solutions fail to approximate accurately the true solution.
The paper develops a new notation that is simpler than the standard notation
of Schmitt-Grohé and Uribe (2004). Specifically, the perturbation parameter is
treated as a state variable and the model is presented as a composite function.
This yields a notational gain that rises exponentially with the perturbation
order. Further notational gain is obtained by developing a compact matrix
notation for high order chain rules. Finally, memory constraints are relaxed
by exploiting symmetry and sparsity of the model derivatives.
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1 Introduction

Perturbation methods have become highly popular for solving DSGE models

(Uhlig 1997, Gaspar and Judd 1997, Judd and Guu 1997, Judd 1998, Klein 2000,

Sims 2001, Jin and Judd 2002). Recently, there has been a growing interest in high

order perturbation solutions (Andreasen, Fernández-Villaverde and Rubio-Ramı́rez

2013). High order solutions are more accurate (Aruoba, Fernández-Villaverde and

Rubio-Ramı́rez 2006), and they are essential for studying nonlinear issues such as wel-

fare analysis (Kim and Kim 2003), volatility shocks (Fernández-Villaverde, Guerrón-

Quintana, Rubio-Ramı́rez and Uribe 2011) or risk premia (Andreasen 2012).

The existing literature provides closed-form expressions for the second order so-

lution (Schmitt-Grohé and Uribe 2004, Kim, Kim, Schaumburg and Sims 2008 and

Gomme and Klein 2011) and the third order solution (Andreasen 2012, Ruge-Murcia

2012 and Binning 2013a). For standard business cycle models, these solutions are

sufficiently accurate (Aruoba, Fernández-Villaverde and Rubio-Ramı́rez 2006). Yet

there are models that require higher order solutions. Specifically, the paper shows

that models with rare disasters, which are the subject of a growing body of litera-

ture,1 cannot be solved accurately with second or even third order solutions. These

models require fourth and fifth order solutions to get reasonable accuracy. Solutions

of these orders are currently unavailable analytically.2

1See Rietz (1988), Barro (2006, 2009), Barro and Jin (2011), Gabaix (2011, 2012), Gourio (2012,
2013), Nakamura, Steinsson, Barro and Ursúa (2013), Wachter (2013), Farhi and Gabaix (2013).

2High order solutions can be obtained by pure symbolic algorithms, e.g. Aruoba, Fernández-
Villaverde and Rubio-Ramı́rez (2006) and Swanson, Anderson and Levin (2005). These algorithms
are difficult to optimize for memory and speed, because the structure of the problem is not trans-
parent. Memory and speed are critical for high order solutions, both in forming the linear system
and in solving it. These issues are discussed in detail in this paper. An alternative algorithm that
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The present paper derives fourth and fifth order solutions to DSGE models, by

extending the method of Schmitt-Grohé and Uribe (2004). The solutions are imple-

mented by a MATLAB package available online.3 The accuracy of the MATLAB

package was tested on four models with closed form solutions: a neoclassical growth

model with a closed form solution, Burnside (1998), Barro (2006), and an artificial

model that has no economic meaning but enables to test accuracy on large models.

For these models, the derivatives of the solution at the steady state can be solved

analytically and compared to the numerical algorithm. In all cases the algorithm

succeeded to replicate the true derivatives. All accuracy tests are available together

with the MATLAB package.

Obtaining high order solutions is not trivial. The system of equations that defines

the solution becomes extremely complicated and difficult to manage. This is seen

most clearly in the third order solutions derived by Andreasen (2012) and Ruge-

Murcia (2012). For instance, the third order system in Andreasen (2012) requires

almost three pages of equations, with expressions that contain dozens of terms. One

can only imagine how complicated the system would be for fourth and fifth order

solutions.

This paper proposes a different notation, which is simpler than the existing lit-

erature. The new notation treats the perturbation parameter as an exogenous state

variable, which is included in the vector of state variables x. As a result, the model

is presented in the composite form Ef (v (x)) = 0, where v is a vector of the model

produces a general k-order solution is implemented by the Dynare++ software. However, Dynare++

is restricted to models with Gaussian shocks (Kamenik 2011, p. 9), so it is not applicable to models
with rare-disaster shocks.

3The package is available at https://sites.google.com/site/orenlevintal.
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variables and x is a vector that includes the state variables and the perturbation

parameter. The solution is obtained by differentiating the model with respect to x

only. This yields a notational gain that rises exponentially with the order of per-

turbation, which allows to derive high order solutions with less effort than previous

studies.

Further notational gain is obtained by using high order multivariate chain rules to

differentiate the model. The paper derives multivariate chain rules up to fifth order.

Previous papers provide chain rules up to third order only (Magnus and Neudecker

1999 and Binning 2013a). These papers derive the chain rules by matrix notation,

but their method is difficult to extend to fourth and fifth orders. By comparison, the

present paper combines tensor and matrix notation interchangeably. Importantly,

the proposed notation exploits permutations, which appear extensively in high order

chain rules and bear significant notational gains. These tools enable to express the

chain rules in a very compact matrix form, which is easy to use and code.4

Apart from notational complexity, high order solutions are likely to raise memory

problems that do not exist in low order solutions, because the size of the problem

grows exponentially with the perturbation order. This is particularly acute in the

symbolic differentiation step, because the model needs to be differentiated five times

with respect to all variables. To address this problem, the paper develops a com-

pressed differentiation routine, which exploits sparsity and symmetry of high order

derivatives. Specifically, the routine differentiates the model in a compressed man-

4MATALB codes that perform the chain rules are available at the author’s homepage
https://sites.google.com/site/orenlevintal.
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ner, so that only the unique nonzero derivatives are differentiated and stored.5 This

feature makes it feasible to differentiate and solve medium-sized models, such as

Christiano, Eichenbaum and Evans (2005), up to fifth order.

The importance of fifth order solutions is demonstrated on Barro (2006) and

Gabaix (2012). These papers study an asset pricing model with rare disasters, fol-

lowing the work of Rietz (1988). Their model has proved useful in explaining many

asset pricing puzzles (Gabaix 2012), and has become the benchmark model in this

literature. The paper shows that rare-disaster models cannot be solved accurately by

low order perturbation solutions. For instance, the second and third order solutions

of the unlevered equity premium in Barro (2006) are 0.9 and 1.5 percent, respectively,

whereas the true (closed-form) solution is 3.0 percent. Hence, the errors of low order

solutions are economically significant, even at the third order. By comparison, the

fifth order solution of the equity premium is 2.6 percent, which is much closer to

the true solution. Similarly, the third order solution of the price-dividend ratio in

Gabaix (2012) understates the true solution by 12%-19% over a small range around

the steady state. The fifth order solution understates the true solution by 1%-5%

only. These results suggest that the fourth and fifth order terms are economically

important and should not be ignored in models with rare disasters.

Finally, the tools developed in this paper can be useful for other perturbation

methods as well. As Kim, Kim, Schaumburg and Sims (2008) point out, ”the use

of perturbation methods ... is still in its early stages.” Indeed, new methods have

been proposed recently, e.g. perturbation of the impulse response function by Lan

5The MATLAB function compderivs.m performs the compressed differentiation and is available
at the author’s homepage.
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and Meyer-Gohde (2013), or perturbation of markov-switching models by Foerster,

Rubio-Ramı́rez, Waggoner and Zha (2013). These perturbation methods and others

that are likely to emerge in the future, must handle notation complexity and memory

issues similar to the ones addressed in this paper.

The paper proceeds as follows. Section 2 presents the new notation of the model.

Section 3 derives the first and second order solutions and demonstrates the notational

gain compared to Schmitt-Grohé and Uribe (2004). To extend the solution to higher

orders, section 4 derives high order multivariate chain rules. Section 5 discusses the

symmetry property and shows how to compress and uncompress derivative matrices.

Section 6 describes the compressed differentiation routine, which exploits sparsity

and symmetry of high order derivatives. The third, fourth and fifth order solutions

are derived in section 7. Section 8 discusses the solution algorithm. Section 9 reports

accuracy tests. Section 10 applies the algorithm on Barro (2006) and Gabaix (2012)

and demonstrates the economic importance of the fourth and fifth order terms. Sec-

tion 11 concludes. The appendix discusses some technical issues in more detail. A

separate technical paper, Levintal (2014), elaborates on the implementation of the

MATLAB package and some further technical issues.

2 The Model

The basic notation builds on Schmitt-Grohé and Uribe (2004). The only differ-

ence is that the perturbation parameter is treated as a ”state” variable. Specifically,

let σt denote an exogenous state variable that is constant across time:
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σt+1 = σt. (1)

Define the vector of state variables by:

xt =
(

x1
t , x

2
t , σt

)

, (2)

where x1
t is a vector of n

1
x pre-determined variables and x2

t is a vector of n2
x exogenous

variables. The size of xt is nx = n1
x + n2

x + 1.

The model is defined by a set of nf expectational conditions:

Ef (yt+1, yt, xt+1, xt) = 0, (3)

where yt is a vector of ny control variables, and f : R2nx+2ny → R
nx+ny . Note that

(1) is included in (3).

The solution has the form:

yt = g (xt) , (4)

xt+1 = h (xt) + σtηǫt+1, (5)
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where yt and xt are presented as column vectors, g : Rnx → R
ny , h : Rnx → R

nx ,

η is a known matrix of dimensions nx × nǫ, and ǫ is a nǫ × 1 vector of zero mean

shocks. The cross moments of ǫ are denoted M2,M3, . . .. For instance, M2 is the

variance-covariance matrix of ǫ, M3 is a 3-dimensional tensor whose ijk element is

Eǫiǫjǫk, and so on. The model is deterministic at σt = 0 and stochastic for σt > 0.

Since σt is already included in xt, it would be more efficient to represent the RHS

of (5) as a function of xt only. To do so, define a new nx × nx matrix ζt as follows:

ζt =
(

0nx×(nx−1), ηǫt+1

)

. (6)

ζt is a sparse matrix with all columns equal to zero except the last column, which is

ηǫt+1. With this matrix, (5) can be stated as a function of xt only (presented as a

column vector):

xt+1 = h (xt) + ζtxt. (7)

The model is completely defined by (3), (4) and (7). The solution is the functions

g (xt) and h (xt) for which the system holds.

To reduce notation further, time subscripts are dropped and next period variables

are denoted by ′. In addition, let v = (y′, y, x′, x) denote the vector of the model

variables. Now, (3), (4) and (7) can be written as follows:
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Ef (v) = 0, (8)

v (x, ζ) =



















g (h (x) + ζx)

g (x)

h (x) + ζx

x



















, (9)

where v is a column vector of size nv = 2 (ny + nx). By this notation the model

is presented as a composition of the functions f (v) and v (x, ζ). Hence, f will be

differentiated with respect to x only, by applying high order multivariate chain rules

on the composite function f (v (x, ζ)). This is the source of the notational gain.

The deterministic steady state is derived by setting σt = 0 and solving the steady

state. Let the row vectors x̄1, x̄2 and ȳ denote the steady state solution, and define

x̄ = (x̄1, x̄2, 0). Note that (6) implies that ζx̄T = 0. The steady state solution x̄, ȳ

satisfies:

f (ȳ, ȳ , x̄ , x̄) = 0.

