
Slice sampling in Bayesian estimation

of DSGE models∗

Christophe Planas, Marco Ratto and Alessandro Rossi

European Commission, Joint Research Centre

14th June 2015†

Abstract

We review some fundamental characteristics of the slice sampler algorithm proposed by

Neal (2003). We first asses the importance of the scaling parameters and the procedures

used to approximate the slice using a set of univariate distributions with differen features.

Then we focus our attention on some multivariate versions of the slice sampler and we

present two simple algorithms that works extremely well for high correlated variables.

The performance of all samplers is measured in terms of efficiency and speed by means of

several examples. Finally we show worked out applications to DSGE models: the bi-modal

posterior distribution of An Schorfheide (2007) and the Smets-Wouters model for the

Euro-area (Smets Wouters, 2003). The slice sampler performs well in both multimodal and

correlated posterior distributions and we will demontrate features that makes it appealing

for the estimation of medium-large scale DSGE models.

Jel code: C11, C15.

Keywords: Gibbs Samplig, Monte Carlo Markov Chain, Multivariate sampling, Rotated

univariate sampling.

∗This work is supported by the EU 7th framework collaborative project Integrated Macro-Financial Modelling

for Robust Policy Design (MACFINROBODS), grant no. 612796
†This version is submitted for the 11th DYNARE Conference.

1 Introduction

This note describes in some details a class of algorithms denominated slice samplers that arises

in Bayesian statistics for sampling from the posterior distribution of model parameters. We

first explains the main features of the slice sampler illustrating several alternative proposed by

Neal (2003) both in a univariate and multivariate context. The performance of several slice

samplers described here is assessed by means of an extensive Monte Carlo exercise based on

several different test cases. For each test case we take the random walk Metropolis-Hastings

algorithm (see e.g. Chib and E. Greenberg (1995)) as a benchmark.

2 Theory and practice of slice sampling

The slice sampler is a method for sampling from a generally unknown unnormilised continuous

probability density function, say f(θ). It is a special case of the class of auxiliary variables

methods (see e.g. Roberts and Rosenthal (1999)) that uses a single auxiliary variable. It is based

on the following principle: a random variable γ is introduced to build the joint distribution of θ

and γ, i.e. p(θ, γ), by taking the marginal distribution p(θ) unchanged. Writing p(θ) = f(θ)/k,

k =
∫
f(θ)dθ, and choosing p(γ | θ) uniform over the set (0, f(θ)) yields the joint density:

p(θ, γ) = p(γ | θ)p(θ) =
1

f(θ)
I[0<γ<f(θ)]p(θ) =

1

k
I[0<γ<f(θ)]

Apart from trivial cases the expression above cannot be used directly to sample from the joint

distribution of θ and γ. However given its structure it is suitable for implementation of a Gibbs

sampling strategy which draws iteratively γ | θ and θ | γ:

(i) γ | θ from a uniform distribution over the set (0, f(θ));

(ii) θ | γ from a uniform distribution over the set S = {θ : γ < f(θ)}.

Under mild conditions (Geman and Geman, 1984), the Markov chain generated by this sampling

scheme has p(γ, θ) as its unique stationary distribution. Hence, inference about θ can be

made simply looking at the marginal chain. Mira and Tierney (2002) have studied the rate

of convergence of the slice simpler concluding that this sampling method has robust ergodic

properties and hence it is an appealing algorithm from the theoretical point of view.

2.1 Approximating the slice

In general sampling directly from the slice S is not feasible. The reason is that the nature

of the slice is generally unknown. Moreover the practice of drawing blindly θ from a uniform

2

distribution until a variate fall inside the slice can be highly inefficient. Thus we must resort to

some clever way of implementing step (ii). In a seminal paper Neal (2003) puts forward several

ideas on how to build a Markov chain that leaves the marginal distribution of θ invariant that

differ in the way step (ii) is implemented. Any of those strategies share the following idea:

- position an interval I = (L,R) around θ0 at random that contains the slice S as much as

possible;

- draw θ from the set A = {θ : θ ∈ S ∩ I and Pr(I | θ) = Pr(I | θo)}

For correctness of the sampler is crucial that the set of acceptable successors A is built satisfying

the detail balance condition: Pr(I | θ) = Pr(I | θo). This condition states that the probability

of choosing I given a generic element of A must be same of that if we were to choose I starting

from θo. In the sequel we report three main strategies described in Neal (2013) to draw a new

point, say θn, from S. To introduce matters we start with the univariate case.

Random positioning

Denote by u a variate from a uniform distribution over the unitary interval (0, 1). Given a

starting point θo, draw γ from U(0, f(θo). This defines the slice S = {θ : γ < f(θo)}. A first

simple attempt to sample θ from S is as follows:

• position an interval I = (L,R) around θo at random: i.e. set L = θo−uW , and R = L+W ;

• draw a candidate θc from a uniform distribution over the set I, i.e. set θc = L+u(R−L).

Repeat until γ < f(θc), then set θn = θc.

