EABCN TRAINING SCHOOL: Monetary-Fiscal Policy Interactions

LECTURE 4. GENERALIZING POLICY INTERACTIONS (A)

Eric M. Leeper

Indiana University

September 2010

THE MESSAGES

- Draws heavily from "Generalizing the Taylor Principle," with Troy Davig (*AER*, June 2007)
- We do see policy rules—or regimes—change
 - to study the implications of recurring changes, need to model them coherently
- Before studying monetary-fiscal interactions when policy regimes can change, need some preliminary analysis when only MP can switch
- This allows simple analytical derivations that build intuition and understanding
- Many of our inferences are monetary policy effects change in subtle ways once we allow recurring regime change
- Subsequent work will allow both monetary and fiscal regime to undergo recurring change

SIMPLIFYING POLICY

- Monetary policy is complex
- · For descriptive & prescriptive reasons, seek to simplify
- · Most successful simplification due to Taylor

$$i_t = \overline{i} + \alpha(\pi_t - \pi^*) + \gamma x_t + \varepsilon_t$$

- Taylor principle: $\alpha > 1$
 - necessary & sufficient for unique bounded eqm (w/ bounded shocks)
- Unique & stable eqm necessary for good policy
 - rules out arbitrarily large fluctuations

THE TAYLOR RULE & PRINCIPLE

- Central banks can stabilize economy by adjusting nominal interest rate more than one-for-one with inflation
 - approximates Federal Reserve behavior since 1982
 - nearly optimal in workhorse class of monetary models
 - used by central banks as a benchmark
- Maintains two key assumptions
 - fiscal policy is perpetually passive
 - policy rule permanent & agents believe change impossible
- Here we relax this second assumption
 - rule evolves according to a Markov chain
 - consider two conventional monetary models

GENERALIZING THE TAYLOR RULE & PRINCIPLE

- $\alpha(s_t), \gamma(s_t) \ s_t \sim \text{Markov chain}$
- s_t: "rule," "regime," "state"
- s_t exogenous (for now)
- Can believe actual policy rule time invariant
 - but Taylor rule is a gross simplification of reality
 - paper shows that a particular form of non-linearity can change predictions of models

IN THE FISHERIAN MODEL ...

• Derive long-run Taylor principle

- imposes much weaker conditions on MP for uniqueness
- departures from short-run Taylor principle can be substantial—but brief—or modest—and prolonged
- the more "hawkish" one regime is, the more "dovish" the other can be and still deliver uniqueness
- "expectations formation effects"—beliefs about possible future regimes affect current eqm, increasing volatility even in a regime that satisfies **TP**

IN THE NEW-KEYNESIAN MODEL ...

- Derive *long-run Taylor principle*: dramatically expands region of determinacy
- Inference that inflation of the 70's due to failure to obey TP does not hold up when expectations embed possibility of regime change
- Occasional large departures from TP—due to worries about financial instability or economic weakness—can have quantitatively important impacts even in a regime that satisfies TP
- Misleading inferences can arise from dividing data into regime-specific periods to interpret estimates as arising from distinct fixed regimes

WHY REGIME CHANGE?

- Evidence that monetary policy regime changed
- Institutional or policy reforms
 - adoption of inflation targeting by over 20 countries
 - Fed's "just trust us" approach
- Logical consistency
 - if regime has changed, regime can change
 - expectations depend on prob. distn. over possible regimes
- Recurring: in US, no legislated change installed Volcker or Greenspan
 - confluence of economic/political conditions allowed US to dodge a bullet and get Bernanke (coulda' been a FOG)

A MODELING CHOICE

- Because Taylor rule a gross simplification, deviations occur
 - can be large and serially correlated
 - are systematic responses to state of economy
- How should we model these deviations?
 - shuffled into the ε's?
 - time-varying feedback coefficients, $\alpha_t \& \gamma_t$?
- ε 's affect conditional expectations
- $\alpha_t \& \gamma_t$ affect expectations *functions*
- A substantive choice

