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Sébastien Villemot (CEPREMAP) First order approximation of stochastic models October 27, 2013 2 / 53



General problem

Et {f (yt+1, yt , yt−1, ut)} = 0

E (ut) = 0

E (utu
′
t) = Σu

E (utu
′
τ ) = 0 t 6= τ

y : vector of endogenous variables

u : vector of exogenous stochastic shocks
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Computation of first order approximation

Perturbation approach: recovering a Taylor expansion of the solution
function from a Taylor expansion of the original model.

A first order approximation is nothing else than a standard solution
thru linearization.

A first order approximation in terms of the logarithm of the variables
provides standard log-linearization.
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Timing assumptions

Et {f (yt+1, yt , yt−1, ut)} = 0

shocks ut are observed at the beginning of period t,

decisions affecting the current value of the variables yt , are function
of

I the previous state of the system, yt−1,
I the shocks ut .
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The stochastic scale variable

Et {f (yt+1, yt , yt−1, ut)} = 0

At period t, the only unknown stochastic variable is yt+1, and,
implicitly, ut+1.

We introduce the stochastic scale variable, σ and the auxiliary
random variable, εt , such that

ut+1 = σεt+1
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The stochastic scale variable (continued)

E (εt) = 0 (1)

E (εtε
′
t) = Σε (2)

E (εtε
′
τ ) = 0 t 6= τ (3)

and
Σu = σ2Σε
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Remarks

Et {f (yt+1, yt , yt−1, ut)} = 0

The exogenous shocks may appear only at the current period

There is no deterministic exogenous variables

Not all variables are necessarily present with a lead and a lag

Generalization to leads and lags on more than one period: similar to
deterministic case, but more complicated for lead variables (because
of expectancy operator)
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Solution function

yt = g(yt−1, ut , σ)

where σ is the stochastic scale of the model. If σ = 0, the model is
deterministic. For σ > 0, the model is stochastic.

Under some conditions, the existence of g() function is proven via an
implicit function theorem. See H. Jin and K. Judd “Solving Dynamic
Stochastic Models” (http://bucky.stanford.edu/papers/PerturbationMethodRatEx.pdf)
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Solution function (continued)

Then,

yt+1 = g(yt , ut+1, σ)

= g(g(yt−1, ut , σ), ut+1, σ)

Let’s:

F (yt−1, ut , εt+1, σ)

= f (g(g(yt−1, ut , σ), σεt+1, σ), g(yt−1, ut , σ), yt−1, ut)

So that the problem is redefined as:

Et {F (yt−1, ut , εt+1, σ)} = 0
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The perturbation approach

Obtain a Taylor expansion of the unkown solution function in the
neighborhood of a problem that we know how to solve.

The problem that we know how to solve is the deterministic steady
state.

One obtains the Taylor expansion of the solution for the Taylor
expansion of the original problem.

One consider two different perturbations:
1 points in the neighborhood from the steady sate,
2 from a deterministic model towards a stochastic one (by increasing σ

from a zero value).
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The perturbation approach (continued)

The Taylor approximation is taken with respect to yt−1, ut and σ, the
arguments of the solution function

yt = g(yt−1, ut , σ).

At the deterministic steady state, all derivatives are deterministic as
well.
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Steady state

A deterministic steady state, ȳ , for the model satisfies

f (ȳ , ȳ , ȳ , 0) = 0

A model can have several steady states, but only one of them will be used
for approximation.
Furthermore,

ȳ = g(ȳ , 0, 0)
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First order approximation

Around ȳ :

Et

{
F (1)(yt−1, ut , εt+1, σ)

}
=

Et

{
f (ȳ , ȳ , ȳ , 0) + fy+

(
gy (gy ŷ + guu + gσσ) + guσε

′ + gσσ
)

+fy0 (gy ŷ + guu + gσσ) + fy− ŷ + fuu
}

= 0

with ŷ = yt−1 − ȳ , u = ut , ε
′ = εt+1, fy+ = ∂f

∂yt+1
, fy0 = ∂f

∂yt
, fy− = ∂f

∂yt−1
,

fu = ∂f
∂ut

, gy = ∂g
∂yt−1

, gu = ∂g
∂ut

, gσ = ∂g
∂σ .
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Taking the expectation

Et

{
F (1)(yt−1, ut , εt+1, σ)

}
=

f (ȳ , ȳ , ȳ , 0) + fy+ (gy (gy ŷ + guu + gσσ) + gσσ)