This procedure may suffer of two main problems: the initial interval I could be too small or

too large depending on the choice of the tuning parameter W . This is choice is crucial since if

W is too small the next point θn will be close to the initial point θo generating autocorrelation

in the corresponding Markov chain. On the contrary if W is too large the probabilty of the set

defined by the intersection between S and I, i.e. Pr(θ : θ ∈ S ∩ I) will be small, hence getting

a draw within it will be hard. Attempts to solve both issues are considered in the next two

procedures.

Stepping out

A reduction of the impact of the scaling parameters W on the efficiency of the sampler can be

achieved enlarging the interval I when the latter turns out to be too small:

3

• position I = (L,R) around θo at random: i.e. set L = θo − uW , and R = L + W . Then

expand I setting L = L−W and R = R +W , until γ < f(L) and γ < f(R).

This ensures the I might contain at leat a non negligible part of the slice S or even the entire

slice in case of unimodal distributions. It might be the case that at the end of the step above I

turns out to be too large compared with S. In this case non accepted draws are used to shrink

I:

• draw a candidate θc from a uniform distribution over the set I, i.e. set θc = L+u(R−L).

set
{ L = θc if θn < θo

R = θc otherwise

repeat until γ < f(θc), then set θn = θc.

Doubling

A slightly different procedure is provided by Neal (2013) for approximating the initial slice.

This approach is claimed to be faster in expanding the interval I than stepping out when W

turns out to be too small.

• Position I = (L,R) around θo at random: i.e. set L = θo − uW , and R = L + W . Then

expand I by setting L = L− (R−L) if u < 1/2, and R = R+ (R−L) otherwise. Repeat

until γ < f(L) or γ < f(R).

As can be seen the interval expand faster, furthermore sometimes we do not need to check both

edges of the interval. The shrinking procedures is slightly different to ensure the validity of the

detailed balance condition (see Neal 2013, Fig 6 for more details).

2.2 The performance of the univariate slice sampler

In this section we measure the performance of the slice sampler with respect to the choice of

the scaling parameters W and the procedure which best approximate the slice among those

described above: random positioning, stepping out, and doubling. For W we choose 4 values

(after experimenting) that are multiple of the standard deviation of distribution under study.

The reason is that albeit we do not know the scale of the target distribution before sampling,

a rough estimates of it can be obtained in a transitory phase of the MCMC procedure. This

exercise is interesting per se because a univariate version of the slice sampler comes out in

practice applying a Gibbs scheme that draws a vector of parameters one-at-a-time from the full

conditional distributions: f(θi | θ1, · · · , θi−1, θi+1 · · · , θd), i = 1, 2, · · · , d.

4

As a benchmark sampler we take a plain version of the random walk Metropolis Hastings

(RW-MH) whose proposal distribution is Gaussian with mean equal to E(θ) and standard devi-

ation calibrated to get an optimal acceptance rate close to 0.25 as suggested by Gelman, Gilks,

and Roberts (1997). The RW-MH is likely the most used MCMC sampler in real applications

due to its simplicity and speediness.

As target densities we employ 12 out of 15 distributions described by Marron and Wand

(1992). These are univariate mixture of Normals that show a variety of characteristics: asym-

metry, lepto- or plato-kurtosis, multi-modality etc. The shape of each distribution is shown in

Figure 1.

[Insert Figure 1 here]

For any version of the slice sampler described above likewise for the RW-MH algorithm we

generate 500 samples of dimension G = 10000 with different initial conditions from the target

distribution. For each sample (θ1, θ2, · · · , θG) we measure the inefficiency factor (IF) and

record the number of calls to f(θ). The inefficiency factor is often employed for evaluating

the accuracy of sampling-based approaches to the calculation of posterior moments (see e.g.

Geweke (1999)) since it provides an indication on the sample size G to get the desired accuracy

in computing such moments. We measure inefficiency as follows:

IF = 1 + 2

p∑
j=1

ωjρj

where ρj is the lag-j correlation of the sample (θ1, θ2, · · · , θG), p = 1000, and ωj are the Parzen-

weights. The (in)efficiency of a sampler is linked to autocorrelation structure of the MCMC

transition kernel that generates the draws: when ρj = 0, for any j, the sampler achieve the

same efficiency of that of a sampler that generates independent draws. Viceversa high and slow

decaying values of the autocorrelation implies lower efficiency.

The second aspect of interest is the number of calls to the posterior density or full conditional

f(θ) to generate a single draw. This is because in many real applications the evaluation of f(θ)

is time consuming. In a Dynamic Stochastic General Equilibrium (DSGE) model, for instance,

a draw from the posterior of model parameters requires to solve the model first, and to compute

the likelihood function by the Kalman filter. The full process may requires seconds in medium-

large scale models.