A k’th order perturbation solution is the k’th order Taylor series of g (x) and

h (x) centered at x̄. The unknowns are the derivatives of g (x) and h (x) up to k

order evaluated at x̄. To solve these derivatives, (8) is differentiated k times with

respect to x and evaluated at x̄. Note that we do not need to differentiate the system
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with respect to the perturbation parameter, because it is already included in x. We

get the following system:

0 = E
∂f i

∂xj1

∣

∣

∣

∣

x=x̄

= E
∂2f i

∂xj1∂xj2

∣

∣

∣

∣

x=x̄

= . . . = E
∂kf i

∂xj1 · · · ∂xjk

∣

∣

∣

∣

x=x̄

(10)

∀i ∈ {1, . . . , nf}, j1, . . . , jk ∈ {1, . . . , nx}.

where f i denotes the i’th element of f (v (x, ζ)), and xjk is the jk’th element of x.

The solution is the unknown derivatives of the policy functions. As shown by

Judd (1998) and Judd and Guu (1997), the solution is obtained recursively. The

first equation defines the first derivatives as a solution of a quadratic system. The

higher order conditions are linear in the unknown derivatives, given the solution of

lower derivatives. Throughout, I assume that a first order solution is available (see

Blanchard and Khan 1980, Uhlig 1997, Klein 2000, Sims 2001), and focus on the

higher order solutions.6

3 First and Second Order Solutions

This section derives the first and second order perturbation solutions. The third,

fourth and fifth order solutions are derived in section 7. High order solutions require

to adopt notation that can handle multidimensional arrays. This paper uses tensor

notation and matrix notation interchangeably, depending on the task at hand. Tensor

6The MATLAB package solves the first order solution with the function gx hx.m written by
Stephanie Schmitt-Grohé and Mart́ın Uribe. I thank them for letting me use their code.
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notation is more convenient for differentiation and for tensor permutations, which

appear frequently in perturbations higher than second order. Matrix notation is

required to form and manipulate the linear system.

Throughout the paper, high order derivatives will be denoted either by multi-

dimensional tensors or by 2-dimensional matrices. The mapping from tensors to

matrices (and vice versa) is implemented by the reshape operator.7 In the math-

ematical literature the tensor-to-matrix mapping is called ”tensor unfolding”, see

Ragnarsson and Van Loan (2012a). High order derivatives are unfolded in the fol-

lowing way. The first dimension of the tensor/matrix indexes the function that is

differentiated. This dimension is identical for tensors and matrices. The difference

is in the other dimensions. Specifically, the columns of the matrix correspond to the

second to last dimensions of the tensor.

For example, the matrix gxx contains the second derivatives of g with respect

to x. The dimensions of this matrix are ny × (nx)
2. It is obtained by reshaping

(unfolding) the ny × nx × nx tensor of second derivatives into a matrix. Similarly,

gxxx denotes a matrix of dimensions ny × (nx)
3 of the third derivatives of g, and so

on. This matrix representation of high order derivatives is used also by Andreasen,

Fernández-Villaverde and Rubio-Ramı́rez (2013). It is useful for presenting Taylor

series in a compact way. For example, the second order Taylor series of g (x) is given

by:

g (x) = g (x̄) + gx (x− x̄) +
1

2
gxx (x− x̄)⊗2 ,

7The MATLAB function reshape.
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where x and x̄ are column vectors of size nx, and g (x) is a column vector of size

ny. The notation ⊗k denotes a ”Kronecker power”, e.g. B⊗2 = B ⊗ B, see also

Ragnarsson and Van Loan (2012b). The Kronecker power is performed before the

inner product, hence AB⊗2 ≡ A (B⊗2). For a different way to present Taylor series

with matrix notation see Gomme and Klein (2011) and Benigno, Benigno and Nisticò

(2013).

Finally, to distinguish between tensor and matrix notation, tensors are enclosed

by square brackets. For example, [gxx] denotes the 3-dimensional tensor of the second

derivatives of g with respect to x. The i, j, k element of this tensor is denoted by

[gxx]
i

jk. Matrices are denoted without brackets.

To get the first order solution, differentiate (8) with respect to x. Recall that x

contains the perturbation variable, so this is the only differentiation that is required.

The result is presented in tensor notation:

E [fv]
i

α [vx]
α

j = 0, ∀i = 1, . . . , nf j = 1, . . . , nx. (11)

[fv]
i

α denotes the derivative of the i’th element of f with respect to the α’th element

of v. Similarly, [vx]
α
j denotes the derivative of the α’th element of v with respect to

the j’th element of x. Greek letters denote summation indices, so [fv]
i
α [vx]

α
j implies

∑

α

[fv]
i

α [vx]
α

j . This notation will be more useful for higher order solutions, which are

derived later.

To get vx, differentiate (9) with respect to x. Here, vx is presented as a nv × nx

matrix:
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vx =



















∂g(h(x)+ζx)
∂x

gx

hx + ζ

Inx



















. (12)

The first element is a first order chain rule applied to the composite function g (h (x) + ζx).

It is presented in matrix form by:

∂g (h (x) + ζx)

∂x
= gx (hx + ζ) . (13)

As in Schmitt-Grohé and Uribe (2004), gx and hx denote the derivatives of the policy

functions with respect to x, evaluated at the steady state x̄.

The matrix vx is stochastic, because it depends on the stochastic matrix ζ . It

will be convenient for later stages to present it as a polynomial function of ζ . To do

so, substitute (13) in (12) and write vx as follows:

vx = V 0
x + V 1

x ζ, (14)

where the coefficients V 0
x and V 1

x are defined by:
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V 0
x =



















gxhx

gx

hx

Inx



















, V 1
x =



















gx

0ny×nx

Inx

0nx×nx



















. (15)

To complete the first order system, substitute (14) in (11). This yields the con-

dition for the first order solution, presented in matrix notation as:

fvV
0
x = 0. (16)

It follows from (15) that this is a quadratic system in gx and hx.

To get the second order solution, differentiate (11) with respect to x:

E [fvv]
i

αβ [vx]
β

k [vx]
α

j + E [fv]
i

α [vxx]
α

jk = 0 ∀i = 1, . . . , nf j, k = 1, . . . , nx. (17)

The tensor notation [fvv]
i
αβ denotes the second derivative of the i’th element of f

with respect to the α’th and β’th elements of v. In the mathematical literature the

tensor products in (17) are called ”tensor contractions”, see Ragnarsson and Van

Loan (2012a). These products can be reshaped (unfolded) into the following matrix

notation:
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Efvvv
⊗2
x + Efvvxx = 0. (18)

Here, fvv is the tensor [fvv] reshaped into a matrix of dimensions nf × (nx)
2, and vxx

is the tensor [vxx] reshaped into a matrix of dimensions nv × (nx)
2. The unfolding

of the tensor contractions in (17) into the matrices in (18) is explained in appendix

A.1.

The term vxx is obtained by differentiating (12) with respect to x:

vxx =



















∂2g(h(x)+ζx)
∂x2

gxx

hxx

0nx×n2
x



















. (19)

Here, vxx is a nv × (nx)
2 matrix, and the dimensions of the matrices gxx and hxx are

ny× (nx)
2 and nx× (nx)

2, respectively. ∂2g(h(x)+ζx)
∂x2 denotes a ny× (nx)

2 matrix of the

second derivatives of g with respect to x. To get these derivatives, apply a second

order chain rule on the composite function g (h (x) + ζx), which has a similar form

to the left hand side of (18):

∂2g (h (x) + ζx)

∂x2
= gxx (hx + ζ)⊗2 + gxhxx.

Substituting in (19) yields a quadratic function of ζ :
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vxx = V 0
xx + V 1

xx (hx ⊗ ζ + ζ ⊗ hx) + V 1
xxζ

⊗2, (20)

where the coefficients are:

V 0
xx =



















gxxh
⊗2
x + gxhxx

gxx

hxx

0



















, V 1
xx =



















gxx

0

0

0



















. (21)

Note that the first term in V 0
xx is the second order chain rule applied to g (h (x)),

namely ∂2g(h(x))
∂x2 . Similarly, the first term in V 0

x , given in (15), was the first order

chain rule ∂g(h(x))
∂x

. This pattern will show up again in higher order solutions.

To calculate (18), we need the expected values of v⊗2
x and vxx, which follow from

(14) and (20):

Ev⊗2
x =

(

V 0
x

)⊗2
+
(

V 1
x

)⊗2
Eζ⊗2, (22)

Evxx = V 0
xx + V 1

xxEζ⊗2. (23)

The term Eζ⊗2 can be derived from (6), as follows:
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Eζ⊗2 =
(

0(nx)
2×((nx)

2−1), E (ηǫ)⊗2
)

(24)

=
(

0(nx)
2×((nx)

2−1), η
⊗2vec

(

M2
)

)

,

where vec (M2) is a vectorization of the variance-covariance matrix M2.

Substituting (22)-(23) in (18) and using (21) yield the second order system in gxx

and hxx:

A+ fy′gxxB + fygxx + (fx′ + fy′gx) hxx = 0, (25)

A ≡ fvvEv⊗2
x ,

B ≡
(

h⊗2
x + Eζ⊗2

)

.

fy′ , fy, fx′, fx denote derivatives of f with respect to y′, y, x′, x, respectively, hence

fv = (fy′ , fy, fx′, fx). Higher order systems will have a similar structure, only with

different matrices A and B. The solution algorithm of this system is discussed in

section 8.

The notational gain of the proposed method can be illustrated by comparing

(25) with the equivalent system in Schmitt-Grohé and Uribe (2004, pp. 762-763).

The inclusion of the perturbation parameter in x eliminates expressions such as gσσ,

which are already included in gxx. Moreover, since f is presented as a composite

function f (v (x, ζ)), all the second derivatives of f are included in fvv. This yields a
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significant notational gain, which rises exponentially with the order of perturbation.

For instance, the derivative fvv replaces 16 derivatives of f with respect to y′, y, x′, x

that appear in the notation of Schmitt-Grohé and Uribe (2004). In a fifth order

system, fvvvvv replaces 1,024 derivatives of f with respect to y′, y, x′, x.

The next sections extend this method to higher order solutions. This requires to

derive high order chain rules, which were used in the second order system in (18),

(19) and (21). Higher order systems will use higher order chain rules at equivalent

points.

4 High Order Multivariate Chain Rules

This section derives multivariate chain rules up to fifth order. The rules are

derived by tensor notation and then transformed (unfolded) into matrix notation,

which is much more compact and useful. An alternative way is to derive high order

chain rules directly in matrix notation, as shown by Magnus and Neudecker (1999)

for a second order rule and Binning (2013a) for a third order rule. However, this

method becomes extremely tedious for higher orders. The tensor notation used here

is simpler because it enables to exploit permutations very easily, yielding significant

notational gains. Moreover, the symmetric structure of the problem is preserved

in a transparent way, which will be used later to compress and uncompress these

expressions.