MODEL OF INFLATION DETERMINATION

• A simple Fisherian economy

$$\begin{aligned} i_t &= E_t \pi_{t+1} + r_t \\ r_t &= \rho r_{t-1} + \nu_t, \ \nu \text{ bounded support} \\ i_t &= \alpha(s_t) \pi_t, \quad s_t \text{ Markov; } s_t = 1, 2 \\ p_{ij} &= P[s_t = j \mid s_{t-1} = i] \\ \alpha(s_t) &= \begin{cases} \alpha_1 \text{ for } s_t = 1 \\ \alpha_2 \text{ for } s_t = 2 \end{cases} \end{aligned}$$

- a monetary policy regime: realization of $\alpha(s_t)$
- a monetary policy process: collection $(\alpha_1, \alpha_2, p_{11}, p_{22})$
- policy is *active* if $\alpha_i > 1$; *passive* if $\alpha_i < 1$

DETERMINACY: DEFINITION

- Seek generalization of Taylor principle
 - necessary & sufficient condition for existence of unique bounded eqm
- Why boundedness?
 - consistent w/ standard definition under fixed regime
 - corresponds to locally unique eqm
 - can analyze small perturbations
 - considering log-linearized models
 - boundedness ensures approximations are good

DETERMINACY: FORMALISM

Model: $\alpha(s_t)\pi_t = E_t\pi_{t+1} + r_t$

- Let $\Omega_t^{-s} = \{r_t, r_{t-1}, \dots, s_{t-1}, s_{t-2}, \dots\}$ and $\Omega_t = \Omega_t^{-s} \cup \{s_t\}$
- Integrating over s_t , for $s_t = 1$ and $s_t = 2$

$$E_t \pi_{t+1} = E[\pi_{t+1} | s_t = i, \Omega_t^{-s}]$$

= $p_{i1} E[\pi_{1t+1} | \Omega_t^{-s}] + p_{i2} E[\pi_{2t+1} | \Omega_t^{-s}]$

where $\pi_{it} = \pi_t(s_t = i, r_t)$, the solution when $s_t = i$

• The system is

$$\begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix} \begin{bmatrix} \pi_{1t} \\ \pi_{2t} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} E_t \pi_{1t+1} \\ E_t \pi_{2t+1} \end{bmatrix} + \begin{bmatrix} r_t \\ r_t \end{bmatrix}$$

where $E_t \pi_{it+1}$ denotes $E[\pi_{it+1} | \Omega_t^{-s}]$

DETERMINACY: FORMALISM (CON'T)

• Write system as

$$\pi_t = M E_t \pi_{t+1} + \alpha^{-1} r_t$$

- MSV solution: π_t function only of (r_t, s_t)
- Define $x_t = \pi_t \pi_t^{MSV}(r_t, s_t)$
- Bounded soln for $\{x_t\} \iff$ bounded soln for $\{\pi_t\}$
- We study: $x_t = ME_t x_{t+1}$
- Proof of determinacy shows that under certain conditions on the policy process, $x_t = 0$ is the only solution

DETERMINACY: FORMALISM (CON'T)

- **Prop. 1** When $\alpha_i > 0$, a unique bounded solution exists iff all the eigenvalues of *M* lie inside the unit circle
- Sufficiency: the usual proof in linear RE models
 - intuition: boundedness requires that $\lim_{n\to\infty}M^n=0,$ so $x_t=0$ the only solution
 - delivered by eigenvalue condition

DETERMINACY: FORMALISM (CON'T)

- Necessity: Suppose $\lambda_1 \ge 1, \lambda_2 < 1$
 - diagonalize M, let $y_t = V^{-1}x_t$, then

$$\left[\begin{array}{c} y_{1t} \\ y_{2t} \end{array}\right] = \left[\begin{array}{c} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right] \left[\begin{array}{c} E_t y_{1t+1} \\ E_t y_{2t+1} \end{array}\right]$$

bounded solutions $y_{1t+1} = \lambda_1^{-1} y_{1t} + \phi_{t+1}$, so

$$\left[\begin{array}{c} x_{1t} \\ x_{2t} \end{array}\right] = \left[\begin{array}{c} \gamma v_{11} \lambda_1^{-t} \\ \gamma v_{21} \lambda_1^{-t} \end{array}\right]$$

