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Abstract

Advances in the development of Dynamic Stochastic General Equilibrium (DSGE) mod-
els towards medium-scale structural frameworks with satisfying data coherence have raised
considerable interest among academia and policy circles over the recent years. The present
paper intends to make a step forward in the development of structural policy tools: we
explore within a unified framework the main approaches followed by the existing litera-
ture which provocatively assessed the optimality of historical monetary policy conduct. First,
on US data over the Volker-Greenspan sample, we perform a DGSE-VAR estimation of a
medium-scale DSGE model very close to Smets and Wouters [2007] specification, where
monetary policy is set according to a Ramsey-planner decision problem. Those results are
then contrasted with the DSGE-VAR estimation of the same model featuring a Taylor-type
interest rate rule. In doing so, we develop a policy evaluation framework which notably
allows to assess whether optimal policy setting has been a good representation of historical
monetary policy. Our results show in particular that the restrictions imposed by the welfare-
maximizing Ramsey policy deteriorates the empirical performance with respect to a Taylor
rule specification. However, it turns out that, along selected conditional dimensions, and in
particular for productivity shocks, the optimal policy and the estimated Taylor rule deliver
similar economic propagation.
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1 Introduction

Advances in the development of Dynamic Stochastic General Equilibrium (DSGE) models to-

wards medium-scale structural frameworks with satisfying data coherence have raised consid-

erable interest among academia and policy circles over the recent years. The ultimate goal of a

challenging and abundant strand of literature has been to design analytical tools well-suited for

monetary policy evaluation. The present paper intends to make a step forward in this direction

by exploring in a unified framework the main approaches followed by the existing literature

which provocatively assessed the optimality of historical monetary policy conduct.

Over the last decade, the quantitative and normative toolbox available to policy analysts has

been expanded by promising research contributions. First, bayesian estimation techniques

make it possible to estimate relatively large DSGE models. Smets and Wouters [2007] in partic-

ular have successfully brought to 7 macroeconomic series a closed-economy DSGE model for

the US economy which could advantageously compare with vector autoregressions in terms

of marginal data density and out-of-sample forecasts. In this model, monetary policy is speci-

fied as an interest rate feedback rule. At the same time, computational methods allow to easily

derive optimal monetary policy concepts. The Ramsey approach to optimal monetary policy

is calculated by formulating an infinite-horizon Lagrangian problem of maximizing the condi-

tional aggregate welfare, subject to the full set of non-linear constraints forming the competitive

equilibrium of the model. We solve the equilibrium conditions of the optimal allocation using

second-order approximations to the policy function. Examples of Ramsey policy analysis in

estimated closed-economy models can be found in Levin et al. [2005] for the US or Adjemian

et al. [2007] for the euro area. Finally, a recent literature, led by the seminal work of Del Negro

and Schorfheide [2004], has proposed an interesting metric to evaluate the potential misspec-

ifications of DSGE models: the approach uses the DSGE model to shape the prior odds for a

Bayesian VAR and provide an identification scheme consistent with the theoretical model. In

this set-up, the optimal weight on the DSGE model for the BVAR priors as well as the com-

parison of impulse responses between the structural BVAR (or DSGE-VAR) and the DSGE con-

stitute key dimensions to assess the validity of economic restrictions implied by the structural

model.

In this paper, we conduct a DGSE-VAR estimation on US data of a medium-scale DSGE model

very close to Smets and Wouters [2007] specification where monetary policy is set according

to a Ramsey planner decision problem. Those results are then contrasted with the DSGE-VAR

estimation of the same model with a Taylor rule specification (including terms on lagged infla-

tion, lagged output gap and its first difference), for the later can be considered ex ante as the

best-performing structural description of the data generating process. In doing so, we develop
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a policy evaluation framework which allows to investigate the various directions in which the

literature has formed a normative assessment on historical monetary policy conduct.

Primarily, the paper provides a contribution on the estimation of structural models subject to

the restriction that policy behaves optimally, in the vein of Salemi [2006], Dennis [2006] or

Favero and Rovelli [2003]. In contrast to these studies which generally assume that the mone-

tary authority minimizes a specified loss function, our approach explicitly tackles the welfare-

maximizing monetary policy. Then, by allowing for a ranking of policies, including the fully

optimal one, based on empirical criteria, we provide a consistent framework to pursue coun-

terfactual analysis, soundly rooted in a best-performing description of the economy. Such a

counterfactual approach to revealing the social optimality of monetary policy was initiated by

the seminal contribution of Rotemberg and Woodford [1997]. Finally, the DSGE-VAR method-

ology used in this paper enables us to assess the optimality of historical monetary policy setting

conditionally on certain type of economic disturbances. This relates to the literature which uses

partial information inference from minimum distance techniques, in order to test the similarity

of the macroeconomic transmission of technological shocks in particular, between DSGE mod-

els embedding optimal policy setting and structural VARs. Our approach notably improves

upon the existing studies by investigating such a conditional optimality for a wider set of struc-

tural shocks.

Beyond the methodological contribution of the paper, our results concerning US monetary pol-

icy over the Volker-Greenspan period can be summarized as follows. The DSGE-VAR estima-

tions suggests that the Taylor rule specification provides a better description of US data than

the Ramsey model over the last two decades. A provocative interpretation of the relative fit of

both models would conclude that Fed’s policy has not been optimally conducted. At the same

time, the deterioration in empirical performance coming from the restrictions imposed by the

welfare-maximizing Ramsey policy is commensurate to the one obtained by removing the first

difference output gap term in the interest rate rule. Furthermore, while the statistical inference

supports the Taylor rule model, counterfactual analysis points to relatively modest welfare

costs of such a policy compared with the optimal allocation. Such results should nonetheless

be taken cautiously given the lack of robustness of welfare calculations. Finally, the compar-

ison of impulse response functions in the DSGE-VAR and the DSGE for the Ramsey and the

Taylor rule models brings a conditional perspective on their relative empirical relevance. The

transmission of a productivity shock to the US economy is very similar both between the Ram-

sey and the Taylor rule models, and between each DSGE and its associated DSGE-VAR. This

strong result echoes findings from the partial information literature supporting the view that

the Fed’s response to technological shock has been optimal. However, the conclusion does not

hold for other type of disturbances like consumer preference shocks for example where the op-
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timal policy delivers propagation mechanisms at odds with the transmission portrayed by its

associated DSGE-VAR and the Taylor rule model.

The remainder of the paper is organized as follows. Section 2 presents the model. Section 3

describes the estimation and reports the results. Section 4, 5 and 6 discuss respectively three di-

mensions of policy evaluation: the empirical fit of the Ramsey and Taylor rule DSGE-VARs, the

welfare cost properties of the estimated Taylor rule and the comparison of impulse response

functions between both policies and their associated DSGE-VARs. Section 7 revisits the previ-

ous results on the so called pre-Volcker data sample. Finally, section 8 concludes.

2 Summary of the theoretical model

The theoretical model underlying our policy analysis is extensively based on Smets and Wouters

[2007]. The authors have provided a successful exercise regarding the ability of structural mod-

els to provide satisfactory empirical properties. Indeed, the sophistication of their modeling

framework is guided by the need to match a high level of data coherence for the US economy.

The necessary frictions are well-known and have become a standard features of medium-scale

DSGE models (see Christiano et al. [2005]): adjustment costs on investment and capacity uti-

lization, habit persistence and staggered nominal wage and price contracts with partial indexa-

tion. Compared with their earlier work (see Smets and Wouters [2003] and Smets and Wouters

[2005]), the authors specified a Kimball aggregator (see Kimball [1995]) in both labor and goods

markets which improved the statistical inference of nominal rigidity in price and wage settings.

Model steady state features a balanced growth path which imposes a common trend on out-

put, consumption, investment and real wages. Finally, we retained a similar set of structural

disturbances. The paper does not intend to make progress in the structural specification of

Smets and Wouters [2007] but on the contrary, we restrain our policy evaluation to this exact

structural framework which turns to be a useful benchmark for the empirical literature based

on DSGE models.

In order to present a self containing paper, the main decision problems are reported below as

well as the necessary notations related to the empirical exercise1.

2.1 Households behavior

The economy is populated by a continuum of heterogenous infinitely-lived households. Each

household is characterized by the quality of its labour services, h ∈ [0, 1]. At time t, the in-

1Details regarding the full set of equilibrium conditions can be obtained from the authors upon request.
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tertemporal utility function of a generic household h is

Wt(h) = Et

∞∑

j=0

βjεbt+j

[
(Ct+j(h) − ηCt+j−1(h))

1−σc

1 − σc
exp

(
L̃

(σc − 1)

(1 + σl)
Lht+j

1+σl

)]
(1)

Household h obtains utility from consumption of an aggregate index Ct(h), relative to an in-

ternal habit depending on its past consumption, while receiving disutility from the supply of

their homogenous labor Lht . Utility also incorporates a consumption preference shock εbt . L̃ is

a positive scale parameter.

Conversely to Smets and Wouters [2007], we assume internal habit formation. As we are more

interested in the normative implications of nominal rigidities, we choose an habit formation

mechanism that does not generate by itself a distortion affecting the welfare.

Each household h maximizes its intertemporal utility under the following budget constraint:

Bt(h)

PtRt
+ Ct(h) + It(h) =

Bt−1(h)

Pt
+

(1 − τw,t)W
h
t L

h
t +At(h) + Tt(h)

Pt

+ rkt ut(h)Kt−1(h) − Ψ (ut(h))Kt−1(h) + Πt(h)

(2)

where Pt is an aggregate price index,Rt = 1+it is the one period ahead nominal interest factor,

Bt(h) is a nominal bond, It(h) is the investment level W h
t is the nominal wage, Tt(h) and τw,t

are government transfers and time-varying labor tax, and

rkt ut(h)Kt−1(h) − Ψ (ut(h))Kt−1(h) (3)

represents the return on the real capital stock minus the cost associated with variations in the

degree of capital utilization. The income from renting out capital services depends on the level

of capital augmented for its utilization rate. The cost (or benefit) Ψ is an increasing function

of capacity utilization and is zero at steady state, Ψ(u⋆) = 0. Πt(h) are the dividend emanat-

ing from monopolistically competitive intermediate firms. Finally At(h) is a stream of income

coming from state contingent securities and equating marginal utility of consumption across

households h ∈ [0, 1].

In choosing the capital stock, investment and the capacity utilization rate households take into

account the following capital accumulation equation:

Kt = (1 − δ)Kt−1 + εIt

[
1 − S

(
It
It−1

)]
It (4)

where δ ∈ (0, 1) is the depreciation rate, S is a non negative adjustment cost function such that

S (1) = 0 and εIt is an efficiency shock on the technology of capital accumulation.
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In equilibrium, households choices in terms of consumption, hours, bond holdings, investment

and capacity utilization are identical.

