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Introduction

Deterministic = perfect foresight

Perfect anticipation of all shocks in the future, and therefore of all
future choice variables

Can be solved exactly (up to rounding errors)

Full nonlinearities taken into account

Often useful when starting study of a model
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The (deterministic) neoclassical growth model

max
{ct}∞t=1

∞∑
t=1

βt−1 c1−σ
t

1− σ
s.t.

ct + kt = Atk
α
t−1 + (1− δ)kt−1

First order conditions:

c−σt = βc−σt+1

(
αAt+1k

α−1
t + 1− δ

)
ct + kt = Atk

α
t−1 + (1− δ)kt−1

Steady state:

k̄ =

(
1− β(1− δ)

βαĀ

) 1
α−1

c̄ = Āk̄α − δk̄

Note the absence of stochastic elements! No expectancy term, no
probability distribution
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The general problem

Deterministic, perfect foresight, case:

f (yt+1, yt , yt−1, ut) = 0

y : vector of endogenous variables

u : vector of exogenous shocks

Identification rule: as many endogenous (y) as equations (f )
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Steady state

A steady state, ȳ , for the model satisfies

f (ȳ , ȳ , ȳ , ū) = 0

Note that a steady state is conditional to:
I The steady state values of exogenous variables ū
I The value of parameters (implicit in the above definition)

Even for a given set of exogenous and parameter values, some
(nonlinear) models have several steady states

The steady state is computed by Dynare with the steady command

That command internally uses a nonlinear solver
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What if more than one lead or one lag?

A model with more than one lead or lag can be transformed in the
form with one lead and one lag using auxiliary variables

Transformation done automatically by Dynare

For example, if there is a variable with two leads xt+2:
I create a new auxiliary variable a
I replace all occurrences of xt+2 by at+1

I add a new equation: at = xt+1

Symmetric process for variables with more than one lag
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Return to the neoclassical growth model

yt =

(
ct
kt

)
ut = At

f (yt) =

(
c−σt − βc−σt+1

(
αAt+1k

α−1
t + 1− δ

)
ct + kt − Atk

α
t−1 + (1− δ)kt−1

)
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Solution of deterministic models

Approximation: impose return to equilibrium in finite time instead of
asymptotically

However possible to return to another point than the steady state

Useful to study full implications of nonlinearities

Computes the trajectory of the variables numerically

Uses a Newton-type method on the stacked system
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A two-boundary value problem
Approximation of an infinite horizon model by a finite horizon one

The stacked system for a simulation over T periods:
f (y2, y1, y0, u1) = 0
f (y3, y2, y1, u2) = 0

...
f (yT+1, yT , yT−1, uT ) = 0

for y0 and yT+1 = ȳ given.

Compact representation:
F (Y ) = 0

where Y =
[
y ′1 y ′2 . . . y ′T

]′
.
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A Newton approach

Start from an initial guess Y (0)

Iterate. Updated solutions Y (k+1) are obtained by solving:

F (Y (k)) +

[
∂F

∂Y

](
Y (k+1) − Y (k)

)
= 0

Terminal condition:

||Y (k+1) − Y (k)|| < εY and/or ||F (Y (k))|| < εF
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A practical difficulty

The size of the Jacobian is very large. For a simulation over T periods of
a model with n endogenous variables, it is a matrix of order n × T .
3 ways of dealing with it:

15 years ago, it was more of a problem than today: LBJ (the default
method in Dynare ≤ 4.2) exploited the particular structure of this
Jacobian using relaxation techniques

Handle the Jacobian as one large, sparse, matrix (now the default
method in Dynare ≥ 4.3)

Block decomposition (divide-and-conquer methods) implemented by
Mihoubi
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Shape of the Jacobian

∂F

∂Y
=



B1 C1

A2 B2 C2

. . .
. . .

. . .

At Bt Ct

. . .
. . .

. . .

AT−1 BT−1 CT−1

AT BT


where

As =
∂f

∂yt−1
(ys+1, ys , ys−1)

Bs =
∂f

∂yt
(ys+1, ys , ys−1)

Cs =
∂f

∂yt+1
(ys+1, ys , ys−1)
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Relaxation (1/5)

The idea is to triangularize the stacked system:

B1 C1

A2 B2 C2

. . .
. . .

. . .
. . .

. . .
. . .

AT−1 BT−1 CT−1

AT BT


∆Y = −



f (y2, y1, y0, u1)
f (y3, y2, y1, u2)

...

...
f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )
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Relaxation (2/5)

First period is special:

I D1

B2 − A2D1 C2

A3 B3 C3

. . .
. . .

. . .