These two indicators are put together to compue the relative efficiency (RE) of a given

sampler, say A, with respect to the efficiency achieved by the RW-MH. Relative efficiency is

given by the ratio:

5

RE =
IFA × EvalA

IFMH × EvalMH

To asses the effective ability of the various sampling-based approaches to converge to the true

target distribution we count the number of rejections of the Cramer-von Mises (CvM) test

(Csorgo and Faraway (1996)) at 5% level (not reported here) that compares the draws from the

MCMC with the theoretical distribution. A given sampler produces acceptable results when

the null of equal distribution is rejected in 5% of the replications (i.e. roughly 25 out of 500).

We do not employ any convergence criterion statistics since convergence here is ensured by

the CvM test. Results of the Monte Carlo experiment for the twelve mixture of Normals are

reported in Table 1. The numbers reported in the table are the sample averages over the 500

replications.

[Insert Table 1 here]

Several facts deserves to be stressed: (i) the RW-MH algorithm exhibits IF s larger that those

of slice algorithm almost uniformly over the test cases when employing the stepping out or

the doubling procedure; (ii) for the slice sampler the symmetric distributions, no matter their

degree of kurtosis, attain almost optimal efficacy with IF ' 1. On the contrary asymmetric

distributions displays a lower efficiency with the ”Strongly skewed” case showing the highest IF s

almost uniformly over the samplers; (iii) to greater values of W correspond lower inefficiency

factors uniformly over both the test cases and the procedures. In fact when W is large the slice

sampler has higher mixing properties meaning that the probability of sampling a value of theta,

say thetan, which is far away from the previous draw thetan−1 increases. On the contrary the

number of evaluations to f(θ), as a function of W , is mainly U-shaped for the stepping out and

doubling procedures, while it is monotonically increasing when the random positioning scheme

is used. There is a clear trade-off between higher efficiency in terms of IF s and the number of

evaluations. We cannot expect to minimize both at the same time; (iv) relative efficiency (RE)

of the slice sampling with stepping out outperforms that of the RW-MH algorithm when W is

in the range [3, 10]σ. Remarkably, the stepping out scheme requires on average no more that 6

evaluations to f(theta) no matter the shape of the target distribution.

From this rather extensive exercise we claim that a slice sampler that implements the stepping

out procedure using a scaling parameters W ∈ [3, 10]σ delivers always samples with moderate

autocorrelations after having evaluated the target density a fair number of times (' 6). Yet the

fact that results are loosely sensible to W poses this algorithm in the small class of samplers

that requires a rather small amount of tuning.

6

3 Slice sampling for multivariate distributions

In this section we first review methods proposed in the literature for sampling from multivariate

target densities using the principle of slice sampling. Then we propose a new algorithm that

performs extremely well when a strong linear dependence among variables is present.

Suppose we need to sample from a probability density function f(θ) where θ is d-dimensional.

The random positioning and doubling procedures outlined in the previous section do generalize

to the multivariate case but are in general rather inefficient in the sense that generate sample

draws with relatively high autocorrelation that increases quickly with for increasing values of d

(results are not reported here). Conversely, the stepping out procedure works better in terms of

inefficiency factor but demands for a very high number of evaluations of f(θ). In fact it requires

the computation of 2d vertices of the hypercube that approximates the slice. This problem can

be partially offset using parallelization techniques as in Tibbits, Haran, and Liechty (2011).

In view of the above considerations and the results obtained in Section 2 we relay on mul-

tivariate slice samplers that implements the stepping out scheme setting Wi = 3σi, with

σi ≡ V ar(θi)
1/2, i = 1, 2, · · · , d.

3.1 A plain multivariate slice sampler

A generalization of the stepping out procedure for d-dimensional problems is obtained by repla-

cing the scalar interval I introduced in section 2 with a d-dimensional axis-aligned hypercube

H = (V1, · · · , V2d) whose vertices Vj, are defined trough a set of d-dimensional lower bonds

L = (L1, L2 · · · , Ld), and upper bounds R = (R1, R2 · · · , Rd). We start from a given vector θo,

after we draw γ ∼ U(0, f(θo), that defines the slice S = {θ : γ < f(θo)}. Then we proceed as

follows:

• position the axis-aligned hypercube H = (V1, · · · , V2d) around θo at random, i.e. set

Li = θoi − uWi, and Ri = Li +Wi, i = 1, 2, · · · , d. Unless all the vertices of H are outside

the slice S, i.e. γ > f(Vj) for any j, expand H setting Li = Li −Wi and Ri = Ri + Wi

for any i, which gives a new set of vertices V1, V2, · · · , V2d ;

• draw a candidate θc from a uniform distribution over the set H, i.e. set θci = Li+u(Ri−Li)
for all i. Finally, along each dimension:

set
{ Li = θci if θni < θoi

Ri = θci otherwise

repeat until γ < f(θc), then set θn = θc.

7

Note that this strategy becomes unfeasible for very large d. For moderately large values of d,

say d < 20, the algorithm can be parallelized since the computation of the density evaluated in

correspondence of any of the 2d vertex have nothing in common.