Thereafter, the functional forms used for the adjustment costs on capacity utilization and in-

vestment are given by Ψ(X) = rk
⋆

ϕ (exp [ϕ (X − 1)] − 1) and S (x) = φ/2 (x− 1)2.

2.2 Labor supply and wage setting

Intermediate goods producers make use of a labor input LDt produced by a segment of labor

packers. Those labor packers operate in a competitive environment and aggregate a continuum

of differentiated labor services Lt(i), i ∈ [0, 1] using a Kimball [1995] technology. The Kimball

aggregator is defined by ∫ 1

0
H

(
Lt(i)

LDt
; θw, ψw

)
di = 1 (5)

where as in Dotsey and King [2005], we consider the following functional form:

H

(
Lt(i)

LDt

)
=

θw
(θw(1 + ψw) − 1)

[
(1 + ψw)

Lt(i)

LDt
− ψw

] θw(1+ψw)−1
θw(1+ψw)

−

[
θw

(θw(1 + ψw) − 1)
− 1

]
(6)

This function, where the parameter ψw determines the curvature of the demand curve, has the

advantage that it reduces to the standard Dixit and Stiglitz [1977] aggregator under the restric-

tion ψw = 0.

The differentiated labor services are produced by a continuum of unions which transform the

homogeneous household labor supply. Each union is a monopoly supplier of a differentiated

labour service and sets its wage on a staggered basis, paying households the nominal wage

rate W h
t . Every period, any union faces a constant probability 1 − αw of optimally adjusting

its nominal wage, say W ∗
t (i), which will be the same for all suppliers of differentiated labor

services. We denote thereafter wt the aggregate real wage that intermediate producers pay for

the labor input provided by the labor packers and w∗
t the real wage claimed by re-optimizing

unions.

When they cannot re-optimize, wages are indexed on past inflation and steady state inflation

according to the following indexation rule:

Wt(i) = [πt−1]
ξw [π⋆]1−ξw Wt−1(i) (7)

with πt = Pt
Pt−1

the gross rate of inflation. Taking into account that they might not be able

to choose their nominal wage optimally in a near future, W ∗
t (i) is chosen to maximize their
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intertemporal profit under the labor demand from labor packers. Unions are subject to a time-

varying tax rate τw,t which is affected by an i.i.d shock defined by 1 − τw,t = (1 − τ⋆w) εwt . The

recursive formulation of the aggregate wage setting is exposed in the appendix.

2.3 Producers behavior

Final producers are perfectly competitive firms producing an aggregate final good Yt that may

be used for consumption and investment. This production is obtained using a continuum of

differentiated intermediate goods Yt(z), z ∈ [0, 1] with the Kimball [1995] technology. Here

again, the Kimball aggregator is defined by
∫ 1

0
G

(
Yt(z)

Yt
; θp, ψ

)
dz = 1 (8)

with

G

(
Yt(z)

Yt

)
=

θp
(θp(1 + ψ) − 1)

[
(1 + ψ)

Yt(z)

Yt
− ψ

] θp(1+ψ)−1

θp(1+ψ)

(9)

−

[
θp

(θp(1 + ψ) − 1)
− 1

]
.

The representative final good producer maximizes profits PtYt−
∫ 1
0 Pt(z)Yt(z)dz subject to the

production function, taking as given the final good price Pt and the prices of all intermediate

goods.

In the intermediate goods sector, firms z ∈ [0, 1] are monopolistic competitors and produce

differentiated products by using a common Cobb-Douglas technology:

Yt(z) = εat (utKt−1(z))
α [γtLD(z)

]1−α
− γtΩ (10)

where εat is an exogenous productivity shock, Ω > 0 is a fixed cost and γ is the trend technologi-

cal growth rate. A firm z hires its capital, K̃t(z) = utKt−1(z), and labor, LDt (z), on a competitive

market by minimizing its production cost. Due to our assumptions on the labor market and

the rental rate of capital, the real marginal cost is identical across producers. We introduce a

time varying tax on firm’s revenue is affected by an i.i.d shock defined by 1− τp,t =
(
1 − τ⋆p

)
εpt .

In each period, a firm z faces a constant (across time and firms) probability 1−αp of being able

to re-optimize its nominal price, say P ∗
t (z). If a firm cannot re-optimize its price, the nominal

price evolves according to the rule Pt(z) = π
ξp
t−1 [π⋆](1−ξp) Pt−1(z), ie the nominal price is in-

dexed on past inflation and steady state inflation. In our model, all firms that can re-optimize

their price at time t choose the same level, denoted p∗t in real terms.

The first order condition associated with the maximization of the intertemporal profit can be

expressed in a recursive form as shown in the appendix.
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2.4 Government

Public expenditures G⋆ are subject to random shocks εgt . The government finances public

spending with labor tax, product tax and lump-sum transfers:

PtG
⋆γtεgt − τw,tWtLt − τp,tPtYt − PtTt = 0 (11)

The government also controls the short term interest rate Rt. In the Taylor rule version of the

model, the monetary authority follows an interest rate feedback rule which incorporates terms

on lagged inflation, lagged output gap and its first difference. The output gap is defined as the

log-difference between actual and flexible-price output. The reaction function also incorporates

a non-systematic component εrt . This specification is the same as in Smets and Wouters [2007].

Written in deviation from the steady state, the interest rule used in the estimation has the form:

R̂t = ρR̂t−1 + (1 − ρ) [rππ̂t−1 + ryŷt−1] + r∆y∆ŷt + log (εrt ) (12)

where a hat over a variable denotes log-deviation of that variable from its deterministic steady-

state level.

2.5 Market clearing conditions

Market clearing condition on goods market is given by:

Yt = Ct + It +G⋆εgt + Ψ (ut)Kt−1 (13)

∆pk,tYt = εat (utKt−1)
α (γtLDt

)1−α
− γtΩ (14)

with ∆pk,t is a price dispersion index whose dynamics is presented in the appendix.

Equilibrium in the labor market implies that

∆wk,tL
D
t = Lt (15)

with LDt =
∫ 1
0 L

D
t (z)dz and Lt =

∫ 1
0 L

h
t dh. The dynamics of the wage dispersion index ∆wk,t is

also described in the appendix.

Finally, the aggregate conditional welfare is defined by

Wt =

∫ 1

0
Wt(h)dh (16)
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2.6 Ramsey equilibrium

We define the Ramsey policy as the monetary policy under commitment which maximizes the

intertemporal household’s aggregate welfare Wt, subject to the competitive equilibrium condi-

tions and the constraint Rt ≥ 1, ∀t > −∞, given the exogenous stochastic processes εat , εbt , ε
I
t ,

εgt , εwt , εpt , εrt , values of the state variables dated t < 0, and values of the Lagrange multipliers

associated with the constraints dated t < 0.

The Ramsey policy is therefore computed by formulating an infinite-horizon Lagrangian prob-

lem of maximizing the conditional expected social welfare subject to the full set of non-linear

constraints forming the competitive equilibrium of the model. The first order conditions to this

problem are obtained using symbolic Matlab procedures.

As it is common in the optimal monetary policy literature (see for example Khan et al. [2003]

and Schmitt-Grohe and Uribe [2005]), we assume a particular recursive formulation of the pol-

icy commitment labeled by Woodford [2003] as optimality from a timeless perspective. This im-

poses that the policy rule which is optimal in the latter periods is also optimal in the initial

period and avoids the problem of finding initial conditions for the lagrange multipliers, which

are now endogenous and given by their steady state values.

Since we are mainly interested in comparing the macroeconomic stabilization performances of

different monetary policy regimes, we assume a fiscal intervention, namely subsidies on labor

and goods markets, to offset the first order distortions caused by the presence of monopolistic

competition in the markets. This ensure that the steady state is efficient, and that the flexible

price equilibrium is Pareto optimal. Note that those constraints can be easily relaxed with our

methodology but are imposed in order to better understand the stabilization properties of the

Ramsey policy.

To handle the Zero Lower Bound constraint under the Ramsey allocation, Rt ≥ 1, and to avoid

the associated computational burden, we simply follow Woodford [2003] by introducing in the

households welfare a quadratic term penalizing the variance of the nominal interest rate:

WIR
t = Wt − λrEt

∞∑

j=0

βj
(
Rt+j −R⋆εrt+j

)2
(17)

where R⋆ is the steady state nominal interest gross rate, λr is the weight attached to the cost

on nominal interest rate fluctuations and εrt represents, as in the Taylor rule specification, a

monetary policy shock.
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3 DSGE-VAR estimations

In section 3.2, we present the estimation of two DSGE-VARs, one based on a DSGE with opti-

mal monetary policy and the other with a Taylor rule specified as in Smets and Wouters [2007].

We closely follow the econometric approach used by Del Negro et al. [2007] who estimated a

medium-scale closed-economy model on US data. A description of the DSGE-VAR methodol-

ogy is provided in the Appendix.

In a nutshell, Del Negro and Schorfheide [2004] build the priors of a BVAR model from a DSGE

model and evaluate the optimal weight of the DSGE priors. Their approach relies on a finite or-

der VAR representation of the DSGE but the error of approximation should be relatively minor,

at least with a reasonably larger lag length in the VAR. The posterior density is obtained from

the likelihood function by augmenting the sample with artificial data generated by the DSGE

model. The size of the artificial sample, T relative to the data sample T , defines the weight of

the prior information relative to the likelihood. Let us denote λDSGE = T
T . A crucial issue is to

choose the optimal weight, λDSGE , of the DSGE prior in the BVAR model. An optimal high value

of λDSGE means that the DSGE model imposes useful restrictions to improve the (in sample)

predictive properties of the BVAR model. Conversely, a low value of λDSGE indicates that a

minimal use of the DSGE restrictions on the priors of the BVAR is preferred, therefore casting

doubts on the coherence of the DSGE model with the data.

The exogenous shocks can be divided in three categories 2:

1. Efficient shocks: AR(1) shocks on technology ǫat , investment ǫIt , public expenditures ǫgt
and consumption preferences ǫbt .