- also exist bounded sunspot solutions: $y_{1t+1} = \lambda_1^{-1} y_{1t} + \phi_{t+1}, y_{2t+1} = 0, E_t \phi_{t+1} = 0$, bounded
- multiple eq & sunspots possible w/ more stringent det defn

LONG-RUN TAYLOR PRINCIPLE

- **Prop. 2** Given $\alpha_i > p_{ii}$ for i = 1, 2, the following statements are equivalent:
 - (A) All the eigenvalues of M lie inside the unit circle.
 - (B) $\alpha_i > 1$, for some i = 1, 2, and the *long-run Taylor principle (LRTP)*

$$(1 - \alpha_2) p_{11} + (1 - \alpha_1) p_{22} + \alpha_1 \alpha_2 > 1$$

is satisfied.

- Premise $\alpha_i > p_{ii}$ all *i* unfamiliar
 - fixed regime: MP always obeys TP
 - LRTP is hyperbola w/ asymptotes $\alpha_1 = p_{11}$ & $\alpha_2 = p_{22}$
 - restricts α 's to economically interesting portion of hyperbola

A RANGE OF POLICIES DELIVER UNIQUENESS

 $\alpha_1 > 1$: $p_{11}(1 - \alpha_2) + p_{22}(1 - \alpha_1) + \alpha_1 \alpha_2 > 1$

• Some policy processes that deliver unique equilibria

$$\begin{array}{c} \alpha_1 \rightarrow \infty \Rightarrow \alpha_2 > p_{22} \\ \text{or} \\ p_{11} = 1 \Rightarrow \text{need } \alpha_1 > 1 \text{ and } \alpha_2 > p_{22} \end{array}$$

- more active is one regime, more passive the other can be $p_{22} \rightarrow 1 \text{ OK if } \alpha_2 \approx 1 \text{ (but } < 1)$
- ergodic prob of passive regime can be ≈ 1 (but <1)

 $p_{11} = p_{22} = 0$ need $\alpha_2 > 1/\alpha_1$

- · more active in one regime, less active in the other
- Figure illustrates these points

DETERMINACY REGION: FISHERIAN MODEL

FISHERIAN MODEL: SOLUTION

- Define state as (r_t, s_t) & find MSV solutions
 - posit regime-dependent rules:

$$\pi_t = a(s_t = i)r_t$$

$$a(s_t) = \begin{cases} a_1 \text{ for } s_t = 1\\ a_2 \text{ for } s_t = 2 \end{cases}$$

• expectations functions:

$$E[\pi_{t+1} | s_t = 1, r_t] = [p_{11}a_1 + (1 - p_{11})a_2]\rho r_t$$

$$E[\pi_{t+1} | s_t = 2, r_t] = [(1 - p_{22})a_1 + p_{22}a_2]\rho r_t$$

• solve simple 2×2 system to get a_1 and a_2

SOLUTION

• Solutions are:

$$a_1 = a_1^F \left(\frac{1 + \rho p_{12} a_2^F}{1 - \rho^2 p_{12} a_2^F p_{21} a_1^F} \right)$$

and

$$a_2 = a_2^F \left(\frac{1 + \rho p_{21} a_1^F}{1 - \rho^2 p_{12} a_2^F p_{21} a_1^F} \right)$$

 $p_{12}=1-p_{11},\,p_{21}=1-p_{22}$ & "fixed-regime" coefficients $a^F_i=\frac{1}{\alpha_i-\rho p_{ii}},\qquad i=1,2$

•
$$\alpha_1 > \alpha_2 \Leftrightarrow a_1 < a_2$$

EXPECTATIONS-FORMATION EFFECTS

• Solutions are:

$$a_1 = a_1^F \left(\frac{1 + \rho p_{12} a_2^F}{1 - \rho^2 p_{12} a_2^F p_{21} a_1^F} \right)$$

and

$$a_2 = a_2^F \left(\frac{1 + \rho p_{21} a_1^F}{1 - \rho^2 p_{12} a_2^F p_{21} a_1^F} \right)$$