3.2 Using the gradient to shrink the hypercube more efficiently

Shrinking the hypercubes in all directions any time a draw is rejected can be inefficient in the

sense that the procedure is likely to stop with a new draw which is close to the the starting point.

This has the unwanted effect of generating a Markov chain with high serial autocorrelation.

We provide evidence on this later on. Neal (2013) suggests to use the gradient of f(·) evaluated

at θc, ∂f(θ)
∂θ
|θ=θc any time this draw is rejected. In a bivariate context, his idea is sketched in

Figure 7, on page 723.

3.3 A multivariate slice sampler with directional hypercubes

Here we propose a variant of the plain method to sample more efficiently from highly correlated

variables. Axis-aligned hypercubes in these cases cover usually a small peace of the slice making

the multivariate slice sampler, with or with out the use of gradient, highly inefficient. The idea

is to rotate the hypercubes along the directions where much of the slice is concentrated.

We make use of the fact that the slice sampler is well suited for adaptation, i.e. previous draws

can be used to extract useful information upon the joint posterior distribution (e.g. using draws

obtained in the burn-in phase). Evidence of linear dependence between variables is contained

in any estimate of the variance covariance matrix Σ ≡ V ar(θ). A rough estimate of Σ can be

obtained for instance by the autocorrelation-consistent estimator of Newey and West (1987)

applied on the burn-in draws. Applying the spectral decomposition to Σ, we have Σ = AΛA′,

where the eigenvectors represented by the columns of A suggest the direction in which to rotate

the axis, while the eigenvalues contained in the diagonal of Λ provide information about the

length of the hypercube along any given direction.

The algorithm works as follows. Given θo, γ ∼ U(0, f(θo), and S = {θ : γ < f(θo)}, then θn

is obtained as follows:

• Set Wi = 3Λ
1/2
i,i , position H = (V1, · · · , V2d) around θo at random: L̃i = −uWi, and

R̃i = L̃i + Wi, i = 1, · · · , d, which gives H̃ = (Ṽ1, · · · , Ṽ2d). Then H is obtained rotating

the axis and centering on θo, i.e. Vj = θo + AṼj.

• Expand H: set L̃ = L̃ −W and R̃ = R̃ + W , which gives Ṽj. Then set Vj = θo + AṼj

until γ < f(Vj), j = 1, · · · , 2d.

8

• Shrinking H: draw θ̃c = L̃+ u(R̃− L̃), and set θc = θo + Aθ̃c. Finally

set
{ L̃i = θ̃i

c
if θ̃ci < 0

R̃i = θ̃ci otherwise

repeat until γ < f(θc), then set θn = θc.

The new algorithm is similar to the plain one, and importantly it does not involve any additional

evaluation of f(θ). However, in case of highly dependent variables, its performance can be much

better than the pain one as will be shown in the sequel.

3.4 The performance of the multivariate slice sampling

We test the accuracy and efficiency of the algorithms presented above using three different

examples. As before the performance of the samplers is assessed by a Monte Carlo experiment

which generates 500 samples of dimension G = 10000 with different initial conditions from the

target distribution. We make use of the same indicators described in section 2.4 for gauging

efficiency.

The correctness of the multivariate samplers is assessed using a multivariate CvM statistics

(Cotterill and Csorgo, 1982) in a way similar to that explained in Section 2. Results on the

Cvm test are not reported here.

The algorithms under scrutiny are: the multivariate RW-MH, a Gibbs sampling scheme where

the elements of the d-dimensional vector θ are sampled one-at-a-time using the univariate slice

sampler with stepping out procedure and Wi = 3σi, the plain multivariate slice described in

subsection 3.1, the multivariate slice sampler which make use of the gradient of f(θ) as described

in subsection 3.2, and the multivariate version of the slice sampler developed in this note which

rotates the hypercubes using information on the covariance structure of θ which is detailed in

subsection 3.3.

Example 1: uncorrelated variables

Assume θ is a d-dimensional random vector with probability density function N(0, SλS), S =

diag(1, 5, · · · , 5 ∗ d), λ = Id, and d = 2, 5, 10. The variables in θ are thus independent with a

different scale. Results on IF , number of evaluations, and RE are reported in Table 2.

[Insert Table 2 here]

As expected both the IF ’s and RE’s increase with the dimension of θ (d) for all algorithms

but the one-at-a-time univariate slice sampler. Worth noting that the multivariate plain slice

9

sampler (with and without the use of the gradient) always outperforms the RW-MH in terms of

IF . However to beat the RW-MH in terms of RE in a ten-dimensional context for instance we

need to decrease CPU time of a factor of 300 for the plain and 170 when the gradient is used.

This looks a quite demanding exercise even when using up-to-date parallelization techniques.

Example 2: highly correlated variables

Assume θ is a d-dimensional random vector with probability density function N(0, SλS), S =

diag(1, 5, · · · , 5 ∗ d), λ = .9511′+ .05Id, 1 is the d-dimensional column vector made up of ones,

and d = 2, 5, 10. The random vector is now made up of strongly linearly dependent variables

with a different scale.

