EABCN TRAINING SCHOOL: Monetary-Fiscal Policy Interactions

LECTURE 4. GENERALIZING POLICY INTERACTIONS (B)

Eric M. Leeper

Indiana University

September 2010

THE MESSAGES

- Draws heavily from "Fluctuating Macro Policies and the Fiscal Theory" with Troy Davig (*NBER Macroeconomics Annual*, 2006) and "Monetary and Fiscal Policy Switching" with Hess Chung and Troy Davig (*JMCB*, June 2007)
- Difficult to obtain general analytical results with both monetary and fiscal switching
- Will examine some special cases and then turn to numerical results
- Allowing recurring regime change in both MP & FP can dramatically change nature of equilibria we study
- Raises the possibility for FP to play a role in our interpretations of business cycles

MONETARY AND FISCAL POLICY INTERACTIONS

- Standard reasoning about macro policy
 - · active monetary policy necessary for stability
 - Taylor principle delivers good economic performance in many models
 - · high and variable inflation due to indeterminacy
 - active monetary/passive fiscal policies insulate economy from demand shocks (e.g., fiscal)
- Reasoning rests on convenient assumptions
 - passive fiscal behavior
 - fixed policy regimes
 - $\bullet \ \mathsf{local} \Longrightarrow \mathsf{global}$

REGIME CHANGE

• Regime change: realizations of params in policy rule

 $R_t = \alpha_0(S_t) + \alpha_\pi(S_t)\pi_t + \alpha_x(S_t)x_t + \sigma(S_t)\varepsilon_t$

 \mathcal{S}_t evolves stochastically by a known process

- Many researchers have estimated policy rules to find parameters changed over time
 - Taylor, Clarida-Galí-Gertler, Auerbach, Lubik- Schorfheide, Sala, Favero-Monacelli
- Fixed-regime theory: problematic interpretation
 - ex-ante agents put probability 0 on change
 - ex-post agents put probability 1 on new regime
 - Cooley-LeRoy-Raymon: this is logically inconsistent

WHAT WE DO

- Bring together empirical and theoretical work
- Estimate Markov-switching rules for U.S. monetary and fiscal policies
- Embed estimated joint policy process in DSGE model with rigidities

WHAT WE FIND

- Policies fluctuate between active & passive
 - some active/active; some passive/passive
- Fit is good; connects to narrative accounts
- Post-war U.S. data can be modeled as a single, locally unique equilibrium
- Fiscal theory of price level always operative
 - · taxes matter even with active MP/passive FP
- Fiscal theory mechanism quantitatively important
 - \$1 transitory tax cut \Longrightarrow PV output rises \approx \$1
- Common practice: break samples into distinct regimes and embed rules in fixed-regime DSGE can produce misleading inferences

AN ANALYTICAL EXAMPLE

- Canzoneri, Cumby, Diba: Ricardian equilibria more general than non-Ricardian
 - if responses of taxes to liabilities is positive infinitely often—however small and infrequent—then eqm exhibits Ricardian equiv
 - because fiscal response does not stabilize debt, these are potentially equilibria with unbounded debt-output ratios
- Our example satisfies CCD's assumptions, but delivers a unique eqm in set with bounded debt-output ratios
 - this eqm is non-Ricardian
 - important conclusions hinge on unboundedness ass'n of CCD

The Model

- MIUF, constant endowment, log prefs, constant g
- Fisher equation

$$\frac{1}{R_t} = \beta E_t \frac{1}{\pi_{t+1}}$$

Money demand

$$m_t = \left[\frac{R_t - 1}{R_t}\right]^{-1} c$$

• Monetary policy

$$R_t = \exp\left(\alpha_0 + \alpha(S_t)\hat{\pi}_t + \theta_t\right)$$

• Tax policy

$$\tau_t = \gamma_0 + \gamma(S_t)(b_{t-1} + m_{t-1}) + \psi_t$$

 $(heta_t,\psi_t)$ exogenous policy shocks; $\hat{\pi}=\ln\pi$

THE MODEL

- S_t an *N*-state Markov chain with transition probs $P[S_t = j | S_{t-1} = i] = p_{ij}$
- Define expectation error (and use Fisher equation)

$$\eta_{t+1} \equiv \frac{1/\pi_{t+1}}{E_t[1/\pi_{t+1}]} = \beta \frac{R_t}{\pi_{t+1}}$$

