EABCN TRAINING SCHOOL: MONETARY-FISCAL POLICY INTERACTIONS

LECTURE 1. SIMPLE MODELS OF POLICY INTERACTIONS: SOME MONETARY DOCTRINES

Eric M. Leeper

Indiana University

September 2010

THE MESSAGES

- 1. A complete specification of macro policy is necessary for determination of equilibrium
- 2. Complete specification includes enough information about policy behavior that agents can form expectations of the entire future paths of policy instruments
- 3. Monetary and fiscal policies *must* interact in certain ways in any equilibrium
- 4. Every statement about monetary policy effects is conditional on maintained assumptions about fiscal policy behavior
- 5. And vice versa

THE MODEL

- Draws on "Monetary Doctrines" in Ljungqvist-Sargent
- Shopping time monetary model
 - constant endowment, y > 0
 - no uncertainty
 - steady-state analysis
 - lump-sum taxes/transfers
- · How money gets valued unimportant to results
- Aggregate resource constraint

$$c_t + g_t = y \tag{1}$$

• Preferences

$$\sum_{t=0}^{\infty} \beta^{t} u(c_{t}, l_{t}), 0 < \beta < 1$$

$$u_{c}, u_{l} > 0; u_{cc}, u_{ll} < 0, u_{cl} \ge 0$$
(2)

SHOPPING TECHNOLOGY

- Households must spend time shopping, s_t , to acquire consumption goods, c_t
- Shopping/transactions technology

$$s_t = H\left(c_t, \frac{m_t}{p_t}\right) \tag{3}$$

 m_t/p_t real money balances chosen at tH convex: $H, H_c, H_{cc}, H_{\frac{m}{p}\frac{m}{p}} \ge 0, H_{\frac{m}{p}}, H_{c, \frac{m}{p}} \le 0$

• Example: Baumol-Tobin

$$H\left(c_t, \frac{m_t}{p_t}\right) = \frac{c_t}{m_t/p_t}\varepsilon$$

 $\varepsilon > 0$: time cost per trip to the bank

OTHER CONSTRAINTS

• Time constraint

$$l_t + s_t = 1 \tag{4}$$

Household budget constraint

$$c_t + \frac{b_t}{R_t} + \frac{m_t}{p_t} = y - \tau_t + b_{t-1} + \frac{m_{t-1}}{p_t}$$
(5)

b: 1-period indexed bonds; *p*: price level; τ : lump-sum tax

- Maximize (2) s.t. (3), (4), (5)
- Note that
 - $m_t \ge 0$ (HH cannot issue currency)
 - $b_t \leq 0$ (HH can borrow or lend)
- Multipliers: λ_t for (5), μ_t for (4)

OPTIMALITY CONDITIONS

- Let $R_{mt} \equiv p_t/p_{t+1}$, the return on fiat currency
- Arbitrage between m and b

$$1 - \frac{R_{mt}}{R_t} \ge -\frac{\mu_t}{\lambda_t} H_{\frac{m}{p}}(t) \ge 0$$

$$1 - \frac{R_{mt}}{R_t} = \frac{i_t}{1 + i_t} \ge 0$$
(6)

 (6) leads to the key result that nominal interest rates are non-negative: because R_{mt} ≤ R_t (currency is dominated in rate of return)

$$i_t \ge 0$$

OPTIMALITY CONDITIONS

Consumption-leisure tradeoff implies

$$\lambda_t = u_c(t) - u_l(t)H_c(t) \tag{7}$$

Return on bonds can be expressed as

$$R_t = \frac{1}{\beta} \left[\frac{u_c(t) - u_l(t)H_c(t)}{u_c(t+1) - u_l(t+1)H_c(t+1)} \right]$$
(8)

• (6) yields

$$\left(\frac{R_t - R_{mt}}{R_t}\right)\lambda_t = -\mu_t H_{\frac{m}{p}}(t) \tag{9}$$

MONEY DEMAND

• Combining FOCs [(7),(8),(9)]

$$\left(1 - \frac{R_{mt}}{R_t}\right) \left[\frac{u_c(t)}{u_l(t)} - H_c(t)\right] + H_{\frac{m}{p}}(t) = 0$$

• Evaluate $u_c(t), u_l(t)$ at $l_t = 1 - H(c_t, m_t/p_t)$ to get the implicitly defined money demand function

$$\frac{m_t}{p_t} = F\left(c_t, \frac{R_{mt}}{R_t}\right) = F(c_t, i_t) \tag{10}$$