- Expectations-formation effects from regime 2 to regime 1
 - through $p_{12}a_2^F$
 - large if p_{12} large, p_{22} large, α_2 small

SPECIAL CASE

• Real interest rate serially uncorrelated ($\rho = 0$), solution is

$$a_1 = \frac{1}{\alpha_1}$$

and

$$a_2 = \frac{1}{\alpha_2}$$

- Looks like fixed-regime solution, BUT
 - determinacy in FR: $\alpha_i > 1$ all i
 - switching allows determinacy w/ some $\alpha_i < 1$
 - if $p_{22} < \alpha_2 < 1$, regime 2 *amplifies* shocks
 - possible to fit volatile data with determinate eqm?

A NEW-KEYNESIAN MODEL

- Bare-bones model with nominal rigidities
 - from class in wide use for monetary policy analysis
 - general insights extend to more complex models now confronting data
- With recurring regime change and rational expectations:
 - How does the Taylor principle change?
 - How do impacts of demand and supply shocks change?
- Expectations-formation effects can be large

A NEW-KEYNESIAN MODEL

• Consumption-Euler equation and AS relations

$$x_{t} = E_{t}x_{t+1} - \sigma^{-1}(i_{t} - E_{t}\pi_{t+1}) + u_{t}^{D}$$

$$\pi_{t} = \beta E_{t}\pi_{t+1} + \kappa x_{t} + u_{t}^{S}$$

 Disturbances: bounded, autoregressive, mutually uncorrelated

$$\begin{aligned} u_t^D &= \rho_D u_{t-1}^D + \varepsilon_t^D \\ u_t^S &= \rho_S u_{t-1}^S + \varepsilon_t^S \end{aligned}$$

• A Taylor rule for $s_t = 1, 2$

$$i_t = \alpha(s_t)\pi_t + \gamma(s_t)x_t$$

NEW-KEYNESIAN MODEL: DETERMINACY

• Let
$$\pi_{it} = \pi_t(s_t = i)$$
 & $x_{it} = x_t(s_t = i), i = 1, 2$

Define forecast errors

$$\eta_{1t+1}^{\pi} = \pi_{1t+1} - E_t \pi_{1t+1} \qquad \eta_{2t+1}^{\pi} = \pi_{2t+1} - E_t \pi_{2t+1} \\ \eta_{1t+1}^{x} = x_{1t+1} - E_t x_{1t+1} \qquad \eta_{2t+1}^{x} = x_{2t+1} - E_t x_{2t+1}$$

Model is

$$AY_t = BY_{t-1} + A\eta_t + Cu_t$$

- Unique bounded eqm requires the 4 generalized eigenvalues of (*B*, *A*) to lie inside unit circle
- Derive long-run Taylor principle

NEW-KEYNESIAN MODEL: DETERMINACY

- Set $\gamma(s_t) = 0$
- Intertemporal margins interact w/ expected policy to affect determinacy
- Determinacy regions expand w/ parameters that reduce ability to substitute away from future policy
 - increase degree of stickiness (κ)
 - reduce intertemporal elasticity of substitution (σ)

DETERMINACY REGIONS EXPAND

DET. REGIONS & PRIVATE PARAMETERS

NEW-KEYNESIAN MODEL: SOLUTIONS

- MSV solution is straightforward to compute
- Easiest to consider numerical examples
- For inflation, intuition from fixed regimes carries through
 - · more active MP process reduces inflation volatility
- For output, switching introduces non-monotonicity
 - more active MP process can raise or lower output volatility, depending on source of shock

A RETURN TO THE 1970S?