AT−1 BT−1 CT−1

AT BT


∆Y = −



d1

f (y3, y2, y1, u2) + A2d1

f (y4, y3, y2, u3)
...

f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


where

D1 = B−1
1 C1

d1 = B−1
1 f (y2, y1, y0, u1)
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Relaxation (3/5)

Normal iteration:

I D1

I D2

B3 − A3D2 C3

. . .
. . .

. . .

AT−1 BT−1 CT−1

AT BT


∆Y = −



d1

d2

f (y4, y3, y2, u3) + A3d2

...
f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


where

D2 = (B2 − A2D1)−1C2

d2 = (B2 − A2D1)−1(f (y3, y2, y1, u2) + A2d1)
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Relaxation (4/5)

Final iteration:

I D1

I D2

I D3

. . .
. . .

I DT−1

I


∆Y = −



d1

d2

d3

...
dT−1

dT


where

dT = (BT − ATDT−1)−1(f (yT+1, yT , yT−1, uT ) + ATdT−1)
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Relaxation (5/5)

The system is then solved by backward iteration:

yk+1
T = ykT − dT

yk+1
T−1 = ykT−1 − dT−1 − DT−1(yk+1

T − ykT )

...

yk+1
1 = yk1 − d1 − D1(yk+1

2 − yk2 )

No need to ever store the whole Jacobian: only the Ds and ds have to
be stored

Relaxation was the default method in Dynare ≤ 4.2, since it was
memory efficient
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Sparse matrix algebra

A sparse matrix is a matrix where most entries are zero

The Jacobian of the deterministic problem is a sparse matrix:
I Lots of zero blocks
I The As , Bs and Cs are themselves sparse

More efficient storage possible than storing all entries

Usually stored as a list of triplets (i , j , v) where (i , j) is a matrix
coordinate and v a non-zero value

Family of optimized algorithms for such matrices (including matrix
inversion for our Newton algorithm)

Available as native objects in MATLAB/Octave

Works well for medium size deterministic models

Nowadays more efficient than relaxation, even though it does not
exploit the particular structure of the Jacobian ⇒ default method in
Dynare ≥ 4.3
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Block decomposition (1/3)

Idea: apply a divide-and-conquer technique to model simulation

Principle: identify recursive and simultaneous blocks in the model
structure

First block (prologue): equations that only involve variables
determined by previous equations; example: AR(1) processes

Last block (epilogue): pure output/reporting equations

In between: simultaneous blocks, that depend recursively on each
other

The identification of the blocks is performed through a matching
between variables and equations (normalization), then a reordering of
both
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Block decomposition (2/3)
Form of the reordered Jacobian

Sébastien Villemot (CEPREMAP) Solving Deterministic Models October 27, 2013 23 / 42



Block decomposition (3/3)

Can provide a significant speed-up on large models

Implemented in Dynare by Ferhat Mihoubi

Available as option block to the model command

Bigger gains when used in conjunction with bytecode options
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Example: neoclassical growth model with investment

The social planner problem is as follows:

max
{ct+j ,`t+j ,kt+j}∞j=0

Et

∞∑
j=0

βju(ct+j , `t+j)

s.t.

yt = ct + it

yt = At f (kt−1, `t)

kt = it + (1− δ)kt−1

At = A?eat

at = ρ at−1 + εt

where εt is an exogenous shock.
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Specifications

Utility function:

u(ct , `t) =

[
cθt (1− `t)1−θ]1−τ

1− τ

Production function:

f (kt−1, `t) =
[
αkψt−1 + (1− α)`ψt

] 1
ψ
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First order conditions

Euler equation:

uc(ct , `t) = β Et

[
uc(ct+1, `t+1)

(
At+1fk(kt , `t+1) + 1− δ

)]
Arbitrage between consumption and leisure:

u`(ct , `t)

uc(ct , `t)
+ At fl(kt−1, `t) = 0

Resource constraint:

ct + kt = At f (kt−1, `t) + (1− δ)kt−1

Sébastien Villemot (CEPREMAP) Solving Deterministic Models October 27, 2013 28 / 42



Calibration

Weight of consumption in utility θ 0.357
Risk aversion τ 2.0
Share of capital in production α 0.45
Elasticity of substitution capital/labor (fct of...) ψ -0.1
Discount factor β 0.99
Depreciation rate δ 0.02
Autocorrelation of productivity ρ 0.8
Steady state level of productivity A? 1
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Scenario 1: Return to equilibrium

Return to equilibrium starting from k0 = 0.5k̄ .

