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General problem

Et {f(yt+17)/ta}/t—17 ut)} =0

E(Ut) =0
E(usuy) = X,
E(updl) = 0 t#7

y : vector of endogenous variables

u : vector of exogenous stochastic shocks
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Computation of first order approximation

@ Perturbation approach: recovering a Taylor expansion of the solution
function from a Taylor expansion of the original model.

@ A first order approximation is nothing else than a standard solution
thru linearization.

@ A first order approximation in terms of the logarithm of the variables
provides standard log-linearization.
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Timing assumptions

E: {f(yes1,Ye, Ye-1,u)} =0

@ shocks u; are observed at the beginning of period t,

@ decisions affecting the current value of the variables y;, are function
of

> the previous state of the system, y; 1,
» the shocks u;.
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The stochastic scale variable

Et {f(yt-l-l’yt:yt—la ut)} =0

@ At period t, the only unknown stochastic variable is y;11, and,
implicitly, uq1.

@ We introduce the stochastic scale variable, o and the auxiliary
random variable, €, such that

Uty = O€py
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The stochastic scale variable (continued)

E(e:) =0 (1)
E(ecer) = e (2)
E(ere)=0 t#T (3)
and
Y, =0%%.
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Remarks

E: {f(yes1, Yt Ye-1,u)} =0

The exogenous shocks may appear only at the current period
There is no deterministic exogenous variables
Not all variables are necessarily present with a lead and a lag

Generalization to leads and lags on more than one period: similar to
deterministic case, but more complicated for lead variables (because
of expectancy operator)
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© The solution function
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Solution function

yr = g()/t—b Ut»U)

where o is the stochastic scale of the model. If ¢ = 0, the model is
deterministic. For o > 0, the model is stochastic.

Under some conditions, the existence of g() function is proven via an

implicit function theorem. See H. Jin and K. Judd “Solving Dynamic

StOCh aStIC M Ode|S” (http://bucky.stanford.edu/papers/PerturbationMethodRatEx.pdf)
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Solution function (continued)

Then,

Yir1 = &V, Utr1,0)
- g(g(yt—17ut70)7 Ut+]_,0')
Let's:

F(yt—l; Ut, €t41, U)
= f(g(g(ye-1,Ut,0),0€t41,0), 8(Ve—1, Ut, 0), Vi1, Ut)
So that the problem is redefined as:

E: {F(yt—1,Ut,€t41,0)} =0
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The perturbation approach

@ Obtain a Taylor expansion of the unkown solution function in the
neighborhood of a problem that we know how to solve.

@ The problem that we know how to solve is the deterministic steady
state.

@ One obtains the Taylor expansion of the solution for the Taylor
expansion of the original problem.

@ One consider two different perturbations:

@ points in the neighborhood from the steady sate,
@ from a deterministic model towards a stochastic one (by increasing o
from a zero value).

Sébastien Villemot (CEPREMAP) First order approximation of stochastic model October 27, 2013 12 / 53



The perturbation approach (continued)

@ The Taylor approximation is taken with respect to y;_1, us and o, the
arguments of the solution function

Y = g()/t—l, Ut7<7)-

@ At the deterministic steady state, all derivatives are deterministic as
well.
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© The steady state
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Steady state

A deterministic steady state, y, for the model satisfies
f()_/7}_/7}_/70) =0

A model can have several steady states, but only one of them will be used
for approximation.
Furthermore,

y =¢g(y,0,0)
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First order approximation

Around y:

Et {F(l)(yt—17 ut76t+170)} =
Et{f (7.7.7,0) + ., (& (g9 + guu+ 8-0) + guo€ + g50)
o (&9 + gull + 8,0) + 9 + fyu}
=0

of _of ¢ of

e - ;. . .
with § = }/t—l—y,U—Ut.G —€t+1. ﬂ/+—m, Y0 = dy; v- = 3y

_of _ g og
b= G0 8 = 3y, 8u= aut &8s = 35-
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Taking the expectation