[Insert Table 3 here]

Three main considerations arise from Table 2: (i) the RW-MH is highly inefficient. The first-

order autocorrelation of the chain is close to one so to question proper convergence to the

stationary distribution. (ii) The one-at-a-time univariate slice sampler show increasing IF ’s as

expected but the degree of inefficiency is still acceptable. (iii) The multivariate slice sampler

with directional hypercubes behaves extremely well: it exhibits virtually no correlation for

d ≤ 5 and a very small degree of autocorrelation with d = 10.

Example 3: mixture of normals

Assume θ = (θ1, θ2) is a mixture of three bivariate normal distributions as in Gilks, Roberts,

and Sahu (1998):

f(θ) =
3∑
j=1

ωjφ(θ;µj,Σj)

where φ(·;µ,Σ) is the bivariate normal density distribution with mean µ and covariance Σ,

ωj = 1/3, j = 1, 2, 3, µ1 = (0, 0), µ2 = (−3,−3), µ3 = (2, 2), Σ1 = I2, Σ2 = 0.9 11′ + 0.1 I2,

and Σ3 = −0.9 11′ + 1.1 I2. The shape of this distribution is sketched in the upper panels of

Figure 2 where the tree components of the mixture are clearly identifiable.

[Insert Figure 2 here]

Albeit the presence of non-linearities, the unconditional covariance matrix reveals a strong

linear dependence between the two variables θ1 and θ2, which is around 0.8. This justifies the

use of the slice sampler with directional hypercubes. Table 4 shows the results of the Monte

carlo exercise.

10

[Insert Table 4 here]

Again the RW-MH works poorly with an inefficiency factor larger than 200. All the slice

sampler algorithms tested here work much better with IF s almost 100 times lower than the

one of the RW-MH. Remarkably, the multivariate slice sampler with directional hypercubes is

by large the best sampler. To have and idea of the autocorrelation structure generated by both

the RW-MH and the multivariate slice sampler with directional hypercubes the lower panels of

Figure 2 shows a single run of 10000 draws obtained with these two samplers for θ1. The draws

of RW-MH are very persistent: the Markov chain generated by this transition kernel tends to

remain in a given region for hundreds of runs. Conversely the chain generated by multivariate

slice sampler with directional hypercubes shows a high degree of mixing.

4 Rotated univariate slice sampler

In the previous Section we have seen that using directional hypercubes is the key element to

dramatically increase the efficiency of multivariate slice sampler. This suggests to adopt the

same strategy for the univariate case, by rotating the axes on which one-at-a-time slices are

taken, with the following simple algorithm:

1. perform an initial set N0 of univariate slice steps, along the original axes, obtaining an

initial set of poterior draws Θ0;

2. compute principal components (eigenvectors) of the covariance matrix of Θ0. These ei-

genvectors constitute a rotated orthonormal basis of the original space.

3. perform subsequent sets Ni, i = 1 · · · k, along the rotated axes, possibly updating the

covariance matrix and associated eigenvectors after each batch of runs Ni

This simple algorithm allows to increase the efficiency of the univariate sample in a similar

manner as the directional hypercubes for the multivariate sampler.

The same idea can also be used to improve mixing and efficiency of the sampler in the case

of multi-modal problems. Also for the slice sampler, in fact, it is easy to find examples where

the standard algorithm is not capable of moving from one domain of attraction to another. As

in Chib Ramamurthy (2010) we have to rely on the assumption that we know the location of

the different local optima, i.e. the problem of sampling from multi-modal densities is broken

into two steps:

1. start a number of parallel hill-climbing or MCMC algorithms from different starting points

in the prior space. This will lead to identify (at least some of) the multiple local optima

11

charactierizing the posterior distribution, with the reasonable assumption that some of

the starting values fall into different domains of attraction.

2. similarly to Chib Ramamurthy (2010), introduce jumping steps into the otherwise stand-

ard MCMC algorithm, to allow moving from one domain of attraction into another.

The first step is straightforward, and it will be normally successful provided that domains

of attraction are not of negligible size. Note also that this step will not depend on the actual

height (probability) of each mode, since hill climbing algorithms will not be able to move

towards different domain(s) of attraction. The second step has to perform the key task of

quantifying the relative probability (weight) of each domain of attraction.

For this purpose, we propose following extension to the otherwise stanbdard univariate al-

gorithm:

1. assume M modes have been detected and that we start a new slice iteration t at θt−1;

2. before the new iteration t, we select randomly, with equal probability, one of the modes

Mi and try a ‘jump’ slice on a direction joining the two points [θt−1, θMi
];

3. to avoid over-sampling or breaking the mixing properties of the standard slice sampler,

the jump-slice step θ∗t−1 is accepted if the following two conditions are met:

(a) the distance between the initial θt−1 and the mode θMi
is not the minimum across

all possible models [i.e. we are not already in the domain of attraction Mi]

(b) the distance between the new trial point θ∗t−1 and the mode θMi
is the minimum

across all possible models [i.e. we managed to jump into the domain of attraction

Mi].