• Straightforward to show in (10) that $F_c > 0, F_i < 0$

GOVERNMENT & EQUILIBRIUM

• Government finances $\{g_t\}$ s.t.

$$g_t = \tau_t + \frac{B_t}{R_t} - B_{t-1} + \frac{M_t - M_{t-1}}{p_t}$$
(11)

- A price system is a pair of positive sequences $\{R_t, p_t\}_{t=0}^{\infty}$
- Take as exogenous $\{g_t, \tau_t\}_{t=0}^{\infty}$ and $B_{-1} = b_{-1}$, $M_{-1} = m_{-1} > 0$. An **equilibrium** is a price system, and sequences $\{c_t, B_t, M_t\}_{t=0}^{\infty}$ such that
 - the household's optimum problem is solved with $b_t = B_t, m_t = M_t$
 - the government's budget constraint is satisfied

•
$$c_t + g_t = y$$

POLICY EXPERIMENTS

- Need a complete specification of policy
- Will give definite meaning to concepts of
 - "short run": initial date
 - "long run": stationary equilibrium
- Assume

g_t	=	g	$t \ge 0$
$ au_t$	=	au	$t \ge 1$
B_t	=	B	$t \ge 0$

We permit $\tau_0 \neq \tau, B_{-1} \neq B$

- Economy in stationary eqm for $t \ge 1$ but starts from a different position at t = 0
- Reduces dynamics to 2 periods: now (t = 0) & future ($t \ge 1$)

STATIONARY EQUILIBRIUM

Seek an equilibrium with

$$p_t/p_{t+1} = R_m \qquad t \ge 0$$
$$R_t = R \qquad t \ge 0$$
$$c_t = c \qquad t \ge 0$$
$$s_t = s \qquad t \ge 0$$

which imply that

$$R = \beta^{-1}$$

 $\frac{m_t}{p_t} = F(c, R_m/R) = f(R_m), \qquad f' > 0$

Two Equilibrium Conditions

1. Impose eqm on government budget constraint at $t \ge 1$

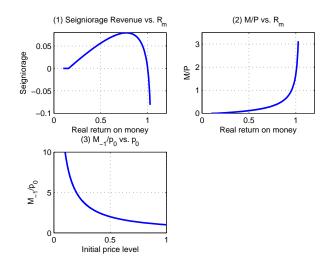
$$g - \tau + \frac{B(R-1)}{R} = f(R_m)(1 - R_m)$$
 (Future)

2. Impose eqm on government budget constraint at t = 0

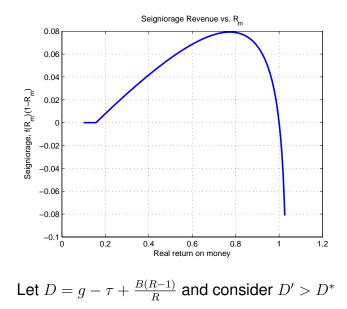
$$\frac{M_{-1}}{p_0} = f(R_m) - (g + B_{-1} - \tau_0) + \frac{B}{R}$$
 (Current)

- Given (g, τ, B) , (Future) $\Rightarrow R_m$ —inflation rate
- Given (g, τ_0, B) & initial conditions (M_{-1}, B_{-1}) , (Current) $\Rightarrow p_0$ —initial price level
- Have completely determined eqm $\{p_t\}_{t=0}^{\infty}$
- Now consider alternative policies and how they affect price-level determination

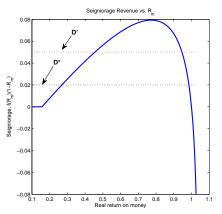
DERIVING EQUILIBRIA GRAPHICALLY



1. SUSTAINED DEFICITS CAUSE INFLATION



1. SUSTAINED DEFICITS CAUSE INFLATION



"normal" side: $D' > D^* \Rightarrow R'_m < R^*_m$ (classical doctrine)

2. ZERO INFLATION POLICY

- $\pi = 0 \Rightarrow R_m = 1 \Rightarrow$ seigniorage = 0
- (Future) \Rightarrow

$$g-\tau+\frac{B(R-1)}{R}=0$$

or

$$\frac{B}{R} = \frac{\tau - g}{R - 1} = \sum_{t=1}^{\infty} R^{-t} (\tau - g)$$

- Real value of interest bearing government debt = present value of net-of-interest primary surpluses
- Of course, this generalizes to any fixed inflation rate policy (e.g., inflation targeting)
- It is strange—and troubling—that *no* country that adopted inflation targeting simultaneously adopted fiscal policies that are consistent with it