Fragment from rbc det1.mod
...

steady;

ik = varlist_indices(’Capital’,M_.endo_names);

CapitalSS = oo_.steady_state(ik);

histval;

Capital(0) = CapitalSS/2;

end;

simul(periods=300);
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Scenario 2: A temporary shock to TFP

The economy starts from the steady state

There is an unexpected negative shock at the beginning of period 1:
ε1 = −0.1

Fragment from rbc det2.mod
...

steady;

shocks;

var EfficiencyInnovation;

periods 1;

values -0.1;

end;

simul(periods=100);
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Scenario 3: Pre-announced favorable shocks in the future

The economy starts from the steady state

There is a sequence of positive shocks to At : 4% in period 5 and an
additional 1% during the 4 following periods

Fragment from rbc det3.mod
...

steady;

shocks;

var EfficiencyInnovation;

periods 4, 5:8;

values 0.04, 0.01;

end;
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Scenario 4: A permanent shock

The economy starts from the initial steady state (a0 = 0)

In period 1, TFP increases by 5% permanently (and this was
unexpected)

Fragment from rbc det4.mod
...

initval;

EfficiencyInnovation = 0;

end;

steady;

endval;

EfficiencyInnovation = (1-rho)*log(1.05);

end;

steady;
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Scenario 5: A pre-announced permanent shock

The economy starts from the initial steady state (a0 = 0)

In period 6, TFP increases by 5% permanently

A shocks block is used to maintain TFP at its initial level during
periods 1–5

Fragment from rbc det5.mod
...

// Same initval and endval blocks as in Scenario 4

...

shocks;

var EfficiencyInnovation;

periods 1:5;

values 0;

end;
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Zero nominal interest rate lower bound

Implemented by writing the law of motion under the following form in
Dynare:

it = max
{

0, (1− ρi )i∗ + ρi it−1 + ρπ(πt − π∗) + εit
}

Warning: this form will be accepted in a stochastic model, but the
constraint will not be enforced in that case!
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Irreversible investment

Same model than above, but the social planner is constrained to positive
investment paths:

max
{ct+j ,`t+j ,kt+j}∞j=0

∞∑
j=0

βju(ct+j , `t+j)

s.t.

yt = ct + it

yt = At f (kt−1, `t)

kt = it + (1− δ)kt−1

it ≥ 0

At = A?eat

at = ρ at−1 + εt

where the technology (f ) and the preferences (u) are as above.
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First order conditions

uc(ct , `t)− µt = βEt

[
uc(ct+1, `t+1) (At+1fk(kt , `t+1) + 1− δ)

− µt+1(1− δ)
]

u`(ct , `t)

uc(ct , `t)
+ At fl(kt−1, `t) = 0

ct + kt = At f (kt−1, `t) + (1− δ)kt−1

µt (kt − (1− δ)kt−1) = 0

where µt ≥ 0 is the Lagrange multiplier associated to the non-negativity
constraint for investment.
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Writing this model in Dynare

Fragment from rbcii.mod

mu = max(0,(((c^theta)*((1-l)^(1-theta)))^(1-tau))/c

- expterm(1)+beta*mu(1)*(1-delta));

(i<=0)*(k - (1-delta)*k(-1))

+ (i>0)*((((c^theta)*((1-l)^(1-theta)))^(1-tau))/c

- expterm(1)+beta*mu(1)*(1-delta)) = 0;

expterm = beta*((((c^theta)*((1-l)^(1-theta)))^(1-tau))/c)

*(alpha*((y/k(-1))^(1-psi))+1-delta);
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Extended path (EP) algorithm

Algorithm for creating a stochastic simulated series

At every period, compute endogenous variables by running a
deterministic simulation with:

I the previous period as initial condition
I the steady state as terminal condition
I a random shock drawn for the current period
I but no shock in the future

Advantages:
I shocks are unexpected at every period
I nonlinearities fully taken into account

Inconvenient: solution under certainty equivalence (Jensen inequality
is violated)

Method introduced by Fair and Taylor (1983)

Implemented in Dynare 4.3 by Stéphane Adjemian under the
command extended path
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k-step ahead EP

Accuracy can be improved by computing conditional expectation by
quadrature, computing next period endogenous variables with the
previous algorithm

Approximation: at date t, agents assume that there will be no more
shocks after period t + k (hence k measures the degree of future
uncertainty taken into account)

If k = 1: one-step ahead EP; no more certainty equivalence

By recurrence, one can compute a k-step ahead EP: even more
uncertainty taken into account

Difficulty: computing complexity grows exponentially with k

k-step ahead EP currently implemented in (forthcoming) Dynare 4.4;
triggered with option order = k of extended path command
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