With this algorithm, we are able to sample from multi-modal distributions with a remark-

ably good mixing, across the different domains of attractions, also respecting their relative

probasbilities.

12

5 DSGE applications

5.1 An and Schorfheide (2007) model

5.2 Smets and Wouters (2003) model

6 Conclusions and future work

In this work we have tested the efficiency of several versions of the slice sampler put forward

by Neal (2003). Using a battery of univariate test cases we have derived a rule of thumb for

the scale parameter W , i.e. W ∈ (3, 10)σ. The results obtained demonstrated that the slice

sampling loosely relays on tuning parameters. Furthermore we can claim that the stepping

out scheme generally outperforms the doubling and random position ones. In a multivariate

context we have seen that one-at-a-time Gibbs sampling that implements the univariate slice

sampler works fine when the degree of linear dependence is not very high. In such cases

the multivariate slice sampling with directional hypercubes or the rotated one-at-a-time slice

sampling are decisively a better alternative.

13

References

D.S. Cotterill, and M. Csorgo (1982), ‘On the limiting distribution of and critical values

for the multivariate Cramer-von Mises statistic’, The Annals of Statistics, 10, 1, 233-244.

S. Csorgo, and J. Faraway (1996), ‘The exact and asymptotic distribution of Cramer-von

Mises statistics’, Journal of the Royal Statistical Society B, 58, 1, 221-234.

S. Chib and E. Greenberg (1995), ‘Understanding the Metropolis-Hastings Algorithm’,

The American Statistician, 49, 327-335.

S. Chib and S. Ramamurthy (2010), ‘Tailored randomized block MCMC methods with

application to DSGE models’, Journal of Econometrics, 155, 19-38.

Fuller (1996), ‘Introduction to Statistical Time Series’, Wiley Series in Probability and Stat-

istics.

A. Gelman, W. R. Gilks, and G. O. Roberts (1997), ‘Weak convergence and optimal

scaling of random walk Metropolis algorithms’, Ann. Appl. Probab., 7, 1, 110-120.

S. Geman, and D. Geman (1997), ‘Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images’, Pattern Analysis and Machine Intelligence, IEEE Transac-

tions, 6, 6, 721-741.

J. Geweke (1999), ‘Using simulation methods for Bayesian econometric models: inference,

development, and communication’, Econometric Reviews, 18, 1, 1-73.

W. R. Gilks, G. O. Roberts, and S. K. Sahu (1998), ‘Adaptive Markov Chain Monte

Carlo through regeneration’, Journal of the American Statistical Association, 93, 443, 1045-

1054.

P. Giordani, and R. Kohn (2010), ‘Adaptive Independent MetropolisHastings by Fast

Estimation of Mixtures of Normals’, Journal of Computational and Graphical Statistics, 19, 2,

243259.

H. Haario, E. Saksman, and J. Tamminen (2001), ‘An adaptive Metropolis algorithm’,

Bernoulli, 7, 2, 223-242.

J. S. Marron and M.P. Wand (1992), ‘Exact integrated squared error’, The Annals of

Statistics, 20, 2, 712-736.

A. Mira and L. Tierney (2002), ‘Efficiency and convergence properties of slice samplers’,

Scandinavian Journal of Statistics, 29, 1, 1-12.

R. M. Neal, (2003), ‘Slice sampling’, The Annals of Statistics, 31, 3, 705-767.

14

W. K. Newey, and K. D. West (1987), ‘A simple positive semi-definite, heteroskedasticity

and autocorrelation consistent covariance matrix’, Econometrica, 55, 703-708.

G.O. Roberts, and J. Rosenthal (2009), ‘Convergence of slice sampler Markov chains’,

Journal of the Royal Statistical Society B, 31, 643-660.

M. M. Tibbits, M. Haran, and J. C. Liechty (2011), ‘Parallel multivariate slice sampling’,

Stat. Comput., 21, 3, 415-430.