• Then the inflation process is given by

$$\hat{\pi}_{t+1} = \alpha(S_t)\hat{\pi}_t + \alpha_0 + \theta_t - \hat{\eta}_{t+1} + \ln\beta$$

- Let $l_t = b_t + m_t$, real govt liabilities
- Use tax rule & money demand in govt budget constraint

$$l_t = \left[\frac{R_{t-1}}{\pi_t} - \gamma(S_t)\right] l_{t-1} - \frac{R_{t-1}}{\pi_t}c + D - \psi_t$$
$$D = g - \gamma_0$$

SOLUTION

Assume that

I
$$E_t[\gamma_{t+1}] = \gamma$$

II
$$\gamma$$
 satisfies $|1/\beta - \gamma| > 1$

- $\scriptstyle\rm III$ inflation process is stable in expectation (i.e., there exists a $0<\xi<\infty$ such that $|E_t\pi_{t+k}|<\xi$ for all k
 - (I)-(II): on average FP active; (III): on average MP passive
- Iterate on l equation and take E_{t-1} and law of iterated expectations

$$E_{t-1}[l_{t+k}] = (1/\beta - \gamma)^{k+1} \left[l_{t-1} - c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right) \right] + c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1} \right)$$

Stability requires that $l_{t-1} = c \left(\frac{1/\beta - D/c}{1/\beta - \gamma - 1}\right)$, which is positive if $D/c < 1/\beta$

SOLUTION

 The value of η_t is obtained from the budget constraint after substituting in the value of l:

$$\eta_t = \beta \frac{(1+\gamma(S_t))(1/\beta - D/c) - (D/c)(1/\beta - \gamma - 1)}{1+\gamma - D/c} \\ + \frac{\beta}{c} \left(\frac{1/\beta - \gamma - 1}{1+\gamma - D/c}\right) \psi_t$$

- The unique eqm mapping from ψ_t and $\gamma(S_t)$ to forecast error in inflation
- η and π_t process yields unique solution for inflation

CONCRETE EXAMPLE

• Two regimes, N = 2, and policy parameters take on the values

$$\alpha(S_t) = \begin{cases} \alpha(1) \text{ for } S_t = 1\\ \alpha(2) \text{ for } S_t = 2 \end{cases} \qquad \gamma(S_t) = \begin{cases} \gamma(1) \text{ for } S_t = 1\\ \gamma(2) \text{ for } S_t = 2 \end{cases}$$

- Suppose $\alpha(1)$ and $\alpha(2)$ are sufficiently small such that the inflation process is stable in expectation

$$E[\gamma_{t+j} | S_t = 1, \Omega_t] = \gamma(1)p_{11} + \gamma(2)p_{12}$$

= $E[\gamma_{t+j} | S_t = 2, \Omega_t] = \gamma(1)p_{21} + \gamma(2)p_{22} \equiv \gamma$

- If either $\gamma(1)$ or $\gamma(2)$ is positive, then the model satisfies CCD's premise that taxes adjust to debt infinitely often
- But negative tax shocks generate wealth effects that raise inflation
- The only eqm with *bounded* debt is one in which Ricardian equiv breaks down: counterexample to CCD

POLICY RULE ESTIMATES

- Hidden Markov chain, as in Hamilton and Kim-Nelson
- Off-the-shelf policy rules; no dynamics
- Independent switching of M & F regimes

$$r_t = \alpha_0(S_t^M) + \alpha_\pi(S_t^M)\pi_t + \alpha_x(S_t^M)x_t + \sigma_R(S_t^M)\varepsilon_t^r$$

4 states, α 's have 2 sets of values, P^M transition matrix

$$\tau_t = \gamma_0(S_t^F) + \gamma_b(S_t^F)b_{t-1} + \gamma_x(S_t^F)x_t + \gamma_g(S_t^F)g_t + \sigma_\tau(S_t^F)\varepsilon_t^\tau$$

2 states, P^F transition matrix

• $S_t = (S_t^M, S_t^F)$. Joint distribution $P = P^M \otimes P^F$, 8 states

POLICY RULE ESTIMATES

- U.S. data, 1948:2-2004:1
 - r : 3-month Treasury bill
 - π : log difference of GDP deflator
 - x : log output gap using CBO potential
 - τ : federal receipts net transfers as share of GDP
 - *b* : market value of federal debt held by public as share of GDP
 - *g* : federal government consumption plus investment expenditures as a share of GDP

POLICY RULE ESTIMATES

- Four checks on plausibility of estimates
 - 1. Are the estimates reasonable on a priori grounds?
 - 2. Do the estimates fit the data?
 - 3. Do the estimates accord with narrative and other evidence on active/passive periods?
 - 4. Does the estimated policy process make sense in a standard DSGE model?
- Yes!