The chain rules are implemented by the MATLAB functions chain2.m, chain3.m,

chain4.m and chain5.m, which are available online together with all the other codes

18



of this paper. These codes were tested by comparison with MATLAB symbolic

differentiation. The test file is also available online.

For a given composite function f (v (x)), a k’th order multivariate chain rule

generates a k+1 dimensional tensor, denoted
[

∂kf(v(x))
∂xk

]

. The first dimension of this

tensor indexes an element of f , and the other dimensions index elements of x, with

respect to which the function is differentiated. For example,
[

∂3f(v(x))
∂x3

]i

jkl
denotes

∂3fi(v(x))
∂xj∂xk∂xl

. A single element of the tensor can be calculated by the Faa di Bruno

formula for the multivariate case (Constantine and Savits 1996). However, here we

are interested in calculating the entire tensor. Hence, the formulas are derived by

successive differentiations.

In what follows, [fv] , [fvv] , . . . denote tensors of the first, second and higher

derivatives of f with respect to v. Similarly, [vx] , [vxx] , . . . denote the derivative

tensors of v with respect to x. A particular element of these tensors is denoted by

its indices. For instance, [fvvv ]
i

jkl denotes the third derivative of the i’th element of f

with respect to the j’th, k’th and l’th elements of v. As before, tensors are enclosed

by square brackets whereas matrices are denoted without brackets.

The second order chain rule was introduced in the previous section. It is presented

again for convenience:

[

∂2f (v (x))

∂x2

]i

jk

= [fvv]
i

αβ [vx]
β

k [vx]
α

j + [fv]
i

α [vxx]
α

jk . (26)

The notation of multivariate differentiation follows Schmitt-Grohé and Uribe (2004).

This rule appears also in Judd (1998, p. 490). To get the third order chain rule,
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differentiate (26) with respect to the l’th element of x. This gives a new tensor

denoted
[

∂3f(v(x))
∂x3

]

whose ijkl element is:

[

∂3f (v (x))

∂x3

]i

jkl

= [fvvv ]
i
αβγ [vx]

γ
l [vx]

β
k [vx]

α
j + [fvv]

i
αβ [vxx]

β
kl [vx]

α
j (27)

+ [fvv]
i

αβ [vx]
β

k [vxx]
α

jl + [fvv]
i

αβ [vx]
β

l [vxx]
α

jk + [fv]
i

α [vxxx]
α

jkl .

This expression contains five terms, where each term is an element of a tensor with

dimensions nf × nx × nx × nx. However, the three middle tensors are three different

permutations of the same tensor, because fvv is symmetric in the indices α and β.8

Hence, the third order multivariate chain rule can be stated more compactly as:

[

∂3f (v (x))

∂x3

]i

jkl

= [fvvv]
i

αβγ [vx]
γ

l [vx]
β

k [vx]
α

j +
∑

qrst∈Ω1

(

[fvv]
q

αβ [vxx]
β

rs [vx]
α

t

)

(28)

+ [fv]
i
α [vxxx]

α
jkl ,

where Ω1 is a set of three permutations, defined by:

Ω1 = {iklj, ijlk, ijkl} . (29)

Proceeding similarly, the fourth order multivariate chain rule is:

8Due to this symmetry, the third term can be restated as [fvv]
i
βα [vxx]

α
jl [vx]

β
k , and the fourth

term as [fvv]
i

βα [vxx]
α

jk [vx]
β

l . These are two permutations of the second term.
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[

∂4f (v (x))

∂x4

]i

jklm

= [fvvvv ]
i

αβγδ [vx]
δ

m [vx]
γ

l [vx]
β

k [vx]
α

j (30)

+
∑

qrstu∈Ω2

(

[fvvv ]
q
αβγ [vxx]

γ
rs [vx]

β
t [vx]

α
u

)

+
∑

qrstu∈Ω3

(

[fvv]
q
αβ [vxxx]

β
rst [vx]

α
u

)

+
∑

qrstu∈Ω4

(

[fvv]
q

αβ [vxx]
β

rs [vxx]
α

tu

)

+ [fv]
i

α [vxxxx]
α

jklm

where

Ω2 = {ilmkj, ikmlj, ijmlk, iklmj, ijlmk, ijkml}

Ω3 = {iklmj, ijlmk, ijkml, ijklm}

Ω4 = {ikljm, ijlkm, ijklm}

The permutation sets Ω2,Ω3,Ω4 are obtained by counting the indices of permuted

tensors. Take for example the middle term in (28). Differentiating [fvv]
q

αβ [vxx]
β

rs [vx]
α

t

with respect to xm (the m’th element of x) requires to apply the derivative of a

product. One of the expressions included in this derivative is:

[fvv]
q
αβ [vxx]

β
rs [vxx]

α
tm .

The permutation set Ω1 implies that qrst ∈ {iklj, ijlk, ijkl}. Summing these per-

mutations together gives:
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∑

qrstu∈{ikljm,ijlkm,ijklm}

(

[fvv]
q

αβ [vxx]
β

rs [vxx]
α

tu

)

.

These are the permutations in Ω4.

The fifth order multivariate chain rule is:

[

∂5f (v (x))

∂x5

]i

jklmn

= [fvvvvv ]
i
αβγδǫ [vx]

ǫ
n [vx]

δ
m [vx]

γ
l [vx]

β
k [vx]

α
j (31)

+
∑

qrstuv∈Ω5

(

[fvvvv ]
q
αβγδ [vxx]

δ
rs [vx]

γ
t [vx]

β
u [vx]

α
v

)

+
∑

qrstuv∈Ω6

(

[fvvv ]
q
αβγ [vxxx]

γ
rst [vx]

β
u [vx]

α
v

)

+
∑

qrstuv∈Ω7

(

[fvvv ]
q
αβγ [vxx]

γ
rs [vxx]

β
tv [vx]

α
n

)

+
∑

qrstuv∈Ω8

(

[fvv]
q
αβ [vxxxx]

β
rstu [vx]

α
v

)

+
∑

qrstuv∈Ω9

(

[fvv]
q
αβ [vxxx]

β
rst [vxx]

α
uv

)

+ [fv]
i
α [vxxxxx]

α
jklmn

where:

Ω5 = {imnlkj, ilnmkj, iknmlj, ijnmlk, ilmnkj, ikmnlj, ijmnlk, iklnmj, ijlnmk, ijknml}

Ω6 = {ilmnkj, ikmnlj, ijmnlk, iklnmj, ijlnmk, ijknml, iklmnj, ijlmnk, ijkmnl, ijklnm}

Ω7 = {ilmknj, ikmlnj, ijmlnk, iklmnj, ijlmnk, ijkmnl, ilmjnk, ikmjnl, ijmknl, ikljnm,

ijlknm, ijklnm, ikljmn, ijlkmn, ijklmn}

Ω8 = {iklmnj, ijlmnk, ijkmnl, ijklnm, ijklmn}

Ω9 = {iklmjn, ijlmkn, ijkmln, ijklmn, iklnjm, ijlnkm, ijknlm, ijmnkl, ikmnjl, ilmnjk}

Matrix notation provides an easier way to present high order chain rules. To this

end, we need to unfold the tensor products (”tensor contractions”), namely, expres-

22



sions such as [fvv]
q

αβ [vxx]
β

rs [vx]
α

t . Then, the permutations Ω should be implemented

by matrices. These issues are explained in Appendix A.2. The final result is the

following third, fourth and fifth order chain rules in matrix notation:

∂3f (v (x))

∂x3
=fvvvv

⊗3
x + fvv (vx ⊗ vxx) Ω1 + fvvxxx (32)

∂4f (v (x))

∂x4
=fvvvvv

⊗4
x + fvvv

(

v⊗2
x ⊗ vxx

)

Ω2 + fvv (vx ⊗ vxxx)Ω3 (33)

+ fvv
(

v⊗2
xx

)

Ω4 + fvvxxxx

∂5f (v (x))

∂x5
=fvvvvvv

⊗5
x + fvvvv

(

v⊗3
x ⊗ vxx

)

Ω5 + fvvv
(

v⊗2
x ⊗ vxxx

)

Ω6 (34)

+ fvvv
(

vx ⊗ v⊗2
xx

)

Ω7 + fvv (vx ⊗ vxxxx) Ω8 + fvv (vxx ⊗ vxxx)Ω9 + fvvxxxxx

In this notation, Ω1, . . . ,Ω9 denote matrices that perform the sum of permutations

specified in the tensor notation. These are coefficient matrices that are functions of

nx only. They can be calculated in advance, and then used whenever high order chain

rules are applied. Note that these matrices are sparse so their memory consumption

is low. Further details are provided in Appendix A.2. The MATLAB function

create OMEGA available online calculates the Ω matrices.

5 Symmetry

Symmetry is a strong property of high order solutions. It follows from the

symmetry of mixed derivatives. For instance, the tensor [vxxx] is of dimensions

nv×nx×nx×nx. Its ijkl element is the third derivative of the i’th row of v with re-

spect to the j’th, k’th and l’th elements of x. Hence, the second to last dimensions of

[vxxx] are symmetric in the sense that permuting these dimensions does not change
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the tensor.9 The ny × (nx)
3 matrix vxxx is a reshaped form of the corresponding

tensor. The symmetry of the tensor is reflected by the repetitive columns of vxxx.

Since the matrix vxxx has repetitive columns, it can be compressed into its unique

columns. For a general k order derivative matrix vxk , the number of unique columns

is
(

nx+k−1
k

)

, see Ballard, Kolda and Plantenga (2011) for a proof. Note that the

number of unique derivatives is smaller by a factor of approximately k! compared

to the full number of derivatives. This factor is very large at high orders. Hence,

compressing derivatives by extracting their unique elements entails high memory

gains.

To compress vxk , let Uk be a (nx)
k ×

(

nx+k−1
k

)

matrix that extracts the unique

columns from the derivative matrix vxk by the inner products vxkUk. For example,

vxxxU3 is a matrix of dimensions nv × nx(nx+1)(nx+2)
6

whose columns are the unique

third derivatives of v. In addition, define the matrix Wk with dimensions
(

nx+k−1
k

)

×

(nx)
k that performs the reverse process. Namely, Wk uncompresses the compressed

derivative matrix. It follows that vxkUkWk = vxk . Note that this holds only for

derivative matrices such as vxk , where the columns are repetitive in a very specific

way, hence UkWk 6= I.10

The high order multivariate chain rules used in this paper preserve the symmetry

property. Consequently, it is very easy to compress these rules into unique terms,

and vice versa. For instance, the third order chain rule (32) is a matrix of dimensions

nf × (nx)
3. To extract the unique derivatives of f , postmultiply by U3:

9For a formal definition of a symmetric tensor see Ballard, Kolda and Plantenga (2011).
10The MATLAB function create UW.m written by the author calculates the compress and un-

compress matrices U and W , given nx and k. It is available at the author’s homepage as part of
the perturbation package.
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fvvvv
⊗3
x U3 + fvv (vx ⊗ vxx) Ω1U3 + fvvxxxU3.