+fy0 (gy ŷ + guu + gσσ) + fy− ŷ + fuu
}

=
(
fy+gygy + fy0gy + fy−

)
ŷ + (fy+gygu + fy0gu + fu) u

+ (fy+gygσ + fy0gσ)σ

= 0
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Recovering gy

(
fy+gygy + fy0gy + fy−

)
ŷ = 0

Structural state space representation:[
0 fy+

I 0

] [
I

gy

]
gy ŷ =

[
−fy− −fy0

0 I

] [
I

gy

]
ŷ

or [
0 fy+

I 0

] [
yt − ȳ

yt+1 − ȳ

]
=

[
−fy− −fy0

0 I

] [
yt−1 − ȳ

yt − ȳ

]
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Structural state space representation

Dxt+1 = Ext

with

xt+1 =

[
yt − ȳ

yt+1 − ȳ

]
xt =

[
yt−1 − ȳ

yt − ȳ

]

There are multiple solutions but we want a unique stable one.

Problem when D is singular.

Sébastien Villemot (CEPREMAP) First order approximation of stochastic models October 27, 2013 20 / 53



Real generalized Schur decomposition

Taking the real generalized Schur decomposition of the pencil < E ,D >:

D = QTZ

E = QSZ

with T , upper triangular, S quasi-upper triangular, Q ′Q = I and Z ′Z = I .
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Generalized eigenvalues

λi solves
λiDxi = Exi

For diagonal blocks on S of dimension 1 x 1:

Tii 6= 0: λi = Sii
Tii

Tii = 0, Sii > 0: λi = +∞
Tii = 0, Sii < 0: λi = −∞
Tii = 0, Sii = 0: λi ∈ C
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A pair of complex eigenvalues

When a diagonal block of matrix S is a 2x2 matrix of the form[
Sii Si ,i+1

Si+1,i Si+1,i+1

]
:

the corresponding block of matrix T is a diagonal matrix,

(Si ,iTi+1,i+1 + Si+1,i+1Ti ,i )
2 < −4Si+1,iSi+1,iTi ,iTi+1,i+1,

there is a pair of conjugate complex eigenvalues

λi , λi+1 =

SiiTi+1,i+1 + Si+1,i+1Ti,i ±
√

(Si,iTi+1,i+1 − Si+1,i+1Ti,i )
2 + 4Si+1,iSi+1,iTi,iTi+1,i+1

2Ti,iTi+1,i+1
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Applying the decomposition

D

[
I

gy

]
gy ŷ = E

[
I

gy

]
ŷ[

T11 T12

0 T22

] [
Z11 Z12

Z21 Z22

] [
I

gy

]
gy ŷ

=

[
S11 S12

0 S22

] [
Z11 Z12

Z21 Z22

] [
I

gy

]
ŷ

where rows and columns are re-ordered such that:

(T11,S11) contain stable generalized eigenvalues (modulus ≤ 1)

(T22,S22) contain explosive generalized eigenvalues (modulus > 1)

Sébastien Villemot (CEPREMAP) First order approximation of stochastic models October 27, 2013 24 / 53



Selecting the stable trajectory

To exclude explosive trajectories, one imposes

Z21 + Z22gy = 0

gy = −Z−1
22 Z21

A unique stable trajectory exists if Z22 is square and non-singular: there
are as many roots larger than one in modulus as there are forward-looking
variables in the model (Blanchard and Kahn condition) and the rank
condition is satisfied.
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An alternative algorithm: Cyclic reduction

Solving
A0 + A1X + A2X 2 = 0

Iterate

A
(k+1)
0 = −A

(k)
0 (A

(k)
1 )−1A

(k)
0 ,

A
(k+1)
1 = A

(k)
1 − A

(k)
0 (A

(k)
1 )−1A

(k)
2 − A

(k)
2 (A

(k)
1 )−1A

(k)
0 ,

A
(k+1)
2 = −A

(k)
2 (A

(k)
1 )−1A

(k)
2 ,

Â
(k+1)
1 = Â

(k)
1 − A

(k)
2 (A

(k)
1 )−1A

(k)
0 .

for k = 1, . . . with A
(1)
0 = A0, A

(1)
1 = A1, A

(1)
2 = A2, Â

(1)
1 = A1 and

until ||A(k)
0 ||∞ < ε and ||A(k)

2 ||∞ < ε.