- Studies find Fed passive 1960-79; active since 1982
- Fears of reverting to 1970s behind calls for IT
- Fiscal policy may be an impetus for switching to passive MP
- Embed estimates of Lubik-Schorfheide in switching setup
 - compute set of (p_{11}, p_{22}) that deliver uniqueness
- Implications
 - inference that US switched from indeterminate to determinate eqm requires current state be absorbing
 - fixed regime badly mispredicts impacts of supply & demand shocks

DETERMINACY REGIONS: L-S ESTIMATES

LS: $\alpha_1 = 2.19, \gamma_1 = .30, \alpha_2 = .89, \gamma_2 = .15$ Dark: high flexibility ($\sigma = 1.04, \kappa = 1.07$) Light: low flexibility ($\sigma = 2.84, \kappa = .27$)

FINANCIAL CRISES & BUSINESS CYCLES

- MP shifts focus from inflation to other concerns
 - financial stability & job creation
 - shift can last few months or more than year
 - during Greenspan era: 2 market crashes, 2 foreign financial crises, 2 jobless recoveries
 - documented by Marshall and Rabanal
- Take normal times to be $\alpha_1 = 1.5$, $\gamma_1 = .25$, and persistent
 - other regime: $\gamma_2 = .5$, α_2 and p_{22} vary
 - · a crude characterization of those events
- Spillovers from demand shocks can make inflation much more volatile and output much less volatile than if the active regime were permanent

FINANCIAL CRISES & BUSINESS CYCLES

	$p_{11} = .95$					
	Demand		Supply			
	Inflation	Output	Inflation	Output		
$p_{22} = 0$						
$\alpha_2 = .25$	1.060	1.011	1.092	.994		
$\alpha_2 = 0$	1.073	1.014	1.110	.992		
$p_{22} = .75$						
$\alpha_2 = .25$	1.268	.886	1.412	1.066		
$\alpha_2 = 0$	1.454	.807	1.653	1.104		

Standard Deviation Active Regime Relative to Fixed Regime Active and fixed regimes set $\alpha_1 = \alpha = 1.5$, $\gamma_1 = \gamma = .25$; $\gamma_2 = .5$

EMPIRICAL IMPLICATIONS OF SWITCHING

- Commonplace for empirical work to split data into regime-dependent sub-periods
- Estimates then interpreted in fixed-regime theoretical model
- We simulate switching eqm, estimate correctly-specified (fixed-regime) identified VARs
 - · assume econometrician knows when regime changed
- Estimated model

$$x_t = \delta i_t + u_t^D + lags$$

$$\pi_t = \theta x_t + u_t^S + lags$$

$$i_t = \alpha \pi_t + \bar{\gamma} x_t + u_t^{MP} + lags$$

EMPIRICAL IMPLICATIONS OF SWITCHING

	α	$\bar{\gamma}$	δ	θ
Regime 1	2.182	0.30	-1.690	0.409
Regime 2	0.885	0.15	-0.750	1.675
Full Sample	1.375	0.225	-1.476	0.657

Estimates from an identified VAR using simulated data. Regime 1 is conditional on remaining in regime with $\alpha_1 = 2.19$ Regime 2 is conditional on remaining in regime with $\alpha_2 = 0.89$. Full sample is recurring changes from regime 1 to regime 2. α is the estimated response of monetary policy to inflation. $\overline{\gamma}$ is the policy response to output, held fixed in estimation.

DEMAND & SUPPLY SHOCKS: LUBIK-SCHORFHEIDE PARAMETERS

 $\alpha_1 = 2.19, \gamma_1 = .30, \alpha_2 = .89, \gamma_2 = .15, p_{11} = .95, p_{22} = .93$ Dashed: fixed regime; Solid: active, switching

SUMMARY

- A broader perspective on Taylor principle and range of unique bounded equilibria it supports
- Endowing conventional models with empirically relevant MP switching processes
 - · drastically alters conditions for a unique bounded eqm
 - · generates important expectations-formation effects
- Developed a two-step solution method to get determinacy conditions and solutions
- Conventional models extremely sensitive to deviation from usual assumption that policy is permanent
- The possibility of regime change should be the default assumption in theoretical models

Wrap Up

- Many potential applications
 - any purely forward-looking model
 - exchange rate determination: switch between fixed & floating
 - term structure: policy switching
 - · technology: switch between high- and low-growth periods
 - terms of trade: persistent & transitory changes
- Need to develop methods to allow analytical solutions with endogenous state variables