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DYNARE

1. computes the solution of deterministic models (arbitrary
accuracy)

2. computes first and second order approximation to solution
of stochastic models

3. estimates (maximum likelihood or Bayesian approach)
parameters of DSGE models

4. computes optimal policy.

5. performs global sensitivity analysis of a model (thanks to
Marco Ratto’s tools)



Schorfheide (2000)

I Standard Cash-in-advance model (see also Nason and
Cogley, 1994)

I Portfolio adjustment cost model

I Main Results:
I Standard CIA model outperforms the PAC model in terms of

both better in-sample properties and posterior distribution
I The PAC model outperforms the CIA model when analyzing

the response to a money growth shock.



Standard CIA model

I Three agents: Household, a firm and a financial
intermediary

I Decisions are made after the current period surprise
change in money growth and technology.



Firm

The firm chooses desired capital, Kt , labour demand, Nt ,
dividends Ft and loans Lt

max
{Kt ,Nt ,Ft}

∞

t=0

E0

[
∞∑

t=0

βt Ft

Ct+1Pt+1

]

s.t.

Ft ≤ Lt + Pt Yt − Kt + (1 − δ)Kt−1 − Wt Nt − RF ,tLt

Wt Nt ≤ Lt

Yt = K α

t−1 (At Nt)
1−α

where Yt is output, At , technical change index, Pt , the price
index, Wt , the wage rate, and RF ,t , the gross interest rate on
loans.



Financial Intermediary

The following maximisation problem:

max
{Bt ,Lt ,Dt}

∞

t=0

E0

[
∞∑

t=0

βt Bt

Ct+1Pt+1

]

s.t.

Bt = Dt + RF ,tLt − RH,tDt − Lt + Mt − Mt−1

Lt ≤ Mt − Mt−1 + Dt

where Bt is dividends from the financial intermediaries, Dt , the
deposits, and RH,t is the gross deposit interest rate.



Household

The household chooses consumption Ct , hours worked Ht , and
(non-negative) deposits Dt so that

max
{Ct ,Ht ,Mt ,Dt}

∞

t=0

E0

[
∞∑

t=0

βt [(1 − φ) log Ct + φ log(1 − Ht)]

]

s.t.

PtCt ≤ Mt−1 − Dt + WtHt

Dt ≥ 0

Mt = Mt−1 − Dt + WtHt − PtCt + RH,tDt + Ft + Bt



Market clearing conditions

I Labor market
Ht = Nt

I Money market
PtCt = Mt

I Goods market

Ct + (Kt − (1 − δ)Kt−1) = K α
t−1(AtNt)

1−α



Shock processes

Technology:

gAt =
At

At−1

log gAt = γ + εAt

Money:

gMt =
Mt

Mt−1

log gMt = (1 − ρ) log gM
? + ρ log gMt−1 + εM t



Optimality conditions

Et

{
Pt

Ct+1Pt+1

}
= βEt

{
Pt+1αK α−1

t (At+1Nt+1)
1−α + 1 − δ

Ct+2Pt+2

}

ψ

1 − ψ

CtPt

1 − Nt
= Wt

1
CtPt

= βEt

{
Rt

Ct+1Pt+1

}

Rt =
Pt(1 − α)K α

t−1A1−α
t N−α

t

Wt



Other equilibrium conditions

Wt =
Lt

Nt

Lt = Mt − Mt−1 + Dt

PtCt = Mt

Ct + (Kt − (1 − δ)Kt−1) = K α
t−1(AtNt)

1−α

gAt =
At

At−1

log gAt = γ + εAt

gM t =
Mt

Mt−1

log gM t = (1 − ρ) log gM
? + ρ log gM t−1 + εM t



Stationarized model

In order for a local approximation to make sense, the model
variables must fluctuate in the neighborhood of the steady
state. It is therefor necessary to stationarize the model, before
computing the local approximation of the solution.