Then
X ≈ −(Â

(k+1)
1 )−1A0
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Recovering gu

fy+gygu + fy0gu + fu = 0

gu = − (fy+gy + fy0)−1 fu

Hong Lan & Alexander Meyer-Gohde, 2012. ”Existence and Uniqueness of Perturbation

Solutions to DSGE Models,” SFB 649 Discussion Papers, Humboldt University, show

that fy+gy + fy0 is an invertible matrix under standard regularity and saddle stability

assumptions.
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Recovering gσ

fy+gygσ + fy0gσ = 0

gσ = 0

Yet another manifestation of the certainty equivalence property of first
order approximation.
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First order approximated decision function

yt = ȳ + gy ŷ + guu

E {yt} = ȳ

Σy = gyΣyg ′y + σ2guΣεg
′
u

The variance is solved for with an algorithm for Lyapunov equations.
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A simple RBC model

Consider the following model of an economy.

Representative agent preferences

U =
∞∑
t=1

(
1

1 + ρ

)t−1

Et

[
log (Ct)−

L1+γ
t

1 + γ

]
.

The household supplies labor and rents capital to the corporate
sector.

I Lt is labor services
I ρ ∈ (0,∞) is the rate of time preference
I γ ∈ (0,∞) is a labor supply parameter.
I Ct is consumption,
I wt is the real wage,
I rt is the real rental rate
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RBC Model (continued)

The household faces the sequence of budget constraints

Kt = Kt−1 (1− δ) + wtLt + rtKt−1 − Ct ,

where
I Kt is capital at the end of period
I δ ∈ (0, 1) is the rate of depreciation

The production function is given by the expression

Yt = AtK
α
t−1

(
(1 + g)t Lt

)1−α

where g ∈ (0,∞) is the growth rate and α and β are parameters.

At is a technology shock that follows the process

At = Aλt−1 exp (et) ,

where et is an i.i.d. zero mean normally distributed error with
standard deviation σ1 and λ ∈ (0, 1) is a parameter.
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The household problem

Lagrangian

L = max
Ct ,Lt ,Kt

∞∑
t=1

(
1

1 + ρ

)t−1

Et

[
log (Ct)−

L1+γ
t

1 + γ

− µt (Kt − Kt−1 (1− δ)− wtLt − rtKt−1 + Ct)
]

First order conditions

∂L

∂Ct
=

(
1

1 + ρ

)t−1( 1

Ct
− µt

)
= 0

∂L

∂Lt
=

(
1

1 + ρ

)t−1

(Lγt − µtwt) = 0

∂L

∂Kt
= −

(
1

1 + ρ

)t−1

µt +

(
1

1 + ρ

)t

Et (µt+1(1− δ + rt)) = 0
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First order conditions

Eliminating the Lagrange multiplier, one obtains

Lγt =
wt

Ct

1

Ct
=

1

1 + ρ
Et

(
1

Ct+1
(rt+1 + 1− δ)

)
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The firm problem

max
Lt ,Kt−1

AtK
α
t−1

(
(1 + g)t Lt

)1−α − rtKt−1 − wtLt

First order conditions:

rt = αAtK
α−1
t−1

(
(1 + g)t Lt

)1−α

wt = (1− α)AtK
α
t−1

(
(1 + g)t

)1−α
L−αt
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Goods market equilibrium

Kt + Ct = Kt−1(1− δ) + AtK
α
t−1

(
(1 + g)t Lt

)1−α
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Dynamic Equilibrium

1

Ct
=

1

1 + ρ
Et

(
1

Ct+1
(rt+1 + 1− δ)

)
Lγt =

wt

Ct

rt = αAtK
α−1
t−1

(
(1 + g)t Lt

)1−α

wt = (1− α)AtK
α
t−1

(
(1 + g)t

)1−α
L−αt

Kt + Ct = Kt−1(1− δ) + AtK
α
t−1

(
(1 + g)t Lt

)1−α
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Existence of a balanced growth path

There must exist a growth rates gc and gk so that

(1 + gk)tK1 + (1 + gc)tC1 =

(1 + gk)t

1 + gK
K1(1− δ) + A

(
(1 + gk)t

1 + gk
K1

)α (
(1 + g)t Lt

)1−α

So,
gc = gk = g
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Stationarized model

Let’s define

Ĉt = Ct/(1 + g)t

K̂t = Kt/(1 + g)t

ŵt = wt/(1 + g)t

Sébastien Villemot (CEPREMAP) First order approximation of stochastic models October 27, 2013 39 / 53



Stationarized model (continued)

1

Ĉt(1 + g)t
=

1

1 + ρ
Et

(
1

Ĉt+1(1 + g)(1 + g)t
(rt+1 + 1− δ)

)

Lγt =
ŵt(1 + g)t

Ĉt(1 + g)t

rt = αAt

(
K̂t−1

(1 + g)t

1 + g

)α−1 (
(1 + g)tLt

)1−α

ŵt(1 + g)t = (1− α)At

(
K̂t−1

(1 + g)t

1 + g

)α (
(1 + g)t

)1−α
L−αt(

K̂t + Ĉt

)
(1 + g)t = K̂t−1

(1 + g)t

1 + g
(1− δ)