3. UNPLEASANT MONETARIST ARITHMETIC

- A little history—US FP in early 1980s
- Consider an open-market sale of bonds at t = 0, $-d(M_0/p_0) = dB_0 > 0$
- Hold fiscal policy— (g, τ_0, τ) —fixed
- OM sale raises *B* in eqm conditions (Current) & (Future)
- Higher debt service in the future, but FP fixed
- Future seigniorage must rise: $f(R_m)(1-R_m)$ rises by $\frac{R-1}{R}dB$
- Stationary π rises (R_m falls) unambiguously

3. UNPLEASANT MONETARIST ARITHMETIC

$$\frac{M_{-1}}{p_0} = f(R_m) - (g + B_{-1} - \tau_0) + \frac{B}{R}$$
 (Current)

- By (Current), effect on *p*₀ can be *anything*
 - if $f'(R_m)$ small, p_0 falls (usual result)
 - if $f'(R_m)$ large, p_0 rises (extreme unpleasantness)
- Tighter money via OMO—at best—temporarily lowers p but at the cost of permanently raising π

4. QUANTITY THEORY OF MONEY

- Classic quantity theory of money experiment is a helicopter drop of money
 - change M_{-1} to $\lambda M_{-1}, \lambda > 0$
 - holding fiscal policy— (g, τ_0, τ, B) —fixed
- By (Current), if $p_0 \rightarrow \lambda p_0$, then M_{-1}/p_0 unchanged

$$\frac{\lambda M_{-1}}{\lambda p_0} = f(R_m) - (g + B_{-1} - \tau_0) + \frac{B}{R}$$
 (Current)

- Nothing happens to growth rate of money, R_m , or π
- Produces "neutrality of money" (not "superneutrality")
- Tobin's gremlins: required to leave portfolios unperturbed by $M \ \mathrm{drop}$

5. A NEUTRAL OPEN-MARKET OPERATION

- Redefine OMO from that used in unpleasant arithmetic to give MA fiscal powers so OMO have QT effects
- Denote initial eqm by \bar{x} ; new eqm by \hat{x}
- Consider OMO that decreases M_0 and increases B and τ (with $\bar{\tau}_0 = \hat{\tau}_0$) such that

$$\left(1-\frac{1}{R}\right)(\hat{B}-\bar{B})=\hat{\tau}-\bar{\tau}$$

- If future taxes obey this for $t \ge 1$, then (Future) satisfied at initial R_m (that is, $-d\tau + dB(1 1/R) = 0$)
- Highlights a key aspect of conventional MP analysis (e.g., in new Keynesian models)
 - lump-sum taxes in future adjust by just enough to service any additional interest payments arising from the OMO's effects on *B*
 - FP "held constant" via unchanged gross-of-interest deficit

6. The Optimum Quantity of Money

- Given stationary (g, B), Friedman argued that agents are better off with higher stationary real money balances (ones associated with higher rates of return on money)
- By running sufficiently large gross surpluses $(g \tau + B(R 1)/R < 0)$, government can attain any $R_m \in (1, 1/\beta)$
- So given (g, B), choose τ to get required surplus to hit the target R_m
- Use proceeds of tax to retire currency (achieve negative growth of M)
- Pursues Friedman's optimal policy of saturating economy with real balances

6. The Optimum Quantity of Money

- Social value of real balances in model comes from reducing shopping time
- Optimum quantity of \boldsymbol{M} minimizes time spent shopping
- Suppose there is a satiation point in real balances $\psi(c)$ for any c

$$H_{m/p}\left(c,m_t/p_t
ight)=0 \text{ for } m_t/p_t\geq\psi(c)$$

- Can achieve this only by setting $R = R_m$ (since $\mu_t, \lambda_t > 0$)
- If $H(c,m/p) = \frac{c}{m/p}\varepsilon$, can only approximate Friedman's rule since money demand insatiable

7. ONE BIG OPEN-MARKET OPERATION

- Consider a large OM purchase of *private* indebtedness at t = 0
 - gives government a portfolio of interest-earning claims on private sector
 - permits the government to run a gross-of-interest surplus
 - government uses surplus to reduce money supply and create deflation
 - this raises return on money > 1
 - idea underlies some optimal fiscal policy results
- Impose $g-\tau \geq 0$ so cannot achieve deflation through direct taxation
- Proposal: $M_0 \uparrow, B \downarrow$ with B < 0