2. Inefficient shocks: ARMA(1,1) shocks on price markups ǫpt , and wage markups ǫwt .

3. Policy shocks: AR(1) shock on short term interest rates ǫrt .

Given the strict identification scheme used in the DSGE-VAR, we limited the number of shocks

to be equal to the number of observed variables. Under such a configuration, the Ramsey equi-

librium would be subject to a stochastic singularity problem at the estimation stage as it does

not feature a Taylor rule residual shock. Therefore we allowed for some type of monetary policy

shock in the Ramsey allocation through the penalty term on interest rate volatility introduced in

the welfare function. This shock is, as its Taylor rule counterpart, intended to capture the histor-

ical dynamics of the policy instrument missed by the specified reaction function. Nonetheless,

they are not fully equivalent. In the Ramsey model, the interest rate shock is strictly isomorphic

2All the AR(1) processes are written as: log(εxt ) = ρx log(εxt−1) + ǫxt where ǫxt ∼ N (0, σεx ). ARMA(1,1) are of the
form log(εxt ) = ρx log(εxt−1) − ηxǫ

x
t−1 + ǫxt .
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to a risk premium shock à la Smets and Wouters [2007], in the same model where the interest

rate is replaced by its deviation from the interest rate shock3.

As in Smets and Wouters [2007], we introduced a correlation between the government spend-

ing shock and the productivity shock, ρa,g. But differently from them, we allowed for a correla-

tion between preference shocks and external risk premium shocks, ρb,I , essentially to match the

correlation between consumption and investment present in the data. The authors used instead

a risk premium shock affecting consumer financing and acting as a common disturbance for the

Euler and the Tobin’s Q equations. From an empirical perspective, both specifications deliver

similar outcome. We preferred to keep the household preference shock specification in order to

have an efficient demand shock which may imply differentiated stabilization properties under

the Ramsey policy and the Taylor rule (see Adjemian et al. [2007]).

3.1 Data

We consider 7 key macro-economic quarterly time series: output, consumption, investment,

hours worked, real hourly wages, GDP deflator inflation rate and 3 month short-term interest

rate and we use the Volker-Greenspan sample starting from 1983q1 to 2007q3. As it is usually

done in the literature, we excluded the beginning of the 80’s which were characterized by non-

borrowed reserves targeting. US series come from the BEA for GDP, consumption, investment

and nominal compensation of employees. The GDP deflator is used to compute real consump-

tion, real investment and real compensation. Individual hours are taken from the BLS for the

non-farm business sector and are combined with the Civilian Employment data to compute

aggregate hours. The real aggregate variables are then expressed per capita, dividing by the

population over 16. The interest rate is the Federal Funds Rate. For the estimation, we use the

quarterly growth rates of real variables, the quarterly inflation rate and the quarterly interest

rate, in percent.

As in Smets and Wouters [2007], the transformed data are not demeaned since the model fea-

tures non-zero steady state values for such variables: trend productivity growth γ captures the

common mean of GDP, consumption, investment and real wage growth; L is a level shift that

we allow between the observers level of hours and the model consistent one; π is the steady

state inflation rate which controls for the GDP deflator inflation rate mean; and finally, we also

estimate the preference rate rβ = 100(1/β − 1) which, combined with π, pins down the mean

of the nominal interest rate.

Section 7 also reports estimations on the pre-Volker sample which goes from 1966Q1 to 1979Q3.

3For an illustration, see the derivation of the optimal rule in Giannoni and Woodford [2003].
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All estimations are initialized using a presample period of 20 quarters and we choose four lags

in the DSGE-VAR representation.

Table 1: Prior Distributions

Parameter Distribution Mean Std. dev.

σc Normal 1 0.375
h Beta 0.7 0.1
σl Normal 2 0.75
φ Gamma 0.2 0.1
ϕ Normal 4.000 1.5
αp, αw Beta 0.5 0.1
ξp, ξw Beta 0.5 0.15
α Normal 0.3 0.05
µp Normal 1.25 0.2
rβ Normal 0.25 0.1
γ Normal 0.4 0.1
L Normal 0 2
π Gamma 0.62 0.1
λr Gamma 0.2 0.15
rπ Normal 1.500 0.100
ρ Beta 0.750 0.100
ry Gamma 0.125 0.050
r∆y Gamma 0.063 0.050
ρb,I Uniform
ρa,g Uniform
ρa, ρb, ρg , ρl, ρI Beta 0.50 0.2
ρr,ρp, ρw, ηp, ηw Beta 0.50 0.2
σεa , σεb ,σεg Uniform
σεI ,σεp ,σεw ,σεr Uniform

3.2 Prior and Posterior parameter distributions

Like in Smets and Wouters [2007], some parameters are treated as fixed in the estimation. The

depreciation rate of the capital stock is set at 0.025 and the share of government spending in

output at 18%. The steady state labor market markup is fixed at 1.5 and we chose curvature

parameters of the Kimball aggregators of 10.

The prior distributions for the structural parameters are also similar to Smets and Wouters

[2007] and are reported in Table 1. The main differences relate to the choice of uniform priors

for the standard deviations of the exogenous shocks. Concerning the parameter controlling the

welfare penalty of interest rate fluctuations in the Ramsey problem, λr, we used a prior gamma
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Table 2: Posterior parameter estimates of Ramsey and Taylor rule DSGE-VARs for the

Volker-Greenspan sample.

Ramsey Taylor Ramsey Taylor
DSGE-VAR estimation DSGE-VAR estimation DSGE estimation DSGE estimation
Mode I1 I2 Mode I1 I2 Mode I1 I2 Mode I1 I2

σc 0.86 0.65 1.12 0.84 0.63 1.09 1.28 0.97 1.61 0.87 0.67 1.12
η 0.66 0.51 0.77 0.58 0.46 0.68 0.67 0.47 0.80 0.54 0.45 0.63
σl 1.17 0.55 2.10 1.64 0.84 2.90 2.22 1.22 3.50 2.22 1.35 3.35
φ 4.98 3.14 7.08 4.79 3.08 7.18 5.61 3.63 7.80 5.46 3.66 7.42
ϕ 0.60 0.37 0.81 0.66 0.40 0.82 0.77 0.59 0.89 0.71 0.50 0.84
αp 0.67 0.58 0.74 0.68 0.58 0.77 0.63 0.54 0.72 0.71 0.62 0.80
ξp 0.35 0.15 0.60 0.28 0.13 0.50 0.36 0.18 0.62 0.44 0.22 0.66
αw 0.52 0.34 0.69 0.74 0.57 0.85 0.38 0.25 0.50 0.57 0.45 0.71
ξw 0.48 0.25 0.74 0.50 0.25 0.74 0.61 0.35 0.82 0.61 0.35 0.82
α 0.13 0.09 0.17 0.12 0.09 0.16 0.15 0.12 0.18 0.13 0.10 0.15
µp 1.20 1.09 1.39 1.39 1.24 1.53 1.19 1.11 1.29 1.36 1.24 1.49
rβ 0.17 0.04 0.30 0.19 0.06 0.32 0.20 0.07 0.35 0.25 0.12 0.36
γ 0.44 0.35 0.53 0.44 0.36 0.52 0.44 0.41 0.46 0.42 0.39 0.45
L 0.90 -0.12 1.85 0.90 -0.10 1.88 -1.31 -3.54 0.88 0.16 -2.00 1.99
π 0.60 0.50 0.72 0.62 0.52 0.73 0.64 0.49 0.78 0.64 0.51 0.82
λr 0.18 0.06 0.52 - - - 0.79 0.25 4.92
rπ - - 1.60 1.22 1.98 - - - 2.01 1.70 2.33
ρ - - 0.84 0.78 0.88 - - - 0.86 0.82 0.88
rY - - 0.16 0.09 0.24 - - - 0.06 0.03 0.10
r∆Y - - 0.16 0.10 0.22 - - - 0.20 0.15 0.24

ρb,I 0.76 0.26 1.80 0.22 0.09 0.88 0.81 0.27 1.94 0.18 0.08 0.47
ρa,g 2.70 1.62 3.75 2.42 1.29 3.67 2.22 1.26 3.19 2.02 1.05 3.11
ρa 0.98 0.78 1.00 0.91 0.67 0.97 0.92 0.85 0.97 0.93 0.87 0.97
ρb 0.37 0.14 0.58 0.80 0.54 0.90 0.22 0.07 0.56 0.84 0.69 0.91
ρg 0.97 0.66 0.99 0.88 0.65 0.99 0.97 0.94 0.98 0.97 0.94 0.99
ρI 0.33 0.12 0.52 0.35 0.15 0.58 0.64 0.50 0.78 0.61 0.47 0.76
ρp 0.43 0.20 0.73 0.14 0.02 0.36 0.84 0.72 0.92 0.81 0.64 0.94
ηp 0.55 0.30 0.85 0.58 0.35 0.74 0.67 0.42 0.82
ρw 0.41 0.20 0.71 0.29 0.07 0.66 0.98 0.96 0.99 0.99 0.98 1.00
ηw 0.49 0.32 0.70 0.41 0.22 0.70 0.67 0.47 0.80 0.90 0.79 0.96
ρr 0.94 0.84 0.98 0.30 0.15 0.44 0.96 0.93 0.98 0.28 0.16 0.43
σεa 0.33 0.27 0.40 0.31 0.26 0.37 0.39 0.34 0.44 0.37 0.33 0.42
σεb 0.94 0.67 1.37 0.98 0.72 1.36 1.59 1.01 2.46 1.31 1.04 1.66
σεg 1.53 1.26 1.82 1.63 1.36 1.92 2.16 1.91 2.43 2.15 1.91 2.45
σεI 4.26 2.55 6.48 3.91 2.28 6.24 4.94 3.00 7.08 3.97 2.65 6.38
σεp 0.13 0.11 0.17 0.11 0.08 0.14 0.14 0.11 0.18 0.13 0.11 0.15
σεw 0.08 0.07 0.10 0.09 0.08 0.11 0.13 0.11 0.14 0.12 0.10 0.14
σεr 0.41 0.32 0.51 0.38 0.31 0.48 0.52 0.41 0.71 0.43 0.37 0.52

λDSGE 1.30 1.02 1.70 1.57 1.16 2.18 - - - - - -
Pλ(Y) -398.1 -393.8 -474.3 -442.0
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G(0.2, 0.15). We choose the prior mean so that, given the structural parameter estimates for

the DSGE-VAR-Taylor model, the DSGE-VAR-Ramsey implies an unconditional variance of the

nominal interest rate close to the DSGE-VAR-Taylor one. Finally, this prior applies to λr once re-

scaled by the coefficient on the inflation term that would appear in a quadratic approximation

of the welfare, albeit in a simpler version of the model.

Del Negro and Schorfheide choose the value of λDSGE that maximizes the marginal density.

They estimate a limited number of DSGE-VAR models with different values of λDSGE . For

each model they also estimate the marginal density and select the model (ie the value of λDSGE)

with highest marginal density. In the present paper, we estimate directly λDSGE as another pa-

rameter, instead of doing a loop over the values of this parameter4. We chose a uniform prior

distribution for λDSGE .