This is the unique third derivatives of f (v (x)) with respect to x. Note that vxxxU3

is the unique third derivatives of v (x) with respect to x. Moreover, each derivative

matrix can be expressed in terms of its compressed form. For instance, substituting

vxx = vxxU2W2 gives an expression in terms of vxxU2, which is the unique second

derivatives of v (x). This type of manipulations can be done easily due to the sym-

metric structure of the chain rule notation.

6 Compressed differentiation

High order solutions require to differentiate f (v) with respect to v several times.

This creates matrices that can be very large, because nv = 2 (ny + nx). While

the differentiation is performed automatically by symbolic software, the memory

requirement may be too large. For example, the New Keynsian model of Christiano,

Eichenbaum and Evans (2005) has 11 state variables, 11 control variables and 22

equations.11 Differentiating the model symbolically with respect to all state and

control variables for current and next period gives an incredible number of more

than 3.6 billion fifth order derivatives (the matrix fvvvvv). Symbolic differentiation

of this size requires an amount of memory that is well beyond the capacity of a

standard desktop computer.

This section develops a compressed differentiation routine that allows to differen-

11I use the formulation of Schmitt-Grohé and Uribe (2004b) for this model.
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tiate large models, by exploiting sparsity and symmetry of high order derivatives.12

Specifically, many derivatives of f with respect to v are likely to be zero. For example,

the budget constraint of the neoclassical growth model is Atk
α
t +kt (1− δ)−ct−kt+1 =

0. The derivatives of this equation with respect to ct and kt+1 are all zero, except for

the first derivatives. Furthermore, mixed derivatives are symmetric. Hence, when

we differentiate this equation, we need to store only the nonzero unique derivatives.

The nonzero unique derivatives are differentiated to get higher order derivatives, and

again only the nonzero unique elements are stored.

It is shown in Levintal (2014) that this procedure enables to differentiate Chris-

tiano, Eichenbaum and Evans (2005) up to fifth order in about 85 seconds. Once

the model has been differentiated symbolically, the numerical fifth order solution is

obtained in about 30 seconds on a standard desktop computer.

The compressed differentiation is performed recursively. Each step produces

higher order nonzero unique derivatives and matrices that transform these unique

derivatives into the full matrix of derivatives. These matrices are functions of the

previous step. Importantly, the compressed differentiation is performed separately

for each element of f , denoted f i. This allows us to fully exploit sparsity, because

the sparse structure of each element of f is different.

To present the algorithm, suppose we have already produced the third order

derivatives fvvv and we wish to proceed to the fourth derivatives. Consider row i of

the matrix of third derivatives fvvv and denote it by f i
vvv. This is a row vector of

length (nv)
3 that contains all the third derivatives of the i’th row of f with respect

12The compressed differentiation routine is performed by the MATLAB function compderivs.m

available at the author’s homepage.
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to v. Suppose that N i
3 is a matrix that extracts the nonzero entries from f i

vvv by the

inner product f i
vvvN

i
3, and M i

3 is a matrix that inserts back the zero entries.13 We

can express f i
vvv as follows:

f i
vvv = f i

vvvN
i
3M

i
3.

The row vector f i
vvvN

i
3 contains all the nonzero third derivatives of f i. Due

to symmetry of mixed derivatives, we can further compress f i
vvvN

i
3 by extracting

the unique nonzero derivatives. Let U i
3 denote the matrix that extracts the unique

nonzero derivatives from f i
vvvN

i
3 and let W i

3 denote the reverse matrix. It follows

that:

f i
vvv = f i

vvvN
i
3U

i
3W

i
3M

i
3.

The i superscript is required because each row of f has a different sparse structure,

and so different compression matrices.

Transposing this equation yields:

vec
(

f i
vvv

)

=
(

W i
3M

i
3

)T
vec

(

f i
vvvN

i
3U

i
3

)

. (35)

This result shows how to obtain the full vector of third derivatives from the com-

pressed vector f i
vvvN

i
3U

i
3 that contains only the unique nonzero derivatives. Conse-

13It can be shown that M i
3 is the transpose of N i

3.
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quently, storage requirements are much smaller, because we store only the unique

nonzero derivatives and the compression matrices, which are sparse.

To differentiate (35) with respect to v, let J (f i
vvv) denote the Jacobian matrix of

the column vector vec (f i
vvv) and let J (f i

vvvN
i
3U

i
3) denote the Jacobian matrix of the

column vector vec (f i
vvvN

i
3U

i
3). It follows that:

J
(

f i
vvv

)

=
(

W i
3M

i
3

)T
J
(

f i
vvvN

i
3U

i
3

)

. (36)

The left-hand-side is the matrix of fourth derivatives f i
vvvv , reshaped into dimensions

(nv)
3 × nv. These are also the dimensions of the right-hand-side. Hence, we can

express (36) in a vectorized form:

vec
(

f i
vvvv

)

=
(

Inv ⊗
(

W i
3M

i
3

)T
)

vec
(

J
(

f i
vvvN

i
3U

i
3

))

. (37)

Here, we used the property vec (ABC) =
(

CT ⊗ A
)

vec (B). Transposing and post-

multiplying by N i
4U

i
4 yields a row vector of the unique nonzero fourth derivatives:

f i
vvvvN

i
4U

i
4 =

(

vec
(

J
(

f i
vvvN

i
3U

i
3

)))T (

Inv ⊗
(

W i
3M

i
3

))

N i
4U

i
4, (38)

where f i
vvvv is a row vector of size (nv)

4 that contains all fourth derivatives of f i.

Equation (38) is the main recursive formula. It provides the vector of unique
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nonzero fourth derivatives (f i
vvvvN

i
4U

i
4) as a function of the Jacobian of the unique

nonzero third derivatives (f i
vvvN

i
3U

i
3). This formula enables to speed up symbolic dif-

ferentiation by differentiating only the unique nonzero third derivatives, and using

the matrices N i
3,M

i
3, U

i
3,W

i
3, N

i
4, U

i
4 to construct the unique nonzero fourth deriva-

tives. Then, we can obtain the full matrix of fourth derivatives by a fourth-order

version of (35).

The recursive procedure is implemented in the following order, assuming we al-

ready have the unique nonzero third order derivatives and the matricesN i
3,M

i
3, U

i
3,W

i
3

from the previous step. First, differentiate the unique nonzero third order derivatives

to get the Jacobian matrix J (f i
vvvN

i
3U

i
3). Second, use (36) to obtain the matrix of

fourth derivatives and detect the nonzero elements of this matrix.14 Third, construct

N i
4 and M i

4 from the information on the nonzero fourth derivatives. Five, construct

U i
4 and W i

4 to compress and uncompress the nonzero fourth derivatives. Finally, ob-

tain the unique nonzero fourth derivatives through (38). Having the unique nonzero

fourth derivatives and the matrices N i
4,M

i
4, U

i
4,W

i
4 we can proceed to the fifth order

by the same recursion.

7 Third, Fourth and Fifth Order Solutions

The high order multivariate chain rules derived previously are used in this section

to derive the third, fourth and fifth order solutions. To do so, it is useful to introduce

14To do so, we do not need to retrieve the entire matrix of fourth derivatives. It is sufficient
to get only its sparse structure. This is done by replacing the Jacobian J

(

f i
vvvN

i
3U

i
3

)

in (36) with
a sparse matrix of the same dimensions, where nonzero entries of the Jacobian are replaced with
ones, and all other entries are zeros.
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a new notation that simplifies sums of permutations of Kronecker products. For

example, A⊗2⊗B+A⊗B⊗A+B⊗A⊗2 is a sum of all the combinations of Kronecker

products that can be created by the matrices A,A,B. To simplify this expression

I use the notation P (A⊗2 ⊗B), where P is an operator that permutes A⊗2 ⊗ B

in all possible combinations of Kronecker products, and sums all the permutations

together.

Other expressions that will be necessary are the derivatives of v with respect to

x. These derivatives are obtained by differentiating (9). The second derivative is

given in (19) in matrix form. The third, fourth and fifth derivatives have similar

matrix forms:

vxxx =



















∂3g(h(x)+ζx)
∂x3

gxxx

hxxx

0nx×n3
x



















vxxxx =



















∂4g(h(x)+ζx)
∂x4

gxxxx

hxxxx

0nx×n4
x



















vxxxxx =



















∂5g(h(x)+ζx)
∂x5

gxxxxx

hxxxxx

0nx×n5
x



















(39)

Each of these matrices has nv rows. The number of columns is (nx)
k for the k order

matrix. Note that the first term in each matrix applies a k order multivariate chain

rule on the composite function g (h (x) + ζx).

7.1 Third order solution

A third order system is defined by:
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fvvvEv⊗3
x + fvvE (vx ⊗ vxx) Ω1 + fvEvxxx = 0, (40)

where (32) provides the matrix notation of the third order chain rule. The stochastic

matrices are vx, vxx, vxxx. To derive Ev⊗3
x and Evx ⊗ vxx, use (14) and (20):

Ev⊗3
x =

(

V 0
x

)⊗3
+ EP

(

V 0
x ⊗

(

V 1
x ζ

)⊗2
)

+ E
(

V 1
x ζ

)⊗3
, (41)

Evx ⊗ vxx = V 0
x ⊗ V 0

xx + E
(

V 1
x ζ

)

⊗
(

V 1
xxP (ζ ⊗ hx)

)

+ EV 0
x ⊗

(

V 1
xxζ

⊗2
)

(42)

+ E
(

V 1
x ζ

)

⊗
(

V 1
xxζ

⊗2
)

.

Expressions that are linear in ζ drop because Eζ = 0. The remaining stochastic

components are quadratic and cubic functions of ζ . Appendix A.3 shows how to

calculate the expected value of these terms.

To calculate Evxxx, apply a third order chain rule on the composite function

g (h (x) + ζx) in order to get the first element of vxxx, which is defined in (39):

∂3g (h (x) + ζx)

∂x3
=gxxx (hx + ζ)⊗3 + gxx ((hx + ζ)⊗ hxx) Ω1 + gxhxxx (43)

=gxxx
(

h⊗3
x + P

(

h⊗2
x ⊗ ζ

)

+ P
(

hx ⊗ ζ⊗2
)

+ ζ⊗3
)

+ gxx (hx ⊗ hxx + ζ ⊗ hxx)Ω1 + gxhxxx.

Substituting in (39) yields a third order polynomial in ζ :
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vxxx =V 0
xxx + V 1

xxxP
(

h⊗2
x ⊗ ζ

)

+ V 1
xxxP

(

hx ⊗ ζ⊗2
)

+ V 1
xxx

(

ζ⊗3
)

(44)

+ V 1
xx (ζ ⊗ hxx) Ω1,

where the new coefficients are:

V 0
xxx =



















∂3g(h(x))
∂x3

gxxx

hxxx

0



















, V 1
xxx =



















gxxx

0

0

0



















. (45)

Taking expectation yields:

Evxxx = V 0
xxx + V 1

xxxEP
(

hx ⊗ ζ⊗2
)

+ V 1
xxxE

(

ζ⊗3
)

. (46)

Appendix A.3 shows how to calculate the expected values of the quadratic and cubic

functions of ζ .