Et {F(l)(}’t—h Ut;€t+1;0-)} =
f(.)_/a.)_/a.)_/ao)-i_ f;/+ (gy(gy)?‘l‘guu‘l‘gaa)‘l'gaa)
o (&9 + gull + 8:0) + b9 + fuu}

= (fﬂgygy + fy,8y + fy—) v+ (f. 88+ fpgu+fu)u
+ (f;’+gyg0 + fYOgU) g
=0
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Recovering g,

=0

<>

(fy+gygy + fo8y + f}_)

Structural state space representation:

0 K[ )y - [5 ][ 1]
e e = e Ll

or
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Structural state space representation

DXt+1 = EXt
with _ _
Ye =Yy Yi—1—Y
X; = _ Xy = _
o {ym—y} ' [ Ye— ¥ ]

@ There are multiple solutions but we want a unique stable one.

@ Problem when D is singular.
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Real generalized Schur decomposition

Taking the real generalized Schur decomposition of the pencil < E; D >:

D = QTZ
E = Q57

with T, upper triangular, S quasi-upper triangular, @ Q =/ and Z/Z = I.
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Generalized eigenvalues

Ai solves
)\,'DX,' = EX,'
For diagonal blocks on S of dimension 1 x 1:
. _ S

o T,',‘ 75 0 )\,’ = ?”

@ T;=0,5;>0: \i=+x

e T;=05;<0: \j=—-00

e 7;=05;=0: \;eC

Sébastien Villemot (CEPREMAP) First order approximation of stochastic model October 27, 2013 22 /53



A pair of complex eigenvalues

When a diagonal block of matrix S is a 2x2 matrix of the form
Sii Siit1 } _
Sivii Sivvniv1 |
@ the corresponding block of matrix T is a diagonal matrix,
o (SiiTivrit1 +Sitrit1Tii)® < —4Si11,iSii1,i Tri Tivnist,
@ there is a pair of conjugate complex eigenvalues

)\f7 )\I'+1 =

2
SiTit1,i+1 + Sit1,i1 Tii £ \/(Si,iTi+1,i+1 — Sit1,iv1 Tii) + 4Si41,iSiv1,i Tiyi Tig,i1
2T:i Tiy1,i+1
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Applying the decomposition

I /

D vy = E Y

[ 8y } &Y [ 8y ] Y

[Tn T12][Z11 212}[ / }g}“/
0 T 2o Iy 8y 7
_ [511 512][211 212][/]}7
0 S» o1 Zx» 8y
where rows and columns are re-ordered such that:

@ (Ti1,S11) contain stable generalized eigenvalues (modulus < 1)

@ (T, S22) contain explosive generalized eigenvalues (modulus > 1)
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Selecting the stable trajectory

To exclude explosive trajectories, one imposes
21+ Z»g, =0

gy = —Z5n' Zo1

A unique stable trajectory exists if Z5 is square and non-singular: there
are as many roots larger than one in modulus as there are forward-looking
variables in the model (Blanchard and Kahn condition) and the rank
condition is satisfied.

Sébastien Villemot (CEPREMAP) First order approximation of stochastic model October 27, 2013 25 /53



An alternative algorithm: Cyclic reduction

@ Solving
Ao+ A X + A X2 =0
o lterate
A(()k—i—l) . (A(lk ) 1A(k)
Ak _ A(k AP (alk ) LA AR ALKy =1 00)
AFTY = — AP A) A
Z\ngrl) A(k Agk)(A (k) ) 1A k)

for k =1,... with Al = Ag, A = A, A = 4, AL = A, and
until |]A(()k)||C>o < € and ||Agk)||oo <

@ Then R
X ~ — (AR -14
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Recovering g,

fy+gygu + f;/()gu + fu = 0
Eu = — (fy+gy + f}/o)_l fy

Hong Lan & Alexander Meyer-Gohde, 2012. " Existence and Uniqueness of Perturbation
Solutions to DSGE Models,” SFB 649 Discussion Papers, Humboldt University, show
that f,, g, + f, is an invertible matrix under standard regularity and saddle stability

assumptions.
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Recovering g,

fy. 8y8s + fy8s =0
gO'ZO

Yet another manifestation of the certainty equivalence property of first
order approximation.
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First order approximated decision function

Ye=y+gJy+8uu

E{Yt} =Yy
Zy = gyzyg}//+0'2guzegz/1

The variance is solved for with an algorithm for Lyapunov equations.
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© Example

Sébastien Villemot (CEPREMAP)

First order approximation of stochastic model

[m]

=



A simple RBC model

Consider the following model of an economy.