I Kt , Ct , are detrended by the productivity At ,

I Pt is detrended by Mt−1/At

I Wt , Lt , and Dt are detrended by Mt−1.
I Rt and Nt are stationary



First-order conditions

Euler equation:

Et

{
P̂t

Mt−1
At

Ĉt+1At+1P̂t+1
Mt

At+1

}

= βEt

{
Pt+1

Mt

At+1

α
(

K̂tAt

)α−1
(At+1Nt+1)

1−α + 1 − δ

Ĉt+2At+2P̂t+2
Mt+1
At+2

}

after simplification

Et

{
P̂t

Ĉt+1P̂t+1gMt

}
= βEt

{
Pt+1

αgA
−α
t+1K̂ α−1

t N1−α
t+1 + 1−δ

gAt+1

Ĉt+2P̂t+2gM t+1

}



First-order conditions (continued)
Firm’s borrowing constraint:

ŴtMt−1 =
L̂tMt−1

Nt

after simplification

Ŵt =
L̂t

Nt

Intertemporal labor market optimality condition:

ψ

1 − ψ

ĈtAt P̂t
Mt−1

At

1 − Nt
= ŴtMt−1

after simplification

ψ

1 − ψ

Ĉt P̂t

1 − Nt
= Ŵt



First order conditions (continued)
Equilibrium interest rate:

Rt =
(1 − α)P̂t

Mt−1
At

(
K̂t−1At−1

)α−1
(AtNt)

−α

ŴtMt−1

after simplification

Rt =
(1 − α)P̂tgA

−α
t K̂ α−1

t−1 N−α
t

Ŵt

Credit market optimality condition:

1

ĈtAt P̂t
Mt−1

At

= βEt

{
Rt

Ĉt+1At+1P̂t+1
Mt

At+1

}

after simplification

1

Ĉt P̂t

= βEt

{
Rt

gM tĈt+1P̂t+1

}



Other equilibrium conditions

Ŵt =
L̂t

Nt

L̂t = gMt − 1 + D̂t

P̂t Ĉt = gMt

Ĉt + K̂t − (1 − δ)
K̂t−1

gAt
=

(
K̂t−1

gAt

)α

N1−α
t

log gAt = γ + εAt

log gMt = (1 − ρ) log gM
? + ρ log gMt−1 + εM t



fs2000A.mod

var P C W R K D N L Y gA gM;
varexo e_a e_m;

parameters alp bet gam gMstar rho psi del;

alp = 0.33;
bet = 0.99;
gam = 0.003;
gMstar = 1.011;
rho = 0.7;
psi = 0.787;
del = 0.02;



fs2000A.mod (continued)

model;
P/(C(+1)*P(+1)*gM) = bet*P(+1)*(alp*gA(+1)^(-alp)*

K^(alp-1)*N(+1)^(1-alp)+(1-del)/gA(+1))/
(C(+2)*P(+2)*gM(+1));

W = L/N;
(psi/(1-psi))*(C*P/(1-N)) = W ;
R = P*(1-alp)*gA^(-alp)*K(-1)^alp*N^(-alp)/W;
1/(C*P) = bet*R/(gM*C(+1)*P(+1));
C+K = Y+(1-del)*K(-1)/gA;
P*C = gM;
gM-1+D = L;
Y = K(-1)^alp*N^(1-alp)*gA^(-alp);
log(gA) = gam + e_a;
log(gM) = (1-rho)*log(gMstar)+rho*log(gM(-1))+e_m;
end;



fs2000A.mod (continued)

initval;
K = 6;
P = 2.25;
C = 0.45;
W = 4;
R = 1.02;
D = 0.85;
N = 0.19;
L = 0.86;
Y = 0.6;
gA = exp(gam);
gM = dMstar;
end;



fs2000A.mod (continued)

shocks;
var e_a; stderr 0.014;
var e_m; stderr 0.005;
end;

steady;
check;

stoch_simul(order=1);



Dating variables in Dynare

Dynare will automatically recognize predetermined and
non–predetermined variables, but you must observe a few
rules:

I period t variables are set during period t on the basis of
the state of the system at period t − 1 and shocks
observed at the beginning of period t .

I therefor, stock variables must be on an end–of–period
basis: investment of period t determines the capital stock
at the end of period t .



Log–linearization

I Taking a log–linear approximation of a model is equivalent
to take a linear approximation of a model with respect to
the logarithm of the variables.

I In practice, it is sufficient to replace all occurences of
variable X with exp(LX ) where LX = log X .

I It is possible to make the substitution for some variables
and not anothers. You wouldn’t want to take a log
approximation of a variable whose steady state value is
negative . . .

I There is no evidence that log–linearization is more
accurate than simple linearization. In a growth model, it is
often more natural to do a log–linearization.