Having (41), (42) and (46), we can substitute in (40) and form a linear system

in gxxx, hxxx, with the same structure as the second order system (25):
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A+ fy′gxxxB + fygxxx + (fx′ + fy′gx)hxxx = 0 (47)

A ≡ fvvvEv⊗3
x + fvvE (vx ⊗ vxx) Ω1 + fy′gxx (hx ⊗ hxx) Ω1

B ≡ h⊗3
x + EP

(

hx ⊗ ζ⊗2
)

+ E
(

ζ⊗3
)

.

7.2 Fourth Order Solution

A fourth order system follows from (33):

fvvvvEv⊗4
x + fvvvE

(

v⊗2
x ⊗ vxx

)

Ω2 + fvvE (vx ⊗ vxxx) Ω3 (48)

+ fvvE
(

v⊗2
xx

)

Ω4 + fvEvxxxx = 0.

The new expression is vxxxx. As before, apply a fourth order chain rule on g (h (x) + ζx):

∂4g (h (x) + ζx)

∂x4
=gxxxx

(

h⊗4
x + P

(

h⊗3
x ⊗ ζ

)

+ P
(

h⊗2
x ⊗ ζ⊗2

)

+ P
(

hx ⊗ ζ⊗3
)

+ ζ⊗4
)

+ gxxx
((

h⊗2
x + P (hx ⊗ ζ) + ζ⊗2

)

⊗ hxx

)

Ω2 + gxx ((hx + ζ)⊗ hxxx) Ω3

+ gxx
(

h⊗2
xx

)

Ω4 + gxhxxxx.

Substitute in (39) to express vxxxx as a fourth order Polynomial in ζ :
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vxxxx =V 0
xxxx + V 1

xxxx

(

P
(

h⊗3
x ⊗ ζ

)

+ P
(

h⊗2
x ⊗ ζ⊗2

)

+ P
(

hx ⊗ ζ⊗3
)

+ ζ⊗4
)

(49)

+ V 1
xxx

((

P (hx ⊗ ζ) + ζ⊗2
)

⊗ hxx

)

Ω2 + V 1
xx (ζ ⊗ hxxx) Ω3,

where the new coefficients are:

V 0
xxxx =



















∂4g(h(x))
∂x4

gxxxx

hxxxx

0



















, V 1
xxxx =



















gxxxx

0

0

0



















. (50)

Substitute in (48) to get a linear system in gxxxx, hxxxx:

A+ fy′gxxxxB + fygxxxx + (fx′ + fy′gx) hxxxx = 0 (51)

A ≡ fvvvvEv⊗4
x + fvvvE

(

v⊗2
x ⊗ vxx

)

Ω2 + fvvE (vx ⊗ vxxx) Ω3 + fvvE
(

v⊗2
xx

)

Ω4

+ fvV
1
xxxE

(

ζ⊗2 ⊗ hxx

)

Ω2 + fy′

(

∂4g (h (x))

∂x4
− gxxxxh

⊗4
x − gxhxxxx

)

B ≡ h⊗4
x + EP

(

h⊗2
x ⊗ ζ⊗2

)

+ EP
(

hx ⊗ ζ⊗3
)

+ Eζ⊗4,

where the expectations Ev⊗4
x , Ev⊗2

x ⊗ vxx, Evx ⊗ vxxx and Ev⊗2
xx are provided in the

appendix. The term ∂4g(h(x))
∂x4 − gxxxxh

⊗4
x − gxhxxxx is the fourth order chain rule of

g (h (x)), excluding the first and last terms.
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7.3 Fifth Order Solution

Using the fifth order chain rule (34), a fifth order system is given by:

fvvvvvEv⊗5
x + fvvvvE

(

v⊗3
x ⊗ vxx

)

Ω5 + fvvvE
(

v⊗2
x ⊗ vxxx

)

Ω6 (52)

+ fvvvE
(

vx ⊗ v⊗2
xx

)

Ω7 + fvvE (vx ⊗ vxxxx) Ω8 + fvvE (vxx ⊗ vxxx) Ω9 + fvEvxxxxx = 0.

The expression vxxxxx is derived from (39) by applying a fifth-order chain rule on the

composite function g (h (x) + ζx):

∂5g (h (x) + ζx)

∂x5
= gxxxxx

(

h⊗5
x + P

(

h⊗4
x ⊗ ζ

)

+ P
(

h⊗3
x ⊗ ζ⊗2

)

+ P
(

h⊗2
x ⊗ ζ⊗3

)

+ P
(

hx ⊗ ζ⊗4
)

+ ζ⊗5
)

+ gxxxx
([

h⊗3
x + P

(

h⊗2
x ⊗ ζ

)

+ P
(

hx ⊗ ζ⊗2
)

+ ζ⊗3
]

⊗ hxx

)

Ω5 + gxxx
([

h⊗2
x + P (hx ⊗ ζ) + ζ⊗2

]

⊗ hxxx

)

Ω6

+ gxxx
(

(hx + ζ) ⊗ h⊗2
xx

)

Ω7 + gxx ((hx + ζ)⊗ hxxxx)Ω8 + gxx (hxx ⊗ hxxx)Ω9 + gxhxxxxx.

Substituting in (39) yields a fifth-order Polynomial in ζ :

vxxxxx = V 0
xxxxx + V 1

xxxxx

(

P
(

h⊗4
x ⊗ ζ

)

+ P
(

h⊗3
x ⊗ ζ⊗2

)

+ P
(

h⊗2
x ⊗ ζ⊗3

)

+ P
(

hx ⊗ ζ⊗4
)

+ ζ⊗5
)

+ V 1
xxxx

([

P
(

h⊗2
x ⊗ ζ

)

+ P
(

hx ⊗ ζ⊗2
)

+ ζ⊗3
]

⊗ hxx

)

Ω5 + V 1
xxx

([

P (hx ⊗ ζ) + ζ⊗2
]

⊗ hxxx

)

Ω6

+ V 1
xxx

(

ζ ⊗ h⊗2
xx

)

Ω7 + V 1
xx (ζ ⊗ hxxxx)Ω8,
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where the new coefficients are:

V 0
xxxxx =



















∂5g(h(x))
∂x5

gxxxxx

hxxxxx

0



















, V 1
xxxxx =



















gxxxxx

0

0

0



















. (53)

The linear system in gxxxxx, hxxxxx follows from (52):

A+ fy′gxxxxxB + fygxxxxx +
(

fx′ + fy′gx
)

hxxxxx = 0 (54)

A ≡ fvvvvvEv⊗5
x + fvvvvE

(

v⊗3
x ⊗ vxx

)

Ω5 + fvvvE
(

v⊗2
x ⊗ vxxx

)

Ω6 + fvvvE
(

vx ⊗ v⊗2
xx

)

Ω7

+ fvvE (vx ⊗ vxxxx) Ω8 + fvvE (vxx ⊗ vxxx) Ω9 + fvV
1
xxxx

(

E
[

P
(

hx ⊗ ζ⊗2
)

+ ζ⊗3
]

⊗ hxx
)

Ω5

+ fvV
1
xxx

(

Eζ⊗2 ⊗ hxxx
)

Ω6 + fy′

(

∂5g (h (x))

∂x5
− gxxxxxh

⊗5
x − gxhxxxxx

)

B ≡ h⊗5
x + EP

(

h⊗3
x ⊗ ζ⊗2

)

+ EP
(

h⊗2
x ⊗ ζ⊗3

)

+ EP
(

hx ⊗ ζ⊗4
)

+ Eζ⊗5.

where Ev⊗5
x , Ev⊗3

x ⊗ vxx, Ev⊗2
x ⊗ vxxx, Evx⊗ v⊗2

xx , Evx⊗ vxxxx, Evxx⊗ vxxx are derived

in the appendix.

8 Solution Algorithm

This section discusses the solution algorithm. The discussion concentrates on the

second order system (25), but the same principles apply to higher order solutions,

which have the same structure. The second order system can be presented as a

Sylvester equation:
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A +D







gxx

hxx






B +G







gxx

hxx






= 0 (55)

D ≡
(

fy′ , 0nf×nx

)

(56)

G ≡ (fy , fx′ + fy′gx) (57)

where D and G are nf × nf , and A and B are defined by (25).

The number of conditions in this system is nf (nx)
2. In general, a k order system

has nf (nx)
k conditions and variables. In higher order systems this can be a very

large number. To reduce the dimensions of the problem, I follow three procedures.

First, the policy functions of exogenous state variables are known. Their derivatives

can be calculated directly from (5) and substituted into (55), and the corresponding

conditions should be dropped from the system. This reduces the number of unknown

derivatives to (ny + n1
x) (nx)

2. The technical details are provided in the appendix.

Here I proceed with the original system (55).

The second procedure, which is more substantial, is to exploit the symmetry of

mixed derivatives by solving only the unique derivatives. To do so, postmultiply

the second order system by the compression matrix U2 that extracts the unique

derivatives:
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AU2 +DXW2BU2 +GX = 0 (58)

X =







gxx

hxx






U2 (59)

The number of conditions in this system is nf
nx(nx+1)

2
, and X is a matrix of the

unique second derivatives. This system is about half the size of the full system. At

the fifth order, the system of unique derivatives is approximately 120 (5!) times

smaller than the full system.

The term W2BU2 deserves some attention. It follows from (25) that this term

equals:

W2

(

h⊗2
x

)

U2 +W2

(

Eζ⊗2
)

U2.

The size of h⊗2
x and Eζ⊗2 is (nx)

4. In the general k order system, the corresponding

matrices will have a size of (nx)
2k, which is likely to exceed memory limits. However,

these matrices do not need to be stored at full size. The second matrix is a sparse

matrix with only one nonzero column. Hence, it can be stored as a sparse matrix.

The first matrix is part of the expression W2h
⊗2
x U2. This expression can be calculated

without creating the big inner matrix, as shown by Moravitz Martin and Van Loan

(2007).

Finally, the size of the system can be further reduced by exploiting known re-

sults on derivatives with respect to the perturbation parameter. Theorem 7 in Jin
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and Judd (2002) shows that the perturbation parameter has no first order effect

on a k order solution. Schmitt-Grohé and Uribe (2004) prove a similar result for

first and second order solutions. Hence, all the elements of gx, gxx, . . . , hx, hxx, . . .

that represent derivatives (or mixed derivatives) with respect to σ once, are equal

to zero. To exploit this analytic result, we can redefine the matrix Uk so that it

extracts the unique nonzero derivatives. For example, gxxxU3 is a matrix of all

unique third derivatives of g, except for ∂3g(x)
∂xj∂xk∂σ

∀xj , xk ∈ {x1, x2}. Similarly, the

matrix Wk performs the reverse procedure. This reduces the k order system to size

nf

((

nx+k−1
k

)

−
(

nx+k−3
k−1

))

.

The Sylsvester equation (58) is solved by the Hessenberg-Schur method of Golub,

Nash and Van Loan (1979). This is an extension of Bartels and Stewart (1972) to

Sylvester equations of the form AXB − X + C = 0. It is performed by the MAT-

LAB function dlyap.m. To implement this function, (58) should be premultiplied by

−G−1. For the existence and stability of G−1 see Kameńık (2005). Alternatively,

(58) can be solved by standard vectorization, which is more memory consuming.