The posterior parameter estimates in the Taylor rule and the Ramsey policy, for both the DSGE-

VAR and the direct DSGE estimation approach, are presented in Table 2. Note that we replaced

the ARMA(1,1) specification for the price markup shock in the Taylor rule DSGE-VAR by an

AR(1) process which was performing better in the estimation.

Overall, in the DSGE-VAR estimation, the behavioral parameters estimates are not strongly dif-

ferent between both models. This result brings some reassurance that the structural inference

made on aggregate supply and demand curves in our modeling framework are not excessively

sensitive to monetary policy specification. Few exceptions are nonetheless worth noticing. Re-

garding preferences, the labor supply elasticity is lower in the Ramsey DSGE-VAR whereas the

habit persistence parameter and to a lesser extent the intertemporal elasticity of substitution

turns out somewhat higher. Moreover, the Ramsey estimation delivers a higher degree of price

indexation than in the Taylor rule DSGE-VAR while the degree of nominal rigidities is lower

for prices and wages. Note that the wage indexation parameter in both DSGE-VARs as well

as the Calvo parameter on wage setting in the Ramsey DSGE-VAR are weakly identified. Fi-

nally, the steady state markup in the goods market is slightly lower in the Ramsey DSGE-VAR.

Otherwise, the main asymmetries between the two models concern the stochastic processes

of the exogenous disturbances and in particular the persistence parameters. The productivity

and public expenditure shocks are much more persistent in the Ramsey DSGE-VAR estima-

tion while the Taylor rule specification leads to higher persistence for the consumer preference

shock and lower persistence for the monetary policy shock.

4In this regard, the approach followed by Del Negro and Schorfheide is, at least computationally, inefficient.
Also, contrary to us, they do not average over different possible values of λ but pick a single value of this parameter,
which is not the bayesian way.
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Table 2 also presents the posterior distributions for the direct estimation of the Ramsey and

the Taylor rule DSGE. The comparison with those sets of parameter estimates sheds some light

on how the direct Bayesian estimation procedure tries to deal with model misspecifications.

Broadly speaking, the direct estimation results amplify some of the differences highlighted in

the DSGE-VAR results concerning the behavioral parameters. We obtain a much lower degree

of price and wage rigidity as well as of indexation in price-setting for the Ramsey model. An-

other significant deviation between both models relates to the intertemporal elasticity of sub-

stitution which is estimated to be much higher under the optimal policy. Together with a lower

habit parameter and higher investment adjustment costs, this reveals that consumption and

investment are estimated to be less sensitive to the nominal interest rate in the Ramsey regime.

Regarding the stochastic properties of exogenous processes, the main differences between both

models relate to higher persistence for the consumer preference shock and lower persistence

for the monetary policy shock in the Taylor rule DSGE. Compared with the DGSE-VAR results,

we observe that the estimated standard deviations of the shocks and some persistence param-

eters are higher in the direct estimations for both models.

To sum up, we find as in Del Negro et al. [2007] that the misspecifications affect strongly the

stochastic properties of the structural shocks in the direct estimation. Furthermore the addi-

tional restrictions imposed by the optimal policy increase the degree of misspecifications of the

Ramsey model and result in wider deviations in behaviorial parameter estimates between the

Ramsey and the Taylor rule DSGE, when compared with the DSGE-VARs outcome. We learnt

from previous contributions that, given a set of estimated parameters for the DSGE, the Ram-

sey allocation allows for more fluctuations in real quantities while the variations of inflation

and especially nominal wage growth are much more muted than with an estimated rule. Con-

sequently, to capture the volatility of wage and price dynamics through the direct estimation,

a tension appears between the fit of the price and wage setting curves and the need to mitigate

Ramsey planner preference for inflation stabilization. As the welfare cost of nominal rigidities

is positively related to the degree of price and wage fixity, the estimation would tend to lower

wage and price contract mean durations. But in return, it increases the slope of the supply

curves and the required size of the markup shocks, therefore deteriorating the overall empir-

ical performance. This explains notably why the calvo-wage probability is far below the one

obtained in the direct DSGE estimation of the Taylor rule model. The same reasoning applies to

the real variables, for which the volatility is matched by limiting their sensitivity to the interest

rate.

Those results also illustrate the advantages of the DSGE-VAR methodology. When comparing

structural models, it is helpful to develop an estimation approach which can account for model

misspecifications. In the case at hand, we see that by allowing to relax some of the supplemen-
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tary cross-restrictions from the optimal policy setting, the structural inference provided by the

DSGE-VAR portrays interesting similarities between the Ramsey and the Taylor rule model es-

timates. The differences observed with the direct estimations reflect the tight policy objectives

of the Ramsey allocation, conditioned by the structural parameters and the modeled market

imperfections. At the same time, one should keep in mind that, in the polar case λDSGE = 0,

the DSGE-VAR likelihood is uninformative about the structural parameters. The more the re-

strictions from the DSGE are relaxed, the less informative is the DSGE-VAR likelihood about

the structural parameters.

We now turn to three dimensions of policy evaluation that can be explored from the two esti-

mated DSGE-VARs.

4 Assessing optimality #1: fit of the Ramsey model

A first approach to evaluate the historical performance of monetary policy consists in assess-

ing whether a structural model featuring an optimal policy conduct portrays in a satisfactory

manner the statistical properties of the data generating process.

Structural inference based on full information methods have been popular over the recent years

and provide likelihood-based criteria to gauge the empirical fit of a DSGE. A blunt test for op-

timality of historical policy conduct can accordingly be derived from the direct estimation of

the Ramsey model. The estimation approach forms a natural basis to construct statistical tests

or measures for optimal policymaking. A growing literature has investigated the empirical

fit of DSGE models conditional on optimal monetary policy. Among others, Salemi [2006],

Dennis [2006] or Favero and Rovelli [2003] estimate such models using full information econo-

metric methods. However, compared with our Ramsey formulation for optimal policy, the

authors assume that monetary policy minimizes an ad hoc loss function whose relative weights

are estimated. Conversely, the Ramsey policy implicitly uses a loss function derived from the

quadratic expansion of the aggregate welfare and its weights are linked to the structural pa-

rameters of the model.

The estimation method that we promote in this paper is the DSGE-VAR procedure applied to

the Ramsey policy model. The results of this first exercise are then systematically put into per-

spective by comparing with the DSGE-VAR estimation of a Taylor rule model.

One may wonder why we preferred the DSGE-VAR approach to the direct estimation of the

Ramsey model which could have been directly compared with the influential results of Smets

and Wouters [2007]. The authors show that DSGE models using a Taylor rule can successfully
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compare with VARs in terms of empirical performance. A fundamental reason for that is linked

to Del Negro et al. [2007] which clearly point to non-negligible misspecifications in the model-

ing framework of Smets and Wouters. Therefore, since the Ramsey policy is likely to introduce

tighter restrictions than the Taylor rule specification, a methodology which could control for

misspecifications seemed much more appealing to form a judgement on policy comparison.

Beyond this, the DSGE-VAR approach also makes use of an explicit reference model and allow

to investigates further the modeling dimensions that are not supported by the data (we will

come back to that later).

Building on the DSGE-VAR estimations that we described in the previous section, two ques-

tions can be raised. First, how good is the Ramsey model in mapping the US data? Second,

how does the Ramsey model compare with the Taylor rule specification in terms of empirical

performance?

The DSGE-VAR estimation of the structural model with optimal monetary policy provides a

first indication of the degree of misspecification of the model. In principle, as soon as the

posterior estimates of λDSGE is different from infinity, it means that the DSGE-VAR empirical

performance would be improved by relaxing the restrictions imposed by the structural model

on the VAR representation. And in this respect, the posterior mode value for λDSGE in the

Ramsey DSGE-VAR estimation only reaches 1.30 with a 80% highest density interval ranging

from 1.02 to 1.70 (see Table 2). Moreover, the log-marginal likelihood of the model is -398.1

which is around 76 points higher than the one obtain with the DSGE (λDSGE = ∞). There-

fore, significant misspecifications seem present in the Ramsey model which casts some doubts

about the ability of the optimal policy to portray appropriately the historical policy conduct. At

the same time, the DSGE-VAR estimation delivers a DSGE prior weight λDSGE which is much

higher than the minimum value needed for the prior to be defined, at 0.35 (see appendix B).

This suggests that the Ramsey model is nonetheless providing useful prior information for the

BVAR.

Comparing now with the Taylor rule specification, the difference in log-marginal data density

between the Taylor and the Ramsey DSGE-VARs is around 4.7 which translates into posterior

odds of almost 140 to 1 in favor of the Taylor rule DSGE-VAR. The DSGE prior weight is also

higher with a posterior mode estimate at 1.57 and a 80% highest density interval ranging from

1.16 to 2.18. The likelihood comparison presented here applies to the DSGE-VAR models and

not to the DSGEs. The posterior odds ratio therefore only tells us that the Taylor rule speci-

fication is preferred as prior structure for a BVAR. In the DSGE approach, ignoring the mis-

specification problem makes the data even less supportive for the optimal policy. The marginal

likelihoods discrepancy amounts to around 32.2.
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All in all, likelihood-based measures explored in this section point to significant distance be-

tween the Ramsey model and either an agnostic VAR or a Taylor rule specification. In particu-

lar, if one concludes from this exercise that the estimated Taylor rule is the best representation

of monetary policy conduct, the hypothesis that historical monetary policy conduct has been

optimal would then be soundly rejected.

Table 3: Moments and RMSE from the structural model: comparison between the DSGE-VAR
and the DSGE estimations.

DSGE-VAR DSGE direct Data

Taylor Ramsey Taylor Ramsey 84Q1-07Q3

Standard deviation

∆Yt 0.52 0.50 0.67 0.65 0.52
∆Ct 0.39 0.38 0.59 0.58 0.49
∆It 1.22 1.17 1.83 1.75 1.67
Lt 0.82 0.77 3.63 2.80 1.83
∆wt 0.60 0.60 0.80 0.80 0.78
Πt 0.20 0.19 0.50 0.43 0.24
Rt 0.22 0.18 0.47 0.35 0.57

Correlations

∆Yt, ∆Ct 0.64 0.65 0.62 0.60 0.53
∆Yt, ∆It 0.58 0.51 0.61 0.57 0.59
∆Yt, ∆wt 0.16 0.20 0.21 0.23 0.19
∆Yt, Πt -0.16 -0.19 -0.25 -0.22 -0.19

RMSE in sample BVAR(4)

∆Yt 0.47 0.68 0.49 0.52 0.54
∆Ct 0.52 0.74 0.52 0.52 0.50
∆It 1.75 1.79 1.43 1.48 1.29
Lt 0.87 1.02 0.86 0.71 0.35
∆wt 0.79 1.00 0.78 0.78 0.70
Πt 0.27 0.29 0.21 0.23 0.18
Rt 0.16 0.19 0.13 0.13 0.11
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At the same time, it is crucial to acknowledge that model comparison in general, and selection

of specific behavioral structures in particular, based on marginal density can fail to provide sat-

isfying robustness, as pointed out by Sims [2003]. In order to put into perspective the difference

of log-marginal data density that we find between the Ramsey and the Taylor rule DSGE-VAR,

we estimated a DSGE-VAR with a slightly different specification than in Smets and Wouters

[2007]. Removing the term on output gap first difference in the policy rule deteriorates the per-

formance of the DSGE-VAR (results not reported here), leading to a log-marginal data density

of -400.2 which is even lower than the one obtain with the Ramsey policy. The DSGE prior

weight is nonetheless higher than in the Ramsey DSGE-VAR at 1.42 for the posterior mode es-

timate.