7. ONE BIG OPEN-MARKET OPERATION

• Given (g, τ) , use (Future) to pick B consistent with desired R_m ($1 \le R_m \le 1/\beta$)

$$\frac{M_{-1}}{p_0} = \underbrace{\left(\frac{R - R_m}{1 - R_m}\right)\frac{B}{R}}_{>0} + \underbrace{\left(\frac{1}{1 - R_m}\right)(g - \tau) - (g + B_{-1} - \tau_0)}_{\stackrel{\leq}{\leq}0}$$

- The candidate policy is an equilibrium policy if $(g, \tau, \tau_0, B_{-1})$ are such that RHS > 0 so that there exists a $p_0 > 0$ that solves this
- Example: $g \tau = 0$ & $g + B_{-1} \tau_0 = 0$ (balance budget $t \ge 1$

• then RHS > 0 and it's feasible to get $1 < R_m < 1/\beta$

• Note: Cannot get $R_m = 1/\beta$ since then $R = R_m$ and government earns no arbitrage income and cannot finance deflation

8. A RICARDIAN EXPERIMENT

- Consider a debt-financed tax cut at t = 0, with future taxes adjusting
 - MP held fixed: no change in $\{M_t\}_{t=0}^{\infty}$

•
$$-d\tau_0 = \frac{1}{R}dB$$
 & $d\tau = \frac{R-1}{R}dB$

- Both (Current) & (Future) satisfied at initial R_m, p_0
- Lump-sum taxes in future adjust by just enough to service any additional interest payments arising from the tax cut's effects on *B*
- Of course, lump-sum essential
- A central neutrality result in fiscal policy

9. LJUNGQVIST-SARGENT'S "FISCAL THEORY OF PRICE LEVEL"

- FTPL is intrinsically about nominal government debt
- LS couch FTPL in terms of indexed (real) debt
- FTPL changes assumptions about which variables the government sets
- MP commits to set PV seigniorage, $f(R_m)(1-R_m)/(R-1)$, so B endogenous
- Equivalent to pegging nominal interest rate (or π or R_m^{-1})
- A little history
 - CBs actually have pegged *i*
 - early rational expectations literature: pegged $i \Rightarrow$ price level indeterminacy

9. LJUNGQVIST-SARGENT'S "FTPL"

• Rewrite (Future) as

$$\frac{B}{R} = \frac{1}{R-1} \left[(\tau - g) + f(R_m)(1 - R_m) \right] \\ = \sum_{t=1}^{\infty} R^{-t} (\tau - g) + f(R_m) \frac{1 - R_m}{R-1}$$

• Subst. into (Current): imposes that *future policy restricts current policy through the value of debt*

$$\frac{M_{-1}}{p_0} + B_{-1} = \sum_{t=0}^{\infty} R^{-t} (\tau_t - g_t) + f(R_m) \left(1 + \frac{1 - R_m}{R - 1} \right)$$
$$= \sum_{t=0}^{\infty} R^{-t} (\tau_t - g_t) + \sum_{t=1}^{\infty} R^{-t} f(R_m) (R - R_m)$$

9. LJUNGQVIST-SARGENT'S "FTPL"

• Repeat equilibrium condition

$$\frac{M_{-1}}{p_0} + B_{-1} = \sum_{t=0}^{\infty} R^{-t} (\tau_t - g_t) + \sum_{t=1}^{\infty} R^{-t} f(R_m) (R - R_m)$$

- Government chooses (g, τ, τ_0, R_m) (recall: $i = (\beta R_m)^{-1}$)
- B determined by expected surpluses plus seigniorage
- This condition yields eqm p_0 for given M_{-1}
- Use money demand in eqm to solve for

$$\frac{M_0}{p_0} = F(y - g, R_m/R)$$

• A quantity theory demand for money \Rightarrow can control $\{p_t\}$ by controlling $\{M_t\}$

WRAP UP

- These doctrines, though simple, highlight the centrality of monetary-fiscal policy interactions for the nature of eqm
- Although this general point has been known, we often ignore it
 - introduces inconvenient considerations
 - makes policy analysis *much* harder
 - prescribing both MP & FP is many times harder than prescribing MP, assuming FP—i.e., lump-sum taxes—will adjust to ensure fiscal sustainability
- The doctrines should have made clear that once you deviate from this kind of FP, lots of interesting things can happen