The MATLAB code provided by the paper allows the two options (dlyap.m requires

to install the MATLAB Control System Toolbox). Other methods for solving the

Sylvester equation are discussed in Binning (2013b) and Kameńık (2005).15

15These methods assume that the matrix B in AXB − X + C = 0 is a Kronecker product of
another matrix. They cannot be applied on (58) or (55) directly, but (55) can be partitioned into
blocks that satisfy the required structure. For example, the block of derivatives with respect to the
state variables only (excluding the perturbation parameter) satisfies the condition.
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9 Accuracy Tests

The algorithm is tested on four models. The first model is a simple neoclassical

growth model with full depreciation, logarithmic utility and Cobb-Douglass produc-

tion function. The second model is the asset pricing model of Burnside (1998). The

third model is Barro (2006), which has non-Gaussian cross moments M2, . . . ,M5.

These three models have closed form solutions, so the perturbation solution can be

derived analytically. The numerical algorithm succeeds to replicate the analytical

perturbation solution in all three models. The results are given in Levintal (2014).

This section reports a fourth test which uses an artificial model to test the accu-

racy of the algorithm. The artificial model has no economic meaning, but it can test

accuracy for any arbitrary number of variables and shocks. The artificial model is

built as follows. Let z denote a column vector of nz exogenous variables that follow

the evolution law:

z′ = ση̃ǫ′,

where ′ denotes next period value, ǫ ∼ N (0, I) is a vector of nǫ iid standard normal

shocks, and η̃ is a nz × nǫ matrix.

Let w denote an endogenous state variable and y denote a control variable. For

simplicity, w and y are assumed to be scalars, but the extension of the model to

vectors is straightforward (with some notational cost). The model conditions are

given by:
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w′ = eH0z + Ee
H1w+

√
2H2H3z

′√
(H3η̃)(H3η̃)

T − 2, (60)

Ez′ = 0,

Ey′ + y = EeG0z
′

+ Ee
G1w

′+

√
2G2G3z

′√
(G3η̃)(G3η̃)

T
+ eG0z + Ee

G1w+

√
2G2G3z

′√
(G3η̃)(G3η̃)

T − 4,

where H0, G0, H3, G3 are 1 × nz row vectors, and H1, G1, H2, G2 are scalars. This

model has the required form E (y′, y, x′, x) = 0, where x = (w, z).

The closed form solution of the model is:

w′ = eH0z + eH1w+H2σ
2 − 2, (61)

y = eG0z + eG1w+G2σ
2 − 2.

This is verified by substituting (61) in (60), noting that the expected value of ex-

pressions such as e

√
2H2H3z

′√
(H3η̃)(H3η̃)

T
is eH2σ

2
, because H3z

′ is a scalar that is normally

distributed with zero mean and variance (H3η̃) (H3η̃)
T . The closed form solution has

a deterministic steady state, which is z̄ = 0, w̄ = 0, ȳ = 0, σ = 0. In addition, the

first order effect of σ is zero at σ = 0, as required by Theorem 7 in Jinn and Judd

(2002). These are necessary conditions to apply the algorithm.

To test the accuracy of the algorithm, I solve the derivatives of the solution at

the steady state up to fifth order with the MATLAB algorithm and compare the

results to the derivatives of the closed form solution with respect to w, z and σ.
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The coefficients H0, H1, H2, G0, G1, G2, η̃ are drawn randomly. Note that (61) is not

necessarily the only solution of the system, nor is it stable. These conditions are

relevant for a first order solution but not for higher order solutions. Hence, the first

derivatives are taken directly from (61) and used as inputs for higher order solutions

which are solved recursively by the MATLAB algorithm.

Table 1 shows results for three models of different size. The smallest model has

2 state variables, 1 control and 5 shocks. The largest model has 7 state variables,

2 controls and 5 shocks. The table presents the log10 of the maximum absolute

difference between the derivatives of the closed form solution and the perturbation

solution. The table confirms the accuracy of the algorithm, as errors across all

derivatives are less than 10−10. Accuracy declines to some extent with the size of the

model and the derivative order, due to the accumulation of round-off errors.

10 Application to Models with Rare Disasters

Higher order solutions are necessary in models that exhibit strong nonlinearities.

One particular example is the model of Rietz (1988) and Barro (2006), which intro-

duces rare disasters into an otherwise standard asset pricing model. This model has

proved useful in matching asset pricing moments, which standard dynamic models

fail to explain (Mehra and Prescott 1985). Consequently, a growing body of litera-

ture has started to study the effects of disaster risk in stochastic dynamic models,

e.g. Gabaix (2011, 2012), Barro (2009), Barro and Jin (2011), Gourio (2012, 2013),

Nakamura, Steinsson, Barro and Ursúa (2013), Wachter (2013), Farhi and Gabaix
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(2013).

Most of this literature builds on Lucas (1979) model, which admits a closed

form solution. Extensions beyond this basic setup require numerical solutions, such

as perturbation (Andreasen 2012) or projection (Gourio 2012). This section shows

that perturbation solutions to models with disaster risk are sensitive to the order

of perturbation. Specifically, the fourth and fifth order terms of these solutions

are economically important and should not be ignored. This is demonstrated on

two models with rare disasters: Barro (2006) and Gabaix (2012). The models are

solved with perturbation up to fifth order, and the solutions are compared to the

closed form solution, which is available for these models. The results show that the

approximation errors of perturbation solutions are large, even at a third order, but

decline to a reasonable level at the fifth order.

10.1 Barro (2006)

Barro’s (2006) model consists of a representative agent and a physical asset (tree)

that produces At goods each period. The supply of the physical asset is fixed at 1

(Lucas 1979). Asset returns are determined by a standard Euler equation:

A−θ
t = e−ρEtRt+1A

−θ
t+1,

where At is output in period t, e−ρ is the time discount factor, θ is the relative risk

aversion coefficient and Rt+1 denotes asset returns.

The evolution of output is a random walk with drift:
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∆ logAt+1 = γ + ut+1 + vt+1, (62)

where ut+1 ∼ N(0, σ2) is a regular technology shock, and vt+1 is an independent

disaster shock defined as follows:

vt+1 =











0 1− p

log (1− b) p
(63)

The parameter b denotes the economic contraction in a disaster. Following Barro

(2006), I assume that the economic contraction in disasters is a random variable with

mean Eb. The distribution of b is calibrated as in Barro (2006).

There are two types of securities in the economy: one-period equity and one-

period government bond. One-period equity is a claim to get At+1 in t + 1. It is

traded at market value P e
t , which is determined by the Euler condition:

P e
t

At

= e−ρEt

(

At+1

At

)1−θ

. (64)

One-period government bond is a claim to get the payout xt+1 in t + 1. It is traded

at market value P b
t determined by the Euler condition:
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P b
t = e−ρEtxt+1

(

At+1

At

)−θ

. (65)

The payout xt+1 is defined by:

log xt+1 = wt+1, (66)

where wt+1 is a shock that depends on vt+1. The conditional distribution of wt+1 is:

wt+1|vt+1=0 = 0

wt+1|vt+1=log(1−b) =











0 1− q

log (1− b) q.

Namely, the government never defaults in normal periods, and it defaults with proba-

bility q in disaster periods. Following Barro (2006), I assume that the loss on default

in disaster periods equals the economic contraction b. Recall that b is a random

variable, so the loss is larger when the economic contraction is larger.

Finally, we are interested in three asset pricing moments: the expected return

on equity, the expected return on government bonds and the ratio between the two,

which is defined as the equity premium. Denoting the log of these variables by re,

rb and τ , respectively, we get three more equations:

45



er
e
t = Et

(

At+1

P e
t

)

(67)

er
b
t = Et

(

xt+1

P b
t

)

(68)

τt = ret − rbt . (69)

The model is defined by (62)-(69). The state variables are ∆ logAt and xt. The

control variables are P e
t /At, P

b
t , r

e
t , r

b
t and τt. There are three shocks: ut, vt and wt.

Note that the means of vt and wt are not zero. Hence, to apply the perturbation

algorithm, we need to redefine these shocks as zero mean shocks. This requires to

transform (62) and (66) to:

∆ logAt+1 = γ + µv + ut+1 + (vt+1 − µv) , (70)

log xt+1 = µw + (wt+1 − µw) , (71)

where µv and µw are the means of v and w, respectively. By this formulation, the

zero mean shocks are ut, vt − µv and wt − µw. Note that ut is independent of vt and

wt, but vt and wt are not independent. This property will be represented by non-

diagonal variance-covariance matrix M2. This is permissible because the algorithm

makes no assumption on the moments M2, . . . ,M5.

The closed form solutions are given by equations (9), (12) and (13) in Barro

(2006) for asymptotically short periods. Since the perturbation algorithm assumes
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discrete time, I reproduce the solutions for discrete time:

re = ρ+ θγ − (1/2) θ2σ2 + θσ2 + log
1− pEb

1− p+ pE (1− b)(1−θ)

rb = ρ+ θγ − (1/2) θ2σ2 + log
1− pqEb

1− p+ p ·
[

(1− q)E (1− b)−θ + qE (1− b)1−θ
]

τ = θσ2 + log
1− pEb

1− pqEb
·
1− p+ p ·

[

(1− q)E (1− b)−θ + qE (1− b)1−θ
]

1− p+ pE (1− b)(1−θ)

For a very small p, these solutions are equivalent to equations (9), (12) and (13) in

Barro (2006).

Table 2 compares the perturbation solutions of orders 1st, 2nd, 3rd, 4th and 5th

to the true (closed-form) solution. The table replicates Table V in Barro (2006). The

true solution slightly differs from Barro (2006), because I use discrete time solutions

and not continuous time. For a model with no disasters (p = q = 0) the low order

solutions are very accurate. In this parametrization the precautionary saving effect

is very weak so the equity premium is close to zero. This is the well known equity

premium puzzle (Mehra and Prescott 1985).

When disaster risk is included, the equity premium rises to 3% in the baseline

parametrization. In this case, low order solutions fail to approximate accurately the

true solution. Interestingly, accuracy is low even for a third order solution, which

yields an equity premium of 1.5%, about half of the true premium. For this case,

the fifth order solution provides an equity premium of 2.6%, which is much more

accurate. This result holds also for the other parametrizations used in Barro (2006).
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Note that when the disaster probability is high (p = .025), the equity premium rises

from 3.0% to 4.1%. One would expect that the approximation error would also rise.

It turns out that the error of the fifth order solution stays at the magnitude of 0.5

percentage points.

10.2 Gabaix (2012)

Another example of a rare-disaster model is Gabaix (2012). The interesting

feature of this model is that the effect of the disaster on asset returns is time varying.

For instance, in some periods dividends can be highly sensitive to the disaster shock,

while in other periods they can be more resilient. The resilience of an equity share

is denoted Ĥt and assumed to follow a certain exogenous process. The process is

designed in such a way that the model can still be solved analytically. Consequently,

the price-dividend ratio of an equity share can be expressed as an increasing function

of the resilience Ĥt, given by Eq. (13) in Gabaix (2012). Thus, equity shares with

high resilience values are traded at higher prices, reflecting lower risk premia.