Even if the log marginal likelihood comparisons clearly favor the Taylor model over the opti-

mal policy model, it is also important to investigate where the rejected structural model fails.

Beyond the comparison of marginal density, we thus examine the relative performance of the

Taylor rule and Ramsey DSGEs in terms of in sample RMSEs and second order moments. The

marginal likelihood capturing the relative one-step-ahead predictive performance of a model,

the in sample one-quarter-ahead RMSEs can help us to gain intuition on what drives the re-

ported posterior odds analysis. Table 3 presents RMSEs, unconditional standard deviations

and main correlations in the data and implied by the Ramsey and Taylor rule models, eval-

uated either at the posterior mode from the DSGE-VAR estimation or from the direct DSGE

estimates. We also report the RMSEs of a four lags Bayesian VAR estimated with Minnesota-

type prior. The RMSEs appears to be quite close across the monetary policy regimes with the

direct estimation parameters. However, when using the DSGE-VAR estimates, the Taylor rule

model generates lower RMSEs for almost all variables, with more moderate gains on inflation

and interest.

Turning to the second order moments, overall, the volatilities are slightly lower in the Ramsey

model than in the Taylor rule model, for both sets of parameter estimates. The standard devia-

tions of interest rate in the Ramsey DSGE is sensibly lower than in the Taylor rule DSGE which

reflects partly the relatively high welfare penalty for instrument fluctuations λr. Compared

with sample moments, the standard deviations are lower with the DSGE-VAR parameter esti-

mates and higher with the DSGE parameter estimates. Studies analyzing optimal policy within

estimated medium-scale DSGE models like Adjemian et al. [2007] or Adjemian et al. [2008] in-

dicate that the Ramsey allocation is likely to induce significantly lower volatility of inflation

and higher volatility of real variables than under estimated Taylor rule specifications. But, we

see that, when bringing the Ramsey model to the data, it can somewhat match the main mo-

ments and correlations qualitatively as well as the Taylor rule model.
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Overall, the analysis of the empirical performance for the Ramsey model confirms the ex ante

intuition that the welfare-maximizing monetary policy does not provide enough degree of free-

dom to match US data, compared with a Taylor rule specification. At the same, the fit along

selected dimension, either through the DSGE-VAR or for moments, surprised us positively.

5 Assessing optimality #2: welfare cost of the Taylor rule

A second approach of policy evaluation that has been popular in the literature concerns the use

of welfare analysis to assess the properties of estimated policy rules. Among others, Adjemian

et al. [2007] on the euro area and Levin et al. [2005] on the US, estimate DSGE models based on

Taylor rule specifications and then use the behavioral parameters to analyze optimal monetary

policy and the welfare costs of alternative rules.

Along this dimension, the analytical framework presented in this paper offers sensible contri-

butions. First, given that the DSGE-VAR estimation seems to support the Taylor rule speci-

fication, it would be consistent to take the posterior parameter distribution of this model and

then assess the distance to optimality of historical monetary policy conduct through welfare cost

measures with respect to the Ramsey allocation. Second, we illustrate further the difference be-

tween the Taylor and the optimal allocation by computing welfare-based simple optimal rules.

The welfare costs comparisons are performed using welfare measures conditional on the steady

state Ramsey allocation. More specifically, we compute the fraction of consumption stream

from alternative monetary policy regime to be added (or subtracted) to achieve the reference

level corresponding to the allocation following the estimated policy rule. The welfare cost, in

percentage points, is then given by welfarecost = ψ × 100 with

ψ =

[
West
t

WRamsey
t

] 1
1−σc

− 1

where West
t is the welfare obtained under the estimated policy rule and WRamsey

t the one under

the optimal policy regime.

Figure 1 presents the welfare cost distribution of the estimated Taylor rule using parameter un-

certainty derived from the DSGE-VAR estimation of the Taylor model. The policy parameters

(the coefficient of the Taylor rule and the penalty on interest rate fluctuations for the Ramsey

policy) are kept constant at the posterior mode of their respective estimation and we remove

the interest rate shock. The welfare cost of the estimated Taylor rule amounts to 0.017% of

steady state consumption at the mode, when using the Taylor DSGE-VAR parameter distri-

bution. Such welfare calculations could also be put into perspective by doing the same exer-
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Figure 1: Welfare costs of the estimated rule and the optimized rule on the Volker-Greenspan
sample .
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Note: posterior parameter distributions from the Taylor rule DSGE-VAR estimation (plain line = estimated rule;

dotted line = optimized rule) and from the direct estimation of the Taylor rule DSGE (dashed line).
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cise with the posterior parameter distributions from the Ramsey DSGE-VAR estimation which

would imply a lower welfare cost of around 0.005% (distribution not reported here).

Those levels contrast with higher absolute values, averaging 2%, reported for example by Ad-

jemian et al. [2007] for the euro area, albeit with different utility specification, shock structure

and estimation methodology. The estimated Taylor rule thus apparently turns out to perform

relatively well from a welfare perspective. Nonetheless, the optimal policy literature clearly

indicates that welfare assessment and policy ranking may not be robust to alternative shock

structures, steady state inefficiency or real rigidities. In particular, the low absolute welfare

cost we obtain, could be due to the fact that the DSGE-VAR estimation may have reduced

autocorrelations and standard deviations of exogenous disturbances compared with a direct

estimation (see Del Negro et al. [2007] for a related point). A direct estimation of the Taylor

rule model would actually deliver a conditional welfare cost more than twice higher at 0.045%,

evaluated at the posterior mode of the parameters. In order to explore the sources of this gap,

we restricted persistence parameters and shock standard deviations to be the same as in the

Taylor rule DSGE-VAR estimation. The welfare cost then shrinks to 0.015%.

A second perspective on the welfare cost of the estimated Taylor rule comes from the compari-

son with welfare-based optimal rules. Given the Taylor DSGE-VAR structural parameters, we

computed the interest rate rule, based on the same target variables as in the estimated rule,

which maximizes the aggregate welfare augmented with the penalty for interest rate fluctua-

tions. In contrast to the estimated Taylor rule, we allowed for an AR(2) term in the interest rate

rule. We obtain the following optimal coefficients:

Optimal : R̂t = ρ1
2.662

R̂t−1 − ρ2
1.523

R̂t−2 + r̃π
0.148

π̂t−1 + r̃y
0.043

ŷt−1 + r̃∆y
0.544

∆ŷt

Estimated : R̂t = ρ1
0.836

R̂t−1 + r̃π
0.263

π̂t−1 + r̃y
0.026

ŷt−1 + r̃∆y
0.026

∆ŷt

The optimal rule is characterized by standard features emphasized in the theoretical literature

on optimal policy (see for example Giannoni and Woodford [2003]). First, we find as expected

a super inertia on interest rates, which guided our AR(2) specification: the optimal rule implies

not only intrinsic inertia in the dynamics of the interest rate (since a transitory deviation of the

inflation rate from its average value increases the interest rate in both the current quarter and

the subsequent quarter), but also induces an explosive dynamic for the interest rate if the initial

overshooting of the long-run average inflation rate is not offset by a subsequent undershooting

(which actually always happens in equilibrium). Second, the difference term on the output gap

enters the rule with a much higher coefficient than for the level term which is consistent with

optimal targeting rules derived within much simpler setups (see Woodford [2003]). Compared

with the estimated rule, the optimal one puts more weight on the model-based output gap sta-
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bilization and less on the inflation.

The welfare cost implied by the optimal rule is reduced to around 0.004%. This remaining cost

highlights the intrinsic sub-optimality of the estimated Taylor rule due to its specification. As

shown in Adjemian et al. [2007] for a similar exercise, adding wage inflation in the optimal rule

delivers a higher welfare and is consistent with theoretical rules implementing the Ramsey al-

location in simpler modeling frameworks.

Overall, while the deterioration in welfare associated with the estimated Taylor rule seems

quantitatively modest, we refrain from drawing strong conclusions. Instead, we would like to

emphasize that welfare-based policy evaluation remains quite sensitive to model dimensions

that cannot be easily captured through statistical inference of the first order approximation of

the model, based on macroeconomic data.

6 Assessing optimality #3: conditional propagation

A third dimension of policy evaluation which has been explored within the optimal monetary

policy literature arises from limited information approaches. Gali et al. [2003] and Avouyi-Dovi

and Matheron [2007] among others, have relied on SVAR evidence about the macroeconomic

transmission of technological shocks, to which DSGE models embedding optimal policy setting

have been confronted. Partial information inference based on minimum distance techniques

advocated by Christiano et al. [2005] for example, allow then to construct formal statistical test

about the optimality of historical monetary policy conduct.

The comparison between the structural model and the SVAR impulse responses bears some

crucial limitations. Obviously, as an empirical benchmark, the VAR should provide a better

statistical performance than the structural model. But recent work has shown that unrestricted

VAR does not improve on the fit and the forecasting ability of medium-scale DSGE. Moreover,

the identification of structural shocks in the context of a VAR requires auxiliary assumptions

which have to be model-consistent so that, if the DSGE is the reality, impulse responses should

coincide.