@ Representative agent preferences

L1+'Y

t—1
U= Z(HP) E; |log (C;) — Ty

The household supplies labor and rents capital to the corporate
sector.

L; is labor services

p € (0,00) is the rate of time preference
v € (0,00) is a labor supply parameter.
C; is consumption,

w; is the real wage,

rs is the real rental rate

v

vV vy VY VvYYy
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RBC Model (continued)

@ The household faces the sequence of budget constraints

Ki=Ki—1 (1 —0) + wele + e Ke1 — G,

where

» K; is capital at the end of period
» 0 € (0,1) is the rate of depreciation

@ The production function is given by the expression
1—
Ye=AKE, (1+g) L)

where g € (0, 00) is the growth rate and « and 3 are parameters.

@ A; is a technology shock that follows the process
At = Ai\—l exp (et) 5

where ¢e; is an i.i.d. zero mean normally distributed error with
standard deviation o1 and A € (0,1) is a parameter.
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The household problem
Lagrangian
o0 1+’y

1 t—1
L= — AN -t
CTL?,)RZ<1+p) t[og(ct) 1+~

t=1

— pe (K — Ke—1 (1 — 0) — wely — reKemq + Ct)]

First order conditions

oL _ (L \TH (L N
8Ct_ 1+p Ct He) =

oL 1\t
o= (13,) W =o

L 1 \"! 1!
a—m——(m) He + (m) E: (per1(1=0+r))=0

Sébastien Villemot (CEPREMAP) First order approximation of stochastic model October 27, 2013 33 /53



First order conditions

Eliminating the Lagrange multiplier, one obtains

y_ W

L/ = C.

1 1 1

— = ——F = +1-96
G 1+p ' (Ct-',-l(rH_1 ))
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The firm problem

1—
LmKaX AthOt_l ((1 + g)t I_t) “ rth,1 — WtLt
tyNt—1

First order conditions:
_ -«
re = aAK T ((L+g)° Le)
o l-a , 4
Wi = (1 — CY)Ath_l ((1 + g)t) Lt
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Goods market equilibrium

Ke+ G = Ki—1(1 = 0) + A K ((1 +g)t Lt)
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Dynamic Equilibrium

1 1 1
= — F +1-4
G 14p ‘ (Ct+1 (reas ))

_ 11—«
re = OéAthql ((1 + g)t Lt)
o l-a o
we = (1 - @)AKE, (L +g)) "L
o 11—«
Ki+ Ce = Kee1(1—6) + AcKE, (14 g)° Ly)
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Existence of a balanced growth path

There must exist a growth rates g- and g so that

(]- + gk)tKl + (1 + gc)tCl =

t 1 t « : o

So,
8c=8k= 8§
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Stationarized model

Let's define

Co=C/(1+eg)
Rt = Kt/(]. +g)t
Wt = Wt/(]. +g)t
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Stationarized model (continued)

= 1 = L Et = 1 (rt+1+1—(5)
G(l+g)t 1+p Cr(l+g)(1+g)t
L"/_ Wt(1+g)t

= -

G(l+g)t
re= A, (Rtl(ll%?t)a_l (14 2) L)
(R ) 0oy~
A <Rf—1(11+?t)a (1+g) L)
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Stationarized model (continued)

Rt+6t=

Sébastien Villemot (CEPREMAP)