15

Figures and tables

Figure 1 Marron and Wand (1992) densities

16

Figure 2 MCMC draws for the mixture of normals of example 3

17

Table 1 Sampler efficiency - Marron and Wand densities

RW-MH Slice

Stepping out Doubling Random positioning
W 1

2σ 3σ 10σ 100σ 1
2σ 3σ 10σ 100σ 1

2σ 3σ 10σ 100σ

Skewed

IF 5.13 1.2 1.21 1.2 1.17 1.26 1.21 1.23 1.23 82.94 5.7 1.84 1.24

Eval 2 10.18 5.92 6.34 9.6 25.29 15.74 9.77 9.81 2.11 2.66 3.77 7.48

RE 1 1.19 0.7 0.74 1.1 3.1 1.86 1.17 1.17 17.1 1.48 0.68 0.91

Strongly skewed

IF 10.7 3.11 3.08 3.09 3.07 3.2 3.2 3.18 3.17 100.32 8.6 3.94 3.16

Eval 2 8.46 6.29 7.23 10.87 21.87 12.99 9.52 10.92 2.34 3.38 4.81 8.78

RE 1 1.23 0.91 1.04 1.56 3.27 1.94 1.41 1.62 10.96 1.36 0.89 1.3

Kurtotic

IF 4.86 0.97 0.97 0.97 0.97 1.05 0.99 1.01 0.98 93.32 6.26 1.68 1.04

Eval 2 9.92 6.41 7.07 10.49 22.56 14.67 10.16 10.69 2.31 3.27 4.57 8.39

RE 1 0.99 0.64 0.71 1.05 2.45 1.5 1.05 1.08 22.22 2.11 0.79 0.9

Outlier

IF 8.15 0.97 0.98 0.98 0.96 1.09 1.05 1.03 1 100.24 23.4 3.78 1.09

Eval 2 8.16 6.35 7.44 11.2 21.39 11.5 9.5 11.39 2.3 3.47 5.07 9.13

RE 1 0.48 0.38 0.45 0.66 1.42 0.74 0.6 0.7 14.12 4.98 1.17 0.61

Bimodal

IF 4.93 1.26 1.12 1.07 1.05 1.24 1.15 1.09 1.06 84.18 4.04 1.5 1.1

Eval 2 10.33 5.92 6.2 9.35 25.72 16.35 9.89 9.44 2.12 2.6 3.59 7.23

RE 1 1.32 0.67 0.67 1 3.23 1.9 1.1 1.02 18.11 1.06 0.55 0.81

Separate Bimodal

IF 9.18 22.13 2.92 2.17 1.96 5.82 3.85 2.14 1.94 148.43 6.31 2.55 1.95

Eval 2 6.86 6.19 6.93 10.46 22.64 13.64 9.28 10.51 2.31 3.26 4.5 8.37

RE 1 8.28 0.98 0.82 1.12 7.18 2.86 1.08 1.11 18.67 1.12 0.62 0.89

Notes: σ is the standard deviation implied by the density under study, Eval is the average number of evaluations,

IF = 1 + 2
∑

j ρj is the inefficiency factor, RE = (IFA × EvalA)/(IFMH × EvalMH) is the relative efficiency

of sampler A with respect to the RW-MH sampler

18

Table 1 Sampler efficiency - Marron and Wand densities, cont’d

RW-MH Slice

Stepping out Doubling Random positioning
W 1

2σ 3σ 10σ 100σ 1
2σ 3σ 10σ 100σ 1

2σ 3σ 10σ 100σ

Skewed Bimodal

IF 5.11 1.22 1.18 1.2 1.19 1.27 1.25 1.23 1.23 82.86 4.52 1.68 1.22

Eval 2 10.36 5.92 6.25 9.44 25.53 16.07 9.84 9.53 2.12 2.62 3.65 7.32

RE 1 1.24 0.68 0.73 1.1 3.18 1.97 1.18 1.14 17.18 1.16 0.6 0.88

Trimodal

IF 5.24 1.41 1.21 1.13 1.11 1.38 1.24 1.16 1.14 87.98 4.11 1.58 1.16

Eval 2 10.14 5.94 6.24 9.42 25.41 16.23 9.86 9.51 2.15 2.64 3.65 7.3

RE 1 1.37 0.69 0.67 1 3.34 1.92 1.09 1.03 18.04 1.04 0.55 0.81

Claw

IF 5.07 1.53 1.2 1.14 1.13 1.6 1.24 1.19 1.13 90.13 4.97 1.71 1.15

Eval 2 9.81 6.1 6.54 9.82 23.31 15.71 9.82 9.91 2.35 2.9 3.99 7.7

RE 1 1.48 0.72 0.74 1.09 3.67 1.92 1.15 1.11 20.9 1.42 0.67 0.88

Double Claw

IF 4.99 1.27 1.12 1.08 1.06 1.26 1.16 1.1 1.08 85.55 4.11 1.55 1.11

Eval 2 10.33 5.97 6.26 9.43 25.62 16.32 9.93 9.52 2.18 2.66 3.66 7.3

RE 1 1.32 0.67 0.68 1 3.22 1.9 1.1 1.03 18.7 1.1 0.57 0.82

Asymmetric claw

IF 5.61 3.09 1.38 1.24 1.2 2.78 1.44 1.25 1.22 89.83 4.82 1.74 1.24

Eval 2 9.72 6.05 6.44 9.69 24.34 15.54 9.83 9.78 2.29 2.84 3.88 7.57

RE 1 2.68 0.74 0.71 1.03 6.04 1.99 1.1 1.06 18.31 1.22 0.6 0.84

Smooth comb

IF 11.99 15.84 2.97 2.19 1.97 6.8 3.58 2.23 1.97 144.07 6.23 2.58 2.02

Eval 2 6.96 6.35 7.09 10.64 20.78 13.44 9.36 10.68 2.59 3.46 4.68 8.56

RE 1 4.59 0.78 0.65 0.87 5.89 2.01 0.87 0.88 15.56 0.9 0.5 0.72

Notes: σ is the standard deviation implied by the density under study, Eval is the average number of evaluations,