One major contribution of the DSGE-VAR methodology from Del Negro and Schorfheide [2004]

was to address those pitfalls in a consistent manner. The estimated DSGE-VAR constitutes

a useful benchmark model satisfying the requirements of empirical performance and model-

consistency of the identification scheme. And in this paper, this approach enables us to pursue

a policy evaluation along various conditional dimensions and therefore extending the previous

literature to a wider set of structural disturbances.
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The estimation of both the Ramsey and the Taylor DSGE-VARs provides various degrees of

comparison to assess the optimality of historical monetary response to selected structural dis-

turbances. First of all, even if the Ramsey model suffers from significant misspecifications

as highlighted by the DSGE-VAR estimation, the methodology also provides a reference struc-

tural VAR which allows to compare impulse response functions (IRFs). And the Ramsey model

could indeed perform well in the macroeconomic transmission of certain shocks. A second de-

gree of analysis can be drawn from the comparison with the DSGE-VAR and DSGE propagation

mechanism based on the Taylor rule specification: assuming that some IRFs are very close in

the Ramsey DSGE and its corresponding SVAR, it is interesting to see whether the same holds

within the Taylor DSGE-VAR framework. Finally, given that the identification scheme used

in the DSGE-VAR approach is model dependent, one may examine the possible differences in

the economic transmission implied by the Ramsey or the Taylor rule models even in the cases

where DSGE and DSGE-VAR IRFs are similar for both monetary policy specifications.

We concentrate first on the impulse responses of a technological shock (see Figures in table 4),

not least because this disturbance has attracted a lot of attention in the related literature but

also due to the striking similarities within and across our two DSGE-VAR setups.

On average, the Ramsey policy does well in this dimension by all means of comparison: the

model-based IRFs are very close to the ones of the structural VAR; the small distance between

DSGE and DSGE-VAR IRFs with the Ramsey policy are comparable to what is obtained with

the Taylor rule; and the broad economic transmission is qualitatively analogous with both pol-

icy regimes. Such results support the findings of studies based on the minimization of IRFs be-

tween VAR evidence and structural models which concluded that monetary policy behaved op-

timally in response of technological shock (see for example Avouyi-Dovi and Matheron [2007]).

This result is particularly worth emphasizing in our case since the estimation methodology was

not directed to match the VAR responses of any specific shock. At the margin, some differences

emerge: in the Ramsey allocation, the negative inflationary pressures stemming from a positive

productivity shock are less persistent than in the DSGE-VAR and in the Taylor rule IRFs, with

inflation even bouncing back to positive territory after one year and a half. The interest rate

path also presents some discrepancies: compared with the Taylor model, the Ramsey policy

leads to a smaller decline in the policy rate.
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Table 4: Transmission of a productivity shock in the DSGE-VAR (dotted lines) and in the DSGE
(plain lines): Ramsey and Taylor DSGE-VARs on the Volker-Greenspan sample.
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The results for the other structural shocks are presented in Tables 6 and 7 in the appendix. We

see first that most of the previous comments extend to the wage markup shock. IRFs in the

DSGE and in the DSGE-VAR are relatively similar for the Ramsey model on the one hand and

for the Taylor rule model on the other hand. One exception is the lower persistence of the infla-

tion response in the Ramsey allocation which is not supported neither by the its corresponding

DSGE-VAR nor by the Taylor rule model IRFs. However, even if the distance between the DSGE

and the DSGE-VAR responses for each policy formulation are broadly analogous, the Ramsey

IRFs feature a stronger adjustment in real quantities and more moderate disinflationary effects.

Discrepancies increases for the others shocks. Admittedly, the responses of GDP, consumption,

investment and real wages to an investment shock or a government spending shock are rela-

tively similar under the Ramsey policy and the estimated rule. However the inflation response

is slightly negative in the Ramsey allocation contrary to its DSGE-VAR counterpart and to the

IRFs based on the Taylor rule model. The transmission of a preference shock also reveals a

high degree of misspecification in the Ramsey model while the IRFs for this shock are rela-

tively similar in the Taylor rule DSGE and DSGE-VAR. The initial increase in real quantities is

too short-lived in the Ramsey model and the response of hours is particularly weak compared

to the DSGE-VAR and its Taylor rule counterparts. Most importantly, the Ramsey policy fea-

tures almost an opposite response of inflation to what its DSGE-VAR and the Taylor rule model

would suggest. Under the estimated rule, the preference shock is expansionary on GDP and

upward pressures emerge on inflation.

Considering price-markup shocks, the transmission to the economy as shown by the DSGE-

VARs benchmarks is not very well captured in any of the two estimated models. Moreover,

apart from the interest rate, the two DSGE-VARs exhibit almost the same dynamics and the

same deviations to the DSGEs. The Ramsey thus obviously inherits the misspecifications of the

Taylor model and worsens the picture on the interest rate.

A final comment relates to the interest rate shock. With the Taylor rule specification, this shock

is interpreted as a non-systematic monetary policy impulse and presents a very similar trans-

mission in the DSGE and in the DSGE-VAR. For the Ramsey policy, the way it has been in-

troduced makes it very similar to a negative preference shocks, as we already mentioned, ex-

cept for the interest rate dynamics. That is why the positive interest rate shock dampens real

variables but implies a positive inflation response. It is obvious that from an optimal policy

perspective there is a weak economic rationale in introducing Taylor rule residuals and that

other source of volatility would be more appropriate. We did not investigate alternative shock

structure for the Ramsey allocation in the present paper in order to keep the symmetry with

the well-established Smets and Wouters specification.
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7 Results from the pre-Volker sample

In this final section, we revisit the results obtained previously by estimating the Taylor and

Ramsey DSGE-VARs on the Great Inflation period. The corresponding sample ranges from

1966Q1 to 1979Q3 and ends with the appointment of Paul Volker as Chairman of the Federal

Reserve Board.

The posterior distribution of parameter estimates are presented in Table 5. One difference with

respect to the Volker-Greenspan sample results concerns the nominal rigidity coefficients. Both

for the Ramsey and the Taylor rule models, the degree of price and wage stickiness decreases

while the degree of indexation in price setting is higher (the indexation parameter on the wage

setting is here again not identified). This result is consistent with the findings of Smets and

Wouters [2007] and the widely-shared view that over the recent decades, the Phillips curve has

flattened and become less backward looking.

Regarding the relative empirical performance of the Ramsey model compared with the Taylor

model over the Great Inflation period, we find a difference of 6 points of log-marginal data

density which is slightly higher than what we obtain on the most recent sample, but there is

not compelling evidence that the Ramsey model does worse on the pre-Volker sample. The

welfare cost analysis also points slightly to the same conclusion suggesting that the distance to

optimality of the estimated Taylor rule over this period was similar to the one obtained over

the recent decades. This result may be due to an important caveat which applies to our policy

evaluation over this period. The estimation of the Taylor rule model was conducted ruling out,

by assumption, the possibility that U.S. monetary policy during the 70’s had been significantly

worse than it has been over the most recent period since the parameters space was restricted

to the determinacy region. However, the possibility that, before October 1979, U.S. monetary

policy had been so weakly counter-inflationary as to put the economy in the alternative inde-

terminacy region - characterized by an intrinsically larger macroeconomic volatility across the

board - is at the source of the bad policy interpretation of the Great Inflation as exposed by Clar-

ida et al. [2000].

Finally, regarding the impulse responses presented of Tables 8 and 9 in the appendix, the most

observations made previously also hold for the pre-Volker estimates. One striking difference

however concerns the transmission of the price markup shock in the Taylor rule model and to a

lesser extent in the Ramsey model, which becomes much closer to the DSGE-VAR propagation.
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8 Concluding remarks

Overall, the present paper intends to bring a methodological contribution to the abundant lit-

erature on monetary policy evaluation. Through the DSGE-VAR estimation of medium-scale

DSGE model featuring welfare-maximizing monetary policy and the comparison with a bench-

mark Taylor rule specification, we propose a unified framework to cover the main approaches

which provocatively assess the optimality of historical monetary policy conduct.

Using US data over the Volker-Greenspan, our results suggest that the Taylor rule specification

provides a better description of US data than the Ramsey model. At the same time, while the

statistical inference supports the Taylor rule model, counterfactual analysis points to relatively

modest welfare costs of such a policy compared with the optimal allocation. Finally, the com-

parison of impulse response functions in the DSGE-VAR and the DSGE for the Ramsey and the

Taylor rule models shows that the transmission of a productivity shock to the US economy is

very similar across all dimensions. However, this conclusion does not hold for other type of

disturbances like consumer preference shocks for example.
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A Recursive formulation of price and wage settings

A.1 Wage setting

In the following, given that the steady state model features a balanced growth path, all vari-

ables are appropriately deflated to be stationary in the stochastic equilibrium.

The first order condition of the union’s program for the re-optimized wage w∗
t can be written

recursively as follows:

w∗
t =

θw(1 + ψw)

(θw(1 + ψw) − 1)

H1,t

H2,t
+

ψw
(θw − 1)

(w∗
t )

1+θw(1+ψw) H3,t

H2,t
(18)

with

H1,t = εBt L̃L
1+σl
t w

θw(1+ψw)
t (Ct − ηCt−1/γ)

(1−σc) exp

(
L̃ (σc−1)

(1+σl)
L

(1+σl)
t

)

∆
θw(1+ψw)/(1−θw(1+ψw))
wλ,t

+ βγ(1−σc)αwEt



(

πt+1

πξwt [π⋆](1−ξw)

)θw(1+ψw)

H1,t+1


 (19)

H2,t = (1 − τw,t)λtLtw
θw(1+ψw)
t ∆

θw(1+ψw)/(1−θw(1+ψw))
wλ,t

+ βγ(1−σc)αwEt



(

πt+1

πξwt [π⋆](1−ξw)

)θw(1+ψw)−1

H2,t+1


 (20)

H3,t = (1 − τw,t)λtLt + βγ(1−σc)αwEt

[(
πξwt [π⋆](1−ξw)

πt+1

)
H3,t+1

]
(21)

The aggregate wage dynamics could also be expressed as

(wt)
1−θw(1+ψw) ∆wλ,t = (1 − αw) (w∗

t )
1−θw(1+ψw)

+αw

(
πt

πξwt−1[π
⋆]1−ξw

)θw(1+ψw)−1

(wt−1)
1−θw(1+ψw) ∆wλ,t−1 (22)

The previous equations include a dispersion index ∆wλ,t which is related to the re-optimizing

wage and the aggregate wage through the following conditions

1 =
1

1 + ψw
∆

1/(1−θw(1+ψw))
wλ,t +

ψw
1 + ψw

∆wl,t (23)

∆wl,t = (1 − αw)

(
w∗
t

wt

)
+ αw

(
wt
wt−1

πt

πξwt−1[π
⋆]1−ξw

)−1

∆wl,t−1 (24)

The market clearing condition linking total labor demand of intermediate firms and total labor

supply of households includes a wage dispersion index given by

∆wk,t =
1

1 + ψw
∆w,t · ∆

θw(1+ψw)/(1−θw(1+ψw))
wλ,t +

ψw
1 + ψw

(25)
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with

∆w,t = (1 − αw)

(
w∗
t

wt

)−θw(1+ψw)

+ αw

(
wt
wt−1

πt

πξwt−1[π
⋆]1−ξw

)θw(1+ψw)