1 1
Ei | = rr1+1—9
1+p (Ct+1(1+g)( o )>

~ a—1
cmon(fr) o

~ «
_ Ke_
we = (1—a)A (ﬁ;) L7

Ki—1

First order approximation of stochastic model
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Dynare implementation

var CK L wr A;
varexo e;

parameters rho delta gamma alpha lambda g;

alpha = 0.33;
delta 0.1;
rho = 0.03;
lambda = 0.97;
gamma = O;

g = 0.015;
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Dynare implementation (continued)

model;
1/C=1/(1+rho)*(1/(C(+1)*(1+g) ) ) *(r (+1)+1-delta);
L gamma = w/C;
r = alpha*A*(K(-1)/(1+g)) "~ (alpha-1)*L"~ (1-alpha);
w = (1-alpha)*A*(K(-1)/(1+g)) ~alphaxL" (-alpha) ;
K+C = (K(-1)/(1+g))*(1-delta)

+Ax (K(-1)/(1+g)) "alpha*L~ (1-alpha);
log(A) = lambda*log(A(-1))+e;
end;
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Dynare implementation (continued)

steady_state_model;

A=1;
r = (1+g)*(1+rho)+delta-1;
L = ((1-alpha)/(r/alpha-delta-g))*r/alpha;
K = (1+g)*(r/alpha) "~ (1/(alpha-1))*L;
C = (1-delta)*K/(1+g)
+(K/(1+g)) “alpha*L~ (1-alpha)-K;
w = C;
end;
steady;
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Dynare implementation (continued)

shocks;
var e; stderr 0.01;
end;

check;

stoch_simul (order=1);
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Alternative implementation

Let Dynare detrend equations for you

parameters g;

trend_var (growth_factor=1+g) Z; // Productivity trend
var (deflator = Z) C K w;

var L r A;

varexo e;

parameters rho delta gamma alpha lambda;

model;

// Declare non-detrended model equations

end;

Sébastien Villemot (CEPREMAP) First order approximation of stochastic model October 27, 2013

46 / 53



Decision and transition functions

Dynare output:

POLICY AND TRANSITION FUNCTIONS

C
Constant 1.003043
K(-1) 0.144433
A(-1) 0.757723
e 0.781158

C: = 1.003 +0.144 (K;—1 — K) + 0.758 (A;—1 — A) + 0.781e;

K
3.125296
0.779746
1.149948
1.185514

Sébastien Villemot (CEPREMAP)

L w T A
0.906526 1.003043 0.145450 1.000000
-0.105500 0.144433  -0.042523 [¢]

0.589451 0.757723 0.204452 0.970000
0.607681 0.781158 0.210776 1.000000
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Dating variables in Dynare

Dynare will automatically recognize predetermined and non-predetermined
variables, but you must observe a few rules:

@ period t variables are set during period t on the basis of the state of
the system at period t — 1 and shocks observed at the beginning of
period t.

@ therefore, stock variables must be on an end-of-period basis:
investment of period t determines the capital stock at the end of
period t.

Note: with the predetermined variables command, one can use a
beginning-of-period convention for stocks when writing the model.
However, the IRFs and other output will still be at end-of-stock
convention.
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Log-linearization

o Taking a log-linear approximation of a model is equivalent to take a
linear approximation of a model with respect to the logarithm of the
variables.

@ In practice, it is sufficient to replace all occurences of variable X with
exp(LX) where LX = log X.

@ It is possible to make the substitution for some variables and not
anothers. You wouldn't want to take a log approximation of a
variable whose steady state value is negative . ..

@ There is no evidence that log-linearization is more accurate than
simple linearization. In a growth model, it is often more natural to do
a log-linearization.
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The role of the Dynare preprocessor

@ Dynare solves generic problems

the preprocessor reads your *.mod file and translates it in specific
MATLAB/Octave files

filename.m: main MATLAB/Octave script for the model
filename_static.m: static model
filename_dynamic.m: dynamic model

filename_steadystate2.m: steady state function

filename_set_auxiliary_variables.m: auxiliary variables function
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Overall design of Dynare

MOD file MOD file Parser,
with macro o Macro without macro Analytical
commands rocessor commands derivator...

:Dynare preprocessor

Matlab files
representing
the model

Dynare
Matlab routines
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