The technical paper, Levintal (2014), shows how to solve Gabaix (2012) with

perturbation. For the full details of the model and the derivation of the closed-form

solution see Gabaix (2012). Table 3 compares the perturbation solutions with the

closed-form solution. The special property of this model, compared to Barro (2006),

is that the price-dividend ratio is a function of the state variable Ĥt. This gives

an opportunity to study the approximation error of the perturbation solution on a

non-constant policy function.

Table 3 presents the closed-form solution of the price-dividend ratio for different
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values of Ĥt, and compare it to perturbation solutions of various orders. The table

confirms the previous findings that approximation errors of low order solutions can

be economically large, while fifth order solutions can improve accuracy significantly.

For instance, the errors of the third order solution range from 12% to 19%, depending

on the resilience Ĥt. By comparison, the errors of the fifth order solution range from

1% to 5%.

These results suggest that the fourth and fifth order terms are economically im-

portant in models with rare disasters. The nonlinearity in these models driven by the

precautionary saving motive is not well approximated by low order solutions when

the precautionary saving effect is strong. On the other hand, fifth order solutions

seem to approximate the true solution relatively well. This implies that the fourth

and fifth order terms of perturbation solutions to models with rare disasters should

not be ignored.

11 conclusion

This paper provides fourth and fifth order perturbation solutions to DSGE mod-

els, by extending Schmitt-Grohé and Uribe (2004). The paper uses a different nota-

tion which is more compact and enables to derive high order solutions with less effort.

The solution is implemented by a MATLAB algorithm that is available online. The

package includes several features that reduce memory consumption. This enables to

solve models of the size of Christiano, Eichenbaum and Evans (2005) up to a fifth

order on a regular desktop computer.
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The paper shows that the fourth and fifth order terms of perturbation solutions

are economically important in models with disaster risk such as Barro (2006) and

Gabaix (2012). These models embed strong nonlinearities due to the precautionary

saving effect. This makes the accuracy of the solution sensitive to the perturbation

order. It is shown that fifth order solutions are able to approximate the true solution

with a reasonable error, whereas lower order solutions such as second and third

orders contain errors that are economically large. This result suggests that fifth

order perturbation solutions can be useful for solving models with rare disasters,

which are the subject of a growing literature.

A Appendix

A.1 Unfolding Tensor Contractions

Tensor contraction is a general term that refers to tensor products. High order

differentiations produce a certain type of tensor contraction, e.g. [fvv]
q

αβ [vxx]
β

rs [vx]
α

t .

In this tensor contraction, the tensor fvv is symmetric in its second and third dimen-

sions. This appendix shows how to unfold (reshape) this expression into a matrix.

The appendix follows the previous notation that encloses tensors by square brackets

and denote matrices without brackets. For a general treatment of this subject and

further examples of tensor contractions and their unfoldings see Ragnarsson and Van

Loan (2012a, 2012b).

Proposition 1 Consider a N + 1 dimensional tensor [A] with dimensions m× n×

n× · · · × n. Define a new N + 1 dimensional tensor [T ] whose i, j1, . . . , jN element

50



is:

[T ]ij1...jN = [A]iα1...αN
[BN ]

αN

j1
. . . [B1]

α1

jN
, (72)

where [B1] , . . . , [BN ] are 2-dimensional tensors (matrices) whose first dimension is

n.16 If [A] is symmetric in its second to last dimensions, then tensor [T ] is a reshaped

form of the following matrix:

T = A (B1 ⊗ · · · ⊗ BN) , (73)

where A is the tensor [A] reshaped into a matrix of dimensions m × nN . Note that

the order of the matrices B1, . . . , BN is reversed from tensor to matrix notation.

Proof. The symmetry of A implies that [A]iα1...αN
= [A]iαN ...α1

. Substitute in (72):

[T ]ij1...jN = [A]iαN ...α1
[BN ]

αN

j1
. . . [B1]

α1

jN
. (74)

The unfolding of (74) into (73) is proved by Ragnarsson and Van Loan (2012a),

examples (4.10)-(4.11), for a transposed form of (73) assuming m = 1. The extension

to m > 1 is straightforward.

16Expression (72) can be stated by the more common notation T (i, j1, . . . , jN ) =
n
∑

α1=1

. . .
n
∑

αN=1

A (i, α1, . . . , αN )BN (αN , j1) · · ·B1 (α1, jN ).
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A.2 Chain Rules in Matrix Form

This appendix explains how to derive the matrix form of the high order chain

rules. As an example, take the third order chain rule (28). This rule consists of five

tensors of dimensions nf × nx × nx × nx, but three of them are permutations of the

same tensor as listed in (29). Denote the three unique tensors by T1, T2, T3. The

third order chain rule is of the form:

∂3fi (v (x))

∂xj∂xk∂xl

= T1 (i, l, k, j) + T2 (i, k, l, j) + T2 (i, j, l, k) + T2 (i, j, k, l) + T3 (i, j, k, l) .

Calculating the entire tensor of third order derivatives requires to permute T1, T2, T3,

so that the i, j, k, l elements of each of the five permuted tensors been summed

correspond to the correct elements of the original (unpermuted) tensors. This type

of permutation is performed in MATLAB by the ipermute function. Note that the i

index is always the first index, so the permutations apply only to the second to last

indices. Moreover, the first and last tensors need not be permuted, because both are

symmetric in their second to last indices. Only the three middle terms need to be

permuted. This holds for all high order chain rules.

To get the chain rule in matrix form, the tensors T1, T2, T3 are reshaped (un-

folded) into nf × n3
x matrices by proposition 1. For instance, the tensor [T2]

q

rst =

[fvv]
q

αβ [vxx]
β

rs [vx]
α

t is unfolded into fvv (vx ⊗ vxx).

Implementing the permutations in matrix form requires to reorder the columns

of these matrices, since the columns correspond to the second to last indices of the
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original tensors. To do so, define a sparse matrix Ω1
1 such that T2Ω

1
1 implements

the first permutation in (29). Similarly, let Ω2
1,Ω

3
1 denote the permutation matrices

that correspond to the second and third permutations in (29). Then, the sum of

the three permutations is implemented by T2 (Ω
1
1 + Ω1

2 + Ω3
1). Define the matrix

Ω1 = Ω1
1 + Ω1

2 + Ω3
1, so that the sum of permutations is T2Ω1 = fvv (vx ⊗ vxx) Ω1,

which is the second term in (32). All other expressions are derived in a similar way.

The MATLAB package contains the function create OMEGA that calculates all the

Ω matrices. This is done by reshaping the identity matrix into a tensor, performing

the sum of permutations, and reshaping back into a matrix. The functions chain3,

chain4 and chain5 take the Ω matrices as inputs and calculate the third, fourth and

fifth order chain rules. If the Ω matrices are not supplied, the functions perform the

permutations on the full tensors by the ipermute function.

A.3 Expectation of Kronecker Products

This appendix shows how to calculate the expected value of Polynomials in ζ that

appear in high order solutions. Expressions such as (Aζ)⊗k, where A is a nA × nx

matrix, are calculated using the sparse structure of ζ defined in (6):

E (Aζ)⊗k =
(

0(nA)k×((nx)
k−1), E (Aηǫ)⊗k

)

(75)

=
(

0(nA)k×((nx)
k−1),

(

(Aη)⊗k Eǫ⊗k
))

=
(

0(nA)k×((nx)
k−1), (Aη)

⊗k vec
(

Mk
)

)
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where vec
(

Mk
)

denotes vectorization of the k’th cross moment of ǫ. The following

is a more general form:

E (Aζ)⊗ (Bζ)⊗ (Cζ) =
(

0
nAnBnC×((nx)

3−1), ((Aη)⊗ (Bη)⊗ (Cη)) vec
(

M3
)

)

.

The expression ζ ⊗ A ⊗ ζ can be stated as follows ζ ⊗ A ⊗ ζ = Q (ζ⊗2 ⊗ A)P ,

where Q and P are permutation matrices. Then, the expected value of the middle

term is calculated by the previous tools.

Finally, to calculate expressions such as E (Aζ)⊗ (B (C ⊗ ζ)) use the Kronecker

property (AB)⊗ (CD) = (A⊗ C) (B ⊗D) to get E (A⊗ B) (ζ ⊗ C ⊗ ζ).

A.4 Fourth and fifth order expectations

The fourth order system contains the following expectation terms:

54



Ev⊗4
x =

(

V 0
x

)⊗4
+ E

{

P
(

V 0
x ⊗

(

V 1
x ζ

)⊗3
)

+ P
(

(

V 0
x

)⊗2 ⊗
(

V 1
x ζ

)⊗2
)

+
(

V 1
x ζ

)⊗4
}

Ev⊗2
x ⊗ vxx =

(

V 0
x

)⊗2 ⊗ V 0
xx + E

{

(

V 1
x ζ

)⊗2 ⊗ V 0
xx +

[

P
(

V 0
x ⊗ V 1

x ζ
)

+
(

V 1
x ζ

)⊗2
]

⊗
[

V 1
xxP (ζ ⊗ hx)

]

+
[

(

V 0
x

)⊗2
+ P

(

V 0
x ⊗ V 1

x ζ
)

+
(

V 1
x ζ

)⊗2
]

⊗
(

V 1
xxζ

⊗2
)

}

Evx ⊗ vxxx = V 0
x ⊗ V 0

xxx + E

{

V 0
x ⊗

[

V 1
xxxP

(

ζ⊗2 ⊗ hx
)

+ V 1
xxx

(

ζ⊗3
)]

+
(

V 1
x ζ

)

⊗
[

V 1
xxxP

(

ζ ⊗ h⊗2
x

)

+ V 1
xxxP

(

ζ⊗2 ⊗ hx
)

+ V 1
xxx

(

ζ⊗3
)

+ V 1
xx (ζ ⊗ hxx)Ω1

]

}

Ev⊗2
xx =

(

V 0
xx

)⊗2
+ E

{

P
(

V 0
xx ⊗

(

V 1
xxζ

⊗2
))

+
(

V 1
xxP (hx ⊗ ζ)

)⊗2
+ P

((

V 1
xxP (hx ⊗ ζ)

)

⊗
(

V 1
xxζ

⊗2
))

+
(

V 1
xxζ

⊗2
)

⊗
(

V 1
xxζ

⊗2
)

}

The fifth order system contains the following expectation terms:
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Ev⊗5
x =

(

V 0
x

)⊗5
+ E

{

P
(

V 0
x ⊗

(

V 1
x ζ

)⊗4
)

+ P
(

(

V 0
x

)⊗2 ⊗
(

V 1
x ζ

)⊗3
)

+ P
(

(

V 0
x

)⊗3 ⊗
(

V 1
x ζ

)⊗2
)