∆w,t−1 (26)

A.2 Price setting

The first order condition of the intermediate firms profit maximization leads to

p∗t =
θp(1 + ψ)

(θp(1 + ψ) − 1)

Z1,t

Z2,t
+

ψ

(θp − 1)
(p∗t )

1+θp(1+ψ) Z3,t

Z2,t
(27)

with

Z1,t = λtmctYt∆
θp(1+ψ)/(1−θp(1+ψ))
pλ,t

+βγ(1−σc)αpEt



(

πt+1

π
ξp
t [π⋆](1−ξp)

)θp(1+ψ)

Z1,t+1


 (28)

Z2,t = (1 − τp,t)λtYt∆
θp(1+ψ)/(1−θp(1+ψ))
pλ,t

+βγ(1−σc)αpEt



(

πt+1

π
ξp
t [π⋆](1−ξp)

)θp(1+ψ)−1

Z2,t+1


 (29)

Z3,t = (1 − τp,t)λtYt + βγ(1−σc)αpEt

[(
π
ξp
t [π⋆](1−ξp)

πt+1

)
Z3,t+1

]
(30)

Aggregate price dynamics can then be written as

∆pλ,t = (1 − αp) (p∗t )
1−θp(1+ψ) + αp

(
πt

π
ξp
t−1[π

⋆]1−ξp

)θp(1+ψ)−1

∆pλ,t−1 (31)

Here again, compared with the Dixit-Stiglitz aggregator case, the previous equations include a

dispersion index ∆pλ,t which is given by

1 =
1

1 + ψ
∆

1/(1−θp(1+ψ))
pλ,t +

ψ

1 + ψ
∆pl,t (32)

∆pl,t = (1 − αp) (p∗t ) + αp

(
πt

π
ξp
t−1[π

⋆]1−ξp

)−1

∆pl,t−1 (33)

The market clearing conditions in the goods market also involves a price dispersion index given

by

∆pk,t =
1

1 + ψ
∆p,t · ∆

θp(1+ψ)/(1−θp(1+ψ))
pλ,t +

ψ

1 + ψ
(34)

with

∆p,t = (1 − αp) (p∗t )
−θp(1+ψ) + αp

(
πt

π
ξp
t−1[π

⋆]1−ξp

)θp(1+ψ)

∆p,t−1 (35)
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B The DSGE-VAR approach

B.1 Deriving the posterior densities

Consider the order p VAR representation for the 1 ×m vector of observed variables yt:

yt =

p∑

k=1

yt−kAk + ut

where ut ∼ N (0,Σu). Let zt be the mp× 1 vector
[
y′t−1, ..., y

′
t−p

]′
and define A =

[
A

′
1, ...,A

′
p

]′
,

the VAR representation can then be written in matrix form as:

Y = ZA + U

where Y = (y′1, . . . , y
′
T )′, Z = (z′1, . . . , z

′
T )′ and U = (u′1, . . . , u

′
T )′.

Dummy observations prior for the VAR can be constructed using the VAR likelihood function

for T = [λT ] artificial data simulated with the DSGE (Y ∗, Z∗), combined with diffuse priors.

The prior is then given by:

p0 (A,Σ | Y ∗, Z∗) ∝ |Σ|−
λT+m+1

2 e−
1
2
tr[Σ−1(Y ∗′Y ∗−A′Z∗′Y ∗−Y ∗′Z∗A+A′Z∗′Z∗A)]

implying that Σ follows an inverted Wishart distribution and A conditional on Σ is gaussian.

Assuming that observables are covariance stationary, Del Negro and Schorfheide [2004] use

the DSGE theoretical autocovariance matrices for a given n × 1 vector of model parameters θ,

denoted ΓY Y (θ), ΓZY (θ), ΓY Z (θ), ΓZZ (θ) instead of the (artificial) sample moments Y ∗′Y ∗,

Z∗′Y ∗, Y ∗′Z∗, Z∗′Z∗. In addition, the p-th order VAR approximation of the DSGE provides the

first moment of the prior distributions through the population least-square regression:

A∗(θ) = ΓZZ (θ)−1 ΓZY (θ) (P1a)

Σ∗(θ) = ΓY Y (θ) − ΓY Z(θ)ΓZZ (θ)−1 ΓZY (θ) (P1b)

Conditional on the deep parameters of the DSGE θ and λ, the priors for the VAR parameters

are given by:

vecA | Σ, θ, λ ∼ N
(
vecA∗(θ),Σ ⊗ [λTΓZZ(θ)]−1

)

Σ | θ, λ ∼ IW (λTΣ∗(θ), λT −mp−m)
(P2)

where ΓZZ(θ) is assumed to be non singular and λ ≥ mp+m
T for the priors to be proper5. The a

priori density of A is defined by n + 1 parameters (θ and λ), which is likely to be less than mp

5Note that it would not be possible to estimate the VAR model by OLS (or maximum likelihood) if we had
T < m(p + 1). In this case we would not have more observations than parameters to estimate.
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(the VAR number of parameters). If we have a one-to-one relationship (no identification issues)

between (θ, λ) and A it will be a good idea to estimate (θ, λ) instead of A, ie to estimate fewer

free parameters. To do so, Del Negro and Schorfheide [2004] complete the prior by specifying a

prior distribution over the structural model’s deep parameters: p0(θ). We finally have to set the

weight of the structural prior, λ. So we define a prior on the distribution of λ, which is assumed

to be independent from θ. Finally, the DSGE-VAR model has the following prior structure:

p0 (A,Σ, θ, λ) = p0 (A,Σ | θ, λ) × p0 (θ) × p0 (λ) (P3)

where p0 (A,Σ | θ, λ) is defined by [P1a,P1b] and [P2].

The posterior distribution, may be factorized in the following way:

p (A,Σ, θ, λ | YT ) = p (A,Σ | YT , θ, λ) × p (θ, λ | YT ) (Q3)

where YT stands for the sample. A closed form expression for the first density function on

the right hand side of [Q3] is available. Conditional on θ and λ, [P1a,P1b] and [P2] define a

conjugate prior for the VAR model, so its posterior density has to belong to the same family:

the distribution of A conditional on Σ, θ, λ and the sample is matric-variate normal, and the

distribution of Σ conditional on θ, λ and the sample is inverted Wishart. More formally, we

have:

vecA | Σ, θ, λ,YT ∼ N
(
vecÃ(θ, λ),Σ ⊗ V (θ, λ)−1

)

Σ | θ, λ,YT ∼ IW
(
(λ+ 1)T Σ̃(θ, λ), (λ+ 1)T −mp−m

) (Q2)

where:

Ã(θ, λ) = V (θ, λ)−1
(
λT ΓZY (θ) + Z ′Y

)
(Q1a)

Σ̃(θ, λ) =
1

(1 + λ)T

[
λT ΓY Y (θ) + Y ′Y −

(
λT ΓY Z(θ) + Y ′Z

)
V (θ, λ)−1

(
λT ΓZY (θ) + Z ′Y

)]

(Q1b)

with:

V (θ, λ) = λT ΓZZ(θ) + Z ′Z

Not surprisingly, we find that the posterior mean of A is a convex combination of A∗(θ), the

prior mean, and of the OLS estimate of A. When λ goes to infinity the posterior mean shrinks

towards the prior mean, ie the projection of the DSGE model onto the VAR(p).

We do not have a closed form expression for the joint posterior density of θ and λ (the second

term on the right hand side of [Q3]). So the posterior distribution of (θ, λ) is recovered from an

MCMC algorithm, as described in [Del Negro and Schorfheide, 2004, appendix B], except that

we do estimate λ as the deep parameters θ.6

6This can be done with Dynare 4.
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B.2 Identification

In Del Negro and Schorfheide [2004] the DSGE-VAR approach is shown to provide a quite

natural identification scheme for the structural innovations. In the sequel we follow the above

mentioned authors. The sole difference is, again related to λ. Our Impulse Response Functions

are obtained by averaging over the posterior distribution of λ.
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Table 5: Posterior parameter estimates of Ramsey and Taylor rule DSGE-VARs for the pre-

Volker sample.

Ramsey Taylor rule

Mode Mean I1 I2 Mode Mean I1 I2

σc 0.93 0.94 0.67 1.23 1.07 1.09 0.80 1.37
η 0.65 0.63 0.52 0.76 0.65 0.64 0.54 0.75
σl 1.31 1.52 0.62 2.47 1.58 1.81 0.82 2.73
φ 4.61 4.70 2.75 6.72 4.11 4.24 2.21 6.09
ϕ 0.52 0.51 0.27 0.76 0.45 0.48 0.24 0.72
αp 0.48 0.48 0.38 0.58 0.51 0.50 0.38 0.62
ξp 0.49 0.49 0.24 0.73 0.33 0.37 0.16 0.58
αw 0.48 0.48 0.34 0.62 0.59 0.60 0.46 0.72
ξw 0.57 0.55 0.33 0.79 0.59 0.57 0.35 0.80
α 0.14 0.14 0.09 0.18 0.15 0.15 0.11 0.19
µp 1.22 1.21 1.11 1.34 1.34 1.34 1.19 1.48
rβ 0.25 0.25 0.09 0.40 0.22 0.23 0.07 0.38
γ 0.46 0.45 0.32 0.59 0.43 0.42 0.30 0.55
L 0.01 0.02 -1.81 1.85 0.31 0.12 -2.04 2.15
π 0.68 0.69 0.50 0.89 0.69 0.69 0.51 0.87
λr 0.42 0.46 0.21 0.72 - - - -
rπ - - - - 1.41 1.45 1.10 1.77
ρ - - - - 0.78 0.76 0.68 0.85
rY - - - - 0.14 0.14 0.07 0.22
r∆Y - - - - 0.20 0.20 0.13 0.27

ρb,I 1.02 1.32 0.41 2.28 0.73 0.97 0.23 1.66
ρa,g 3.20 3.15 1.98 4.48 3.19 3.18 1.87 4.50
ρa 0.87 0.82 0.68 0.98 0.95 0.87 0.75 0.99
ρb 0.32 0.33 0.11 0.54 0.39 0.38 0.15 0.61
ρg 0.79 0.71 0.51 0.94 0.83 0.74 0.53 0.94
ρI 0.37 0.38 0.15 0.60 0.47 0.47 0.25 0.70
ρp 0.74 0.65 0.38 0.95 0.87 0.74 0.50 0.98
ηp 0.40 0.42 0.14 0.70 0.40 0.43 0.16 0.68
ρw 0.88 0.80 0.62 0.97 0.86 0.71 0.43 0.96
ηw 0.60 0.54 0.29 0.79 0.61 0.55 0.28 0.82
ρr 0.93 0.86 0.74 0.99 0.29 0.32 0.11 0.52
σεa 0.52 0.53 0.41 0.66 0.51 0.52 0.40 0.63
σεb 1.71 1.83 1.10 2.58 1.69 1.84 1.21 2.47
σεg 2.26 2.28 1.77 2.84 2.42 2.48 1.91 3.01
σεI 4.61 5.00 2.55 7.46 4.25 4.36 2.18 6.45
σεp 0.17 0.17 0.12 0.23 0.14 0.15 0.09 0.20
σεw 0.27 0.29 0.19 0.38 0.17 0.18 0.14 0.22
σεr 0.17 0.17 0.13 0.22 0.25 0.26 0.18 0.33