Computing the steady state

steady;

I initval contains guess values for nonlinear solver
I initval can alternatively contains the exact solution

when it is possible to derive it analytically.
I It is also possible to write the analytical solution of the

steady state as a Matlab function called in this case
fs2000A_steadystate.m



Checking unicity of a locally stable solution

check;

I Blanchard and Kahn condition for the unicity of a stable
solution in a linear rational expectation model: There must
be as many explosive roots as there are forward–looking
variables in the model (and a particular rank condition
must be satisfied).



Computing the approximate solution

stoch_simul(order=1);

Options:
I In a large model, it is possible to limit results to certain

variables. Example:stoch_simul(order=1) C K R;

I order: order of approximation (1 or 2; default=2)
I irf: number of periods for the IRFs (default 40)
I periods: runs an actual Monte Carlo simulation



Approximated decision rule

At the first order:

Kt = 5.80+0.95
(
Kt−1 − K

)
+0.16

(
gMt−1 − gM

)
−5.49εAt+0.22εMt

At the second order:

Kt = 5.80 + 4.35 × 10−4 + 0.95
(
Kt−1 − K

)
+ 0.16

(
gM t−1 − gM

)

−5.49εAt + 0.22εMt − 0.0004
(
Kt−1 − K

)2

−0.07
(
gMt−1 − gM

)2
+ 0.02

(
Kt−1 − K

) (
gMt−1 − gM

)

+2.73εA
2
t − 0.15εAtεM t − 0.14εM

2
t − 0.79εAt

(
Kt−1 − K

)

+0.17εMt
(
Kt−1 − K

)
− 0.69εAt

(
gMt−1 − gM

)

−0.69εMt
(
gM t−1 − gM

)



The role of the Dynare parser

I the Dynare toolbox solves generic problems
I the parser reads your *.mod file and translates it in specific

Matlab files
I filename.m: main Matlab script for your model
I filename_static.m: static model
I filename_dynamic.m: dynamic model



Priors in DYNARE

NORMAL_PDF N(µ, σ) R
GAMMA_PDF G2(µ, σ,p3) [p3,+∞)
BETA_PDF B(µ, σ,p3,p4) [p3,p4]
INV_GAMMA_PDF IG1(µ, σ) R+

UNIFORM_PDF U(p3,p4) [p3,p4]

By default, p3 = 0, p4 = 1.



Schorfheide’s priors

estimated_params;
alp, beta_pdf, 0.356, 0.02;
bet, beta_pdf, 0.993, 0.002;
gam, normal_pdf, 0.0085, 0.003;
mst, normal_pdf, 1.0002, 0.007;
rho, beta_pdf, 0.129, 0.223;
psi, beta_pdf, 0.65, 0.05;
del, beta_pdf, 0.01, 0.005;
stderr e_a, inv_gamma_pdf, 0.035449, inf;
stderr e_m, inv_gamma_pdf, 0.008862, inf;
end;



List of observed variables

varobs gp_obs gy_obs;



Estimation

estimation(datafile=fsdat,nobs=192,
mh_replic=10000,mh_jscale=0.8);



Usefull options

first_obs=n : first observation (default: 1)

nobs=n or nobs=([n1:n2 )]: number of observations (default:
the entire data file)

mode_file : filename of previous results (default: none)

compute_mode : optimization algorithm
0 : no optimization
1 : Maltab’s fmincon
2 : Lester Ingber’s adaptive simulated

annealing
3 : Matlab’s fminunc
4 : Chris Sims’ csminwel (default)
5 : Marco Ratto’s robust optpimizer

mode_check : draws objective function in each parameter
direction.



More options

prefilter : 0, no prefiltering; 1, the data are demeaned
before estimation (default: 0).

presample : number of initial periods that don’t enter into
likelihood computation (default: 0).

like_init : initial covariance matrix of state variable
prediction. 1, for stationary models, unconditional
variance of state variables; 2, for nonstationary
models, diffuse prior, diagonal matrix with 10 on
the diagonal.

loglinear : computes a log–linear approximation of the
model instead of a linear (default) approximation.



More options

optim=() : changes options for Matlab optimizer (see Matlab
optimset command).

moments_varendo : computes posterior distribution of
moments of endogenous variables.

bayesian_irf : computes posterior distribution of IRF’s.

smoother : computes posterior distribution of smoothed
variables.

filtered_vars : computes posterior distribution of filtered
variables.

forcast=n : computes forecasts for n periods.



Slides and examples

Slides and examples are available at

http://www.cepremap.cnrs.fr/DynareWiki/BojIntro