IF = 1 + 2
∑

j ρj is the inefficiency factor, RE = (IFA × EvalA)/(IFMH × EvalMH) is the relative efficiency

of sampler A with respect to the RW-MH sampler

19

Table 2 Sampler efficiency - uncorrelated variables

RW-MH Slice

One-at-a-time Plain Gradient Directional

d=2

Max IF 9.8 0.96 1.55 1.14 1.81

Eval 2 11.81 10.98 13.77 11.71

RE 1 0.58 0.87 0.8 1.08

d=5

Max IF 21.63 0.97 4.93 2.15 8.48

Eval 2 29.54 63.34 89.52 65.3

RE 1 0.66 7.22 4.45 12.79

d=10

Max IF 41.32 0.98 13.31 6.71 46.06

Eval 2 59.08 1881 2127 1869

RE 1 0.7 302.9 172.8 1042

Notes: Eval is the average number of evaluations, IF = 1 + 2
∑

j ρj is the inefficiency factor, RE = (IFA ×

EvalA)/(IFMH ×EvalMH) is the relative efficiency of sampler A with respect to the RW-MH sampler, d is the

dimension of θ.

20

Table 3 Sampler efficiency - highly correlated variables

RW-MH Slice

One-at-a-time Plain Gradient Directional

d=2

Max IF 346.0 19.07 28.67 19.47 1.08

Eval 2 12.12 10.47 14.8 11.71

RE 1 0.33 0.43 0.42 0.02

d=5

Max IF 699.4 67.35 226.1 144.1 1.56

Eval 2 30.31 47.5 71.3 65.31

RE 1 1.46 7.68 7.35 0.07

d=10

Max IF 698.8 127.9 304.8 279.3 3.03

Eval 2 60.29 1254 1379 1884

RE 1 5.52 273.6 275.7 4.09

Notes: Eval is the average number of evaluations, IF = 1 + 2
∑

j ρj is the inefficiency factor, RE = (IFA ×

EvalA)/(IFMH ×EvalMH) is the relative efficiency of sampler A with respect to the RW-MH sampler, d is the

dimension of θ.

21

Tab 4 Sampler efficiency - bivariate mixture of Normals

RW-MH Slice

One-at-a-time Plain Gradient Directional

Max IF 231.31 22.2 23.31 14.27 3.02

Eval 2 12.67 10.39 15.93 13.71

RE 1 0.61 0.52 0.49 0.09

Notes: Eval is the average number of evaluations, IF = 1 + 2
∑

j ρj is the inefficiency factor, RE = (IFA ×

EvalA)/(IFMH × EvalMH) is the relative efficiency of sampler A with respect to the RW-MH sampler.

22

Univariate slice sampler: the MatLab code

The function slicestepout.m implements the univariate version of the slice sampler with

stepping out described so far. It returns a simulated draw (xsim) and the number of calls

neval to the function func. func should be provided by the user and takes two input:

theta, and lambda. The latter is a vector of extra hyperparameters need to evaluate func.

func returns the value of the function evaluated at theta. XLB and XUB represent the

lower and upper bounds of the variable theta. Set it to plus or minus Inf in case the variable

has an unlimited support. Finally % indicates comments.

f unc t i on [xsim , neval] = s l i c e s t e p o u t (xold , W, XLB, XUB, lambda)

neval = 0 ;

% 1 . Draw z = ln [f (x0)] − exp (1) where exp(1)=− ln (U(0 , 1))

% This d e f i n e s the s l i c e S = {x : z < ln (f (x))}
f x o l d = func (xold , lambda) ;

f xo ld = log (f xo ld) ;

neval = neval + 1 ;

z = fxo ld + log (rand (1 , 1)) ;

% 2 . Find I = (L ,R) around x0 that conta in s S as much as p o s s i b l e

% us ing the s tepp ing out procedure .

u = rand (1 , 1) ;

L = max(XLB, xold − W∗u) ;

R = min (XUB, L + W) ;

whi l e (L > XLB)

xsim = L ;

f x l = func (xsim , lambda) ;

f x l = log (f x l) ;

neval = neval + 1 ;

i f (f x l <= Z)

break ;

end

L = max(XLB, L − W) ;

end

whi le (R < XUB)

xsim = R;

23

f x r = func (xsim , lambda) ;

f x r = log (f x r) ;

neval = neval + 1 ;

i f (f x r <= Z)

break ;

end

R = min(XUB, R + W) ;

end

% 3 . Sampling from the s e t A = (I i n t e r s e c t S)

fxs im = Z−1;

whi l e (fxs im < Z)

u = rand (1 , 1) ;

xsim = L + u∗(R − L) ;

fxs im = func (xsim , lambda) ;

fxs im = log (fxs im) ;

neval = neval + 1 ;

i f (xsim > xold)

R = xsim ;

e l s e

L = xsim ;

end

end

24