+
(

V 1
x ζ

)⊗5
}

Ev⊗3
x ⊗ vxx =

(

V 0
x

)⊗3 ⊗ V 0
xx + E

{

(

V 0
x

)⊗3 ⊗ V 1
xxζ

⊗2 + P
(

(

V 0
x

)⊗2 ⊗
(

V 1
x ζ

)

)

⊗
[

V 1
xxP (ζ ⊗ hx) + V 1

xxζ
⊗2

]

+
(

P
(

V 0
x ⊗

(

V 1
x ζ

)⊗2
)

+
(

V 1
x ζ

)⊗3
)

⊗
(

V 0
xx + V 1

xxP (ζ ⊗ hx) + V 1
xxζ

⊗2
)

}

Ev⊗2
x ⊗ vxxx =

(

V 0
x

)⊗2 ⊗ V 0
xxx +

(

V 0
x

)⊗2 ⊗
[

V 1
xxxP

(

ζ⊗2 ⊗ hx

)

+ V 1
xxx

(

ζ⊗3
)]

+ P
(

V 0
x ⊗

(

V 1
x ζ

))

⊗
[

V 1
xxxP

(

ζ ⊗ h⊗2
x

)

+ V 1
xxxP

(

ζ⊗2 ⊗ hx

)

+ V 1
xxx

(

ζ⊗3
)

+ V 1
xx (ζ ⊗ hxx)Ω1

]

+
(

V 1
x ζ

)⊗2 ⊗
[

V 0
xxx + V 1

xxxP
(

ζ ⊗ h⊗2
x

)

+ V 1
xxxP

(

ζ⊗2 ⊗ hx

)

+ V 1
xxx

(

ζ⊗3
)

+ V 1
xx (ζ ⊗ hxx)Ω1

]

Evx ⊗ v⊗2
xx = V 0

x ⊗
(

V 0
xx

)⊗2
+ E

{

V 0
x ⊗

[

P
(

V 0
xx ⊗

(

V 1
xxζ

⊗2
))

+ P
((

V 1
xxP (hx ⊗ ζ)

)

⊗
(

V 1
xxζ

⊗2
))

+
(

V 1
xxP (hx ⊗ ζ)

)

⊗
(

V 1
xxP (ζ ⊗ hx)

)

+
(

V 1
xxζ

⊗2
)

⊗
(

V 1
xxζ

⊗2
)

]

+
(

V 1
x ζ

)

⊗
[

P
((

V 1
xxP (ζ ⊗ hx)

)

⊗ V 0
xx

)

+ P
((

V 1
xxζ

⊗2
)

⊗ V 0
xx

)

+ P
((

V 1
xxζ

⊗2
)

⊗
(

V 1
xxP (ζ ⊗ hx)

))

+
(

V 1
xxP (ζ ⊗ hx)

)⊗2
+
(

V 1
xxζ

⊗2
)⊗2

]}

Evx ⊗ vxxxx = V 0
x ⊗ V 0

xxxx + E

{

V 0
x ⊗

[

V 1
xxxx

(

P
(

h⊗2
x ⊗ ζ⊗2

)

+ P
(

hx ⊗ ζ⊗3
)

+ ζ⊗4
)

+ V 1
xxx

(

ζ⊗2 ⊗ hxx

)

Ω2

]

+
(

V 1
x ζ

)

⊗
[

V 1
xxxx

(

P
(

ζ ⊗ h⊗3
x

)

+ P
(

ζ⊗2 ⊗ h⊗2
x

)

+ P
(

ζ⊗3 ⊗ hx

)

+ ζ⊗4
)

+ V 1
xxx

((

P (hx ⊗ ζ) + ζ⊗2
)

⊗ hxx

)

Ω2 + V 1
xx (ζ ⊗ hxxx)Ω3

]}

Evxx ⊗ vxxx = V 0
xx ⊗ V 0

xxx + E

{

V 0
xx ⊗

[

V 1
xxxP

(

ζ⊗2 ⊗ hx

)

+ V 1
xxx

(

ζ⊗3
)

]

+
(

V 1
xxP (hx ⊗ ζ)

)

⊗
[

V 1
xxxP

(

ζ ⊗ h⊗2
x

)

+ V 1
xxxP

(

ζ⊗2 ⊗ hx

)

+ V 1
xxx

(

ζ⊗3
)

+ V 1
xx (ζ ⊗ hxx) Ω1

]

+
(

V 1
xxζ

⊗2
)

⊗
[

V 0
xxx + V 1

xxxP
(

ζ ⊗ h⊗2
x

)

+ V 1
xxxP

(

ζ⊗2 ⊗ hx

)

+ V 1
xxx

(

ζ⊗3
)

+ V 1
xx (ζ ⊗ hxx)Ω1

]}

The tools developed in section A.3 enable to calculate these terms. Most expres-

sions follow a certain pattern. As an example, take the expression (V 1
xxP (hx ⊗ ζ))⊗

(V 1
xxxP (ζ⊗2 ⊗ hx)), which is part of Evxx ⊗ vxxx in the fifth order system. For the

moment, ignore the P operator (explained in section 7) and focus on (V 1
xx (hx ⊗ ζ))⊗
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(V 1
xxx (ζ

⊗2 ⊗ hx)). This expression can be written also as:

(

V 1
xx ⊗ V 1

xxx

) (

hx ⊗ ζ⊗3 ⊗ hx

)

.

When this expression enters the fifth order system it is premultiplied by fvv. Hence,

we are ultimately interested in:

fvv
(

V 1
xx ⊗ V 1

xxx

) (

hx ⊗ ζ⊗3 ⊗ hx

)

.

The MATLAB package contains the function permutekron.m which calculates the

expected value of terms of this structure. The stochastic part is the second matrix.

Its expected value is calculated by the tools of Appendix A.3. The first product

is performed as described in Moravitz Martin and Van Loan (2007), so that large

Kronecker products are not created. The function permutekron.m also calculates a

sum of permutations of this expression, which is required when the P operator is

taken into account.

There are few cases that have a different structure, which are calculated sepa-

rately. These include expressions that are multiplied by the Ω matrices, for instance

Vx ⊗ (V 1
xxx (ζ

⊗2 ⊗ hxx)Ω2), which is part of Evx ⊗ vxxxx from the fifth order system.

This expression can be written as:

(

Vx ⊗ V 1
xxx

) (

Ix ⊗ ζ⊗2 ⊗ hxx

)

(Ix ⊗ Ω2) .

From here we proceed with the previous tools.
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A.5 Reducing the size of the system

To reduce the size of the system, the MATLAB code enables to exclude the policy

functions of exogenous state variables from the model conditions, so that the number

of conditions falls to nf = ny + n1
x. To do so, write the second order system (55) as:

A +D



















gxx

h1
xx

h2
xx

0



















B +G



















gxx

h1
xx

h2
xx

0



















= 0

where h1
xx, h

2
xx and 0 are the second derivatives of the policy functions of x1, x2 and

σ. By partitioning D and G, the system can be presented as a linear system of gxx

and h1
xx.
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Table 1: Accuracy test on artificial models

derivative order 2 3 4 5

2 states, 1 controls, 5 shocks -15.4 -16.3 -14.8 -15.4
4 states, 1 controls, 5 shocks -15.2 -13.4 -12.6 -11.6
7 states, 2 controls, 5 shocks -14.2 -12.8 -11.8 -10.3

The table presents accuracy tests on three artificial models, constructed as described in Section 9.
The first row shows results on a model with 1 endogenous state variable, 1 exogenous state variable,
1 control variable and 5 shocks. The second row has 2 endogenous state variables, 2 exogenous
state variables, 1 control and 5 shocks. The third row has 4 endogenous state variables, 3 exogenous
state variables, 2 controls and 5 shocks. The table presents the log10 of the maximum absolute
difference between the derivatives of the closed form solution and the perturbation solution.
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Table 2: Perturbation Solution of Barro (2006)

1st 2nd 3rd 4th 5th True solution

No disasters
Expected equity rate 0.130 0.128 0.128 0.128 0.128 0.128
Expected bill rate 0.130 0.127 0.127 0.127 0.127 0.127
Equity premium 0.000 0.002 0.002 0.002 0.002 0.002

Baseline
Expected equity rate 0.105 0.092 0.083 0.079 0.077 0.076
Expected bill rate 0.105 0.083 0.068 0.057 0.051 0.046
Equity premium 0.000 0.009 0.015 0.021 0.026 0.030

Low θ (=3)
Expected equity rate 0.087 0.082 0.079 0.078 0.078 0.078
Expected bill rate 0.087 0.075 0.069 0.066 0.064 0.064
Equity premium 0.000 0.007 0.010 0.012 0.013 0.014

High p (=.025)
Expected equity rate 0.094 0.075 0.062 0.056 0.053 0.051
Expected bill rate 0.094 0.063 0.041 0.026 0.017 0.010
Equity premium 0.000 0.012 0.022 0.030 0.036 0.041

Low q (=.3)
Expected equity rate 0.105 0.092 0.083 0.079 0.077 0.076
Expected bill rate 0.105 0.082 0.066 0.054 0.047 0.041
Equity premium 0.000 0.010 0.018 0.025 0.029 0.034

Low γ (=.02)
Expected equity rate 0.085 0.072 0.063 0.059 0.057 0.056
Expected bill rate 0.085 0.063 0.048 0.037 0.031 0.026
Equity premium 0.000 0.009 0.015 0.021 0.026 0.030

Low ρ (=.02)
Expected equity rate 0.095 0.082 0.073 0.069 0.067 0.066
Expected bill rate 0.095 0.073 0.058 0.047 0.041 0.036
Equity premium 0.000 0.009 0.015 0.021 0.026 0.030

This table presents perturbation solutions of Barro (2006) at 1st, 2nd, 3rd, 4th, and 5th orders,
and the true (closed-form) solution. Parameter values correspond to Table V in Barro (2006).
The baseline parameters are θ = 4, σ = .02, ρ = .03, γ = .025, p = .017 and q = .4. The no
disaster parametrization assumes p = q = 0. Other parametrizations change one parameter at a
time (compared to the baseline parametrization).
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Table 3: Perturbation Solution of Gabaix (2012)

Ĥt 1st 2nd 3rd 4th 5th True solution

-0.05 8.6 12.3 12.3 13.5 13.9 14.0
-0.04 9.1 12.7 13.0 14.3 14.7 15.0
-0.03 9.6 13.2 13.7 15.1 15.6 15.9
-0.02 10.0 13.7 14.4 15.8 16.5 16.9
-0.01 10.5 14.2 15.1 16.6 17.3 17.9
0.00 11.0 14.6 15.8 17.4 18.2 18.8
0.01 11.5 15.1 16.5 18.1 19.1 19.8
0.02 11.9 15.6 17.2 18.9 19.9 20.8
0.03 12.4 16.0 17.9 19.6 20.8 21.7
0.04 12.9 16.5 18.6 20.4 21.7 22.7
0.05 13.3 17.0 19.3 21.2 22.5 23.7

This table presents perturbation solutions for the price-dividend ratio of Gabaix (2012) at 1st, 2nd,
3rd, 4th, and 5th orders, and the true (closed-form) solution. The solutions are given for different
values of resilience Ĥt. For technical details see Levintal (2014).
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