+ At

(
K̂t−1

(1 + g)t

1 + g

)α (
(1 + g)tLt

)1−α

Sébastien Villemot (CEPREMAP) First order approximation of stochastic models October 27, 2013 40 / 53



Stationarized model (continued)

1

Ĉt

=
1

1 + ρ
Et

(
1

Ĉt+1(1 + g)
(rt+1 + 1− δ)

)

Lγt =
ŵt

Ĉt

rt = αAt

(
K̂t−1

1 + g

)α−1

L1−α
t

ŵt = (1− α)At

(
K̂t−1

1 + g

)α
L−αt

K̂t + Ĉt =
K̂t−1

1 + g
(1− δ) + At

(
K̂t−1

1 + g

)α
L1−α
t
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Dynare implementation

var C K L w r A;

varexo e;

parameters rho delta gamma alpha lambda g;

alpha = 0.33;

delta = 0.1;

rho = 0.03;

lambda = 0.97;

gamma = 0;

g = 0.015;
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Dynare implementation (continued)

model;

1/C=1/(1+rho)*(1/(C(+1)*(1+g)))*(r(+1)+1-delta);

L^gamma = w/C;

r = alpha*A*(K(-1)/(1+g))^(alpha-1)*L^(1-alpha);

w = (1-alpha)*A*(K(-1)/(1+g))^alpha*L^(-alpha);

K+C = (K(-1)/(1+g))*(1-delta)

+A*(K(-1)/(1+g))^alpha*L^(1-alpha);

log(A) = lambda*log(A(-1))+e;

end;
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Dynare implementation (continued)

steady_state_model;

A = 1;

r = (1+g)*(1+rho)+delta-1;

L = ((1-alpha)/(r/alpha-delta-g))*r/alpha;

K = (1+g)*(r/alpha)^(1/(alpha-1))*L;

C = (1-delta)*K/(1+g)

+(K/(1+g))^alpha*L^(1-alpha)-K;

w = C;

end;

steady;
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Dynare implementation (continued)

shocks;

var e; stderr 0.01;

end;

check;

stoch_simul(order=1);
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Alternative implementation
Let Dynare detrend equations for you

parameters g;

trend_var(growth_factor=1+g) Z; // Productivity trend

var(deflator = Z) C K w;

var L r A;

varexo e;

parameters rho delta gamma alpha lambda;

model;

// Declare non-detrended model equations

end;
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Decision and transition functions

Dynare output:

POLICY AND TRANSITION FUNCTIONS

C K L w r A

Constant 1.003043 3.125296 0.906526 1.003043 0.145450 1.000000

K(-1) 0.144433 0.779746 -0.105500 0.144433 -0.042523 0

A(-1) 0.757723 1.149948 0.589451 0.757723 0.204452 0.970000

e 0.781158 1.185514 0.607681 0.781158 0.210776 1.000000

Ct = 1.003 + 0.144
(
Kt−1 − K̄

)
+ 0.758

(
At−1 − Ā

)
+ 0.781et
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Dating variables in Dynare

Dynare will automatically recognize predetermined and non-predetermined
variables, but you must observe a few rules:

period t variables are set during period t on the basis of the state of
the system at period t − 1 and shocks observed at the beginning of
period t.

therefore, stock variables must be on an end-of-period basis:
investment of period t determines the capital stock at the end of
period t.

Note: with the predetermined variables command, one can use a
beginning-of-period convention for stocks when writing the model.
However, the IRFs and other output will still be at end-of-stock
convention.
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Log-linearization

Taking a log-linear approximation of a model is equivalent to take a
linear approximation of a model with respect to the logarithm of the
variables.

In practice, it is sufficient to replace all occurences of variable X with
exp(LX ) where LX = log X .

It is possible to make the substitution for some variables and not
anothers. You wouldn’t want to take a log approximation of a
variable whose steady state value is negative . . .

There is no evidence that log-linearization is more accurate than
simple linearization. In a growth model, it is often more natural to do
a log-linearization.
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The role of the Dynare preprocessor

Dynare solves generic problems

the preprocessor reads your *.mod file and translates it in specific
MATLAB/Octave files

filename.m: main MATLAB/Octave script for the model

filename static.m: static model

filename dynamic.m: dynamic model

filename steadystate2.m: steady state function

filename set auxiliary variables.m: auxiliary variables function
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Overall design of Dynare
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