λDSGE 2.31 2.67 1.57 3.84 2.54 3.10 1.73 4.56
Pλ(Y) -376.52 -368.98
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Table 6: Comparison of impulse responses DSGE-VAR versus DSGE: Ramsey DSGE-VAR on the
Volker-Greenspan sample.
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∆Yt

Q1 Q5
Q10 Q15 Q20

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1

0
0.05
0.1

0.15
0.2

0.25
0.3

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1

0
0.05
0.1

0.15
0.2

0.25
0.3

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

0

0.02

0.04

0.06

0.08

Q1 Q5
Q10 Q15 Q20

−0.02

0

0.02

0.04

0.06

0.08

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

−0.06

0

0.02

0.04

∆Ct

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1
−0.12

0
0.02
0.04

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

0

0.02

0.04

0.06

0.08

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

0

0.02

0.04

0.06

0.08

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

−0.06

0

0.02

0.04

∆It

Q1 Q5
Q10 Q15 Q20

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

Q1 Q5
Q10 Q15 Q20

−0.1

−0.2

0

0.1

0.2

0.3

0.4
0.5

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

−0.25

0

0.05

Q1 Q5
Q10 Q15 Q20

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1

0
0.05
0.1

0.15
0.2

0.25

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1

0
0.05
0.1

0.15
0.2

0.25
0.3

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

0

0.05

0.1

Lt

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

0

0.05

0.1

Q1 Q5
Q10 Q15 Q20

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

0.2

0.25

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

0.25

0.3

Q1 Q5
Q10 Q15 Q20

−0.02
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

0.25

0.3

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08

0
0.02
0.04
0.06

∆Wt

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

0.15

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0
0.05

0.1

0.15
0.2

0.25

−0.6

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2
−0.3
−0.4
−0.5

0
0.1
0.2
0.3

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1

0
0.02
0.04
0.06

Πt

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04
−0.05
−0.06

0
0.01
0.02
0.03

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03

0
0.01
0.02
0.03
0.04

0.025

Q1 Q5
Q10 Q15 Q20

−0.005
−0.01
−0.015
−0.02

0
0.005
0.01

0.015
0.02

0.025

Q1 Q5
Q10 Q15 Q20

−0.005
−0.01
−0.015
−0.02

−0.025

0
0.005
0.01

0.015
0.02

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

0

0.05

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04
−0.05
−0.06
−0.07

0
0.01
0.02

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

−0.03

0

0.01

0.02

0.03

Rt

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

−0.03

0

0.01

0.02

0.03

Q1 Q5
Q10 Q15 Q20

0

0.02

0.04

0.06

0.08

0.1

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

−0.03

0

0.01

0.02

0.03

Q1 Q5
Q10 Q15 Q20

−0.01

0

0.01

0.02

0.03

0.04

0.05

−0.045

Q1 Q5
Q10 Q15 Q20

−0.005
−0.01
−0.015
−0.02
−0.025
−0.03
−0.035
−0.04

0
0.005

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

−0.03

0

0.01

0.02

0.03

Q1 Q5
Q10 Q15 Q20

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11

37



Table 7: Comparison of impulse responses DSGE-VAR versus DSGE: Taylor rule DSGE-VAR on the
Volker-Greenspan sample.

ǫAt ǫBt ǫGt ǫIt ǫPt ǫWt ǫRt

∆Yt

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

0.25

0.3

Q1 Q5
Q10 Q15 Q20

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1

0
0.05
0.1

0.15
0.2

0.25
0.3

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

0

0.02

0.04

0.06

0.08

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

0

0.05

∆Ct

Q1 Q5
Q10 Q15 Q20

−0.02
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

Q1 Q5
Q10 Q15 Q20

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1
−0.12

0
0.02
0.04

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

−0.06

0

0.02

0.04

0.06

Q1 Q5
Q10 Q15 Q20

−0.02

0

0.02

0.04

0.06

0.08

0.1

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04

0
0.01
0.02
0.03
0.04
0.05
0.06

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

0

0.05

∆It

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

0.25

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5
0.6

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

−0.25

0

0.05

Q1 Q5
Q10 Q15 Q20

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0
0.05

0.1

0.15
0.2

0.25

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1
−0.15
−0.2
−0.25
−0.3

0
0.05
0.1

Lt

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

−0.25

0

0.05

Q1 Q5
Q10 Q15 Q20

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

0.2

0.25

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

0.25

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

0

∆Wt

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08

0
0.02
0.04
0.06
0.08
0.1

0.12

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08

0
0.02
0.04
0.06
0.08
0.1

0.12

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

0.2

−0.6

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2
−0.3
−0.4
−0.5

0
0.1
0.2

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08

0
0.02
0.04
0.06

Πt

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04
−0.05

0
0.01
0.02

Q1 Q5
Q10 Q15 Q20

−0.01
0

0.01
0.02
0.03
0.04
0.05 0.025

Q1 Q5
Q10 Q15 Q20

−0.005
−0.01
−0.015

0
0.005
0.01

0.015
0.02

0.03

Q1 Q5
Q10 Q15 Q20

−0.005
−0.01
−0.015
−0.02

−0.025

0
0.005
0.01

0.015
0.02

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

0

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04
−0.05
−0.06
−0.07

0

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

−0.03

−0.04

0

0.01

Rt

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

−0.03

−0.04

−0.05

0

0.01

Q1 Q5
Q10 Q15 Q20

0

0.02

0.04

0.06

0.08

0.1

0.12

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

0

0.01

0.02

0.03

0.04

Q1 Q5
Q10 Q15 Q20

−0.01

0

0.01

0.02

0.03

0.04

0.05

Q1 Q5
Q10 Q15 Q20

−0.01

−0.02

−0.03

−0.04

−0.05

0

Q1 Q5
Q10 Q15 Q20

−0.005
−0.01
−0.015
−0.02
−0.025
−0.03
−0.035
−0.04

0
0.005
0.01

Q1 Q5
Q10 Q15 Q20

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
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Table 8: Comparison of impulse responses DSGE-VAR versus DSGE: Ramsey DSGE-VAR on the
pre-Volker sample.

ǫAt ǫBt ǫGt ǫIt ǫPt ǫWt ǫRt

∆Yt

Q1 Q5
Q10 Q15 Q20

0

0.1

0.2

0.3

0.4

0.5

0.6

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1
−0.15

0
0.05
0.1

0.15
0.2

0.25

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

0.15

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

0

0.05

∆Ct

Q1 Q5
Q10 Q15 Q20

−0.05
0

0.05
0.1

0.15
0.2

0.25

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5
0.6

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1
−0.12

0
0.02
0.04
0.06

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1

0
0.02
0.04
0.06
0.08

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04

0
0.02
0.04
0.06
0.08

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1
−0.12
−0.14
−0.16

0
0.02
0.04

∆It

Q1 Q5
Q10 Q15 Q20

−0.1

0

0.1

0.2

0.3

0.4

0.5

Q1 Q5
Q10 Q15 Q20

−0.2

−0.4

0

0.2

0.4

0.6

0.8

Q1 Q5
Q10 Q15 Q20

−0.1

−0.2

−0.3

−0.4

−0.5

0

0.1

Q1 Q5
Q10 Q15 Q20

−0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1
−0.15

0
0.05
0.1

0.15
0.2

0.25
0.3

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5

Q1 Q5
Q10 Q15 Q20

−0.1

−0.2

−0.3

−0.4

0

0.1

Lt

Q1 Q5
Q10 Q15 Q20

−0.1

−0.2

−0.3

0

0.1

0.2

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5

Q1 Q5
Q10 Q15 Q20

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1
−0.15

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

−0.35

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1
−0.15
−0.2
−0.25
−0.3

−0.4

0

∆Wt

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2

0.25

0.3

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1

0
0.02
0.04
0.06
0.08

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

Q1 Q5
Q10 Q15 Q20

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

Q1 Q5
Q10 Q15 Q20

−0.1

−0.2

−0.3

−0.4

0

0.1

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04
−0.06
−0.08
−0.1
−0.12
−0.14

0
0.02

Πt

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

0

0.05

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

0

0.05

0.1

Q1 Q5
Q10 Q15 Q20

−0.02
−0.04

−0.06

−0.08

0

0.02

0.04

0.06

Q1 Q5
Q10 Q15 Q20

−0.02
0

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

−0.25

0

Q1 Q5
Q10 Q15 Q20

−0.05

−0.1

−0.15

−0.2

0

0.05

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

0

0.02

0.04

0.06

0.08

Rt

Q1 Q5
Q10 Q15 Q20

−0.02

−0.04

−0.06

0

0.02

0.04

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04

0
0.01
0.02
0.03
0.04
0.05

Q1 Q5
Q10 Q15 Q20

0

0.02

0.04

0.06

0.08

0.1

0.12

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04
−0.05
−0.06

0
0.01
0.02

Q1 Q5
Q10 Q15 Q20

−0.01
−0.02
−0.03
−0.04
−0.05
−0.06
−0.07

0
0.01
0.02
0.03

Q1 Q5
Q10 Q15 Q20

0

0.05

0.1

0.15

0.2
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Table 9: Comparison of impulse responses DSGE-VAR versus DSGE: Taylor rule DSGE-VAR on the
pre-Volker sample.

ǫAt ǫBt ǫGt ǫIt ǫPt ǫWt ǫRt

∆Yt

Q1 Q5
Q10 Q15 Q20

0

0.1

0.2

0.3

0.4

0.5

0.6

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5
0.6

Q1 Q5
Q10 Q15 Q20

−0.1
−0.2

0
0.1
0.2
0.3
0.4
0.5

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1
−0.15

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.05
−0.1
−0.15
−0.2
−0.25

0
0.05
0.1

∆Ct

Q1 Q5
Q10 Q15 Q20

−0.05

0

0.05

0.1

0.15

0.2

Q1 Q5
Q10 Q15 Q20

−0.1
0

0.1
0.2
0.3
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