MONETARY POLICY ESTIMATES

	Active		Passive	
State	$S_t^M = 1$	$S_t^M = 2$	$S_t^M = 3$	$S_t^M = 4$
α_{π}	1.3079	1.3079	.5220	.5220
	(.0527)	(.0527)	(.0175)	(.0175)
α_y	.0232	.0232	.0462	.0462
	(.0116)	(.0116)	(.0043)	(.0043)
σ_r^2	1.266e-5	9.184e-7	2.713e-5	5.434e-7
	(8.670e-6)	(1.960e-6)	(5.423e-6)	(1.512e-6)

TABLE 1: Log likelihood value = -1014.737

TAX POLICY ESTIMATES

State	$S_t^F = 1$	$S_t^F = 2$
γ_0	.0497	.0385
	(.0021)	(.0032)
γ_b	.0136	0094
	(.0012)	(.0013)
γ_y	.4596	.2754
Ū	(.0326)	(.0330)
γ_q	.2671	.6563
U	(.0174)	(.0230)
$\sigma_{ au}^2$	4.049e-5	5.752e-5
	(6.909e-6)	(8.472e-6)

TABLE 2: Log likelihood value = -765.279

INTEREST RATE: ACTUAL & PREDICTED

TAXES: ACTUAL & PREDICTED

MONETARY REGIME PROBABILITIES

FISCAL REGIME PROBABILITIES

JOINT POLICY REGIME PROBABILITIES

A MODEL WITH NOMINAL RIGIDITIES

- Conventional: monopolistic competition, Calvo pricing, elastic labor, lump-sum taxes, nominal debt
- Households

$$E_{t} \sum_{i=0}^{\infty} \beta^{i} \left[\frac{C_{t+i}^{1-\sigma}}{1-\sigma} - \chi \frac{N_{t+i}^{1+\eta}}{1+\eta} + \delta \frac{(M_{t+i}/P_{t+i})^{1-\kappa}}{1-\kappa} \right]$$
$$C_{t} = \left[\int_{0}^{1} c_{jt}^{\frac{\theta-1}{\theta}} dj \right]^{\frac{\theta}{\theta-1}}, \theta > 1$$
$$C_{t} + \frac{M_{t}}{P_{t}} + E_{t} \left(Q_{t,t+1} \frac{B_{t}}{P_{t}} \right) + \tau_{t} \leq \left(\frac{W_{t}}{P_{t}} \right) N_{t} + \frac{M_{t-1}}{P_{t}} + \frac{B_{t-1}}{P_{t}} + \Pi_{t}$$
$$E_{t} [Q_{t,t+1}]^{-1} = 1 + r_{t}$$

A MODEL WITH NOMINAL RIGIDITIES

• Firms

$$E_t \sum_{i=0}^{\infty} \varphi^i q_{t,t+i} \left[\left(\frac{p_t^*}{P_{t+i}} \right)^{1-\theta} - \Psi_{t+i} \left(\frac{p_t^*}{P_{t+i}} \right)^{-\theta} \right] Y_{t+i} \frac{p_t^*}{P_t} = \left(\frac{\theta}{\theta-1} \right) \frac{K_{1t}}{K_{2t}}$$
$$K_{1t} = (Y_t - G_t)^{-\sigma} \Psi_t Y_t + \varphi \beta E_t K_{1t+1} \left(\frac{P_{t+1}}{P_t} \right)^{\theta}$$
$$K_{2t} = (Y_t - G_t)^{-\sigma} Y_t + \varphi \beta E_t K_{2t+1} \left(\frac{P_{t+1}}{P_t} \right)^{\theta-1}$$
$$\pi_t^{\theta-1} = \frac{1}{\varphi} - \frac{1-\varphi}{\varphi} \left(\mu \frac{K_{1t}}{K_{2t}} \right)^{1-\theta}$$

• Relative price dispersion

$$\Delta_t = (1 - \varphi) \left(\frac{p_t^*}{P_t}\right)^{-\theta} + \varphi \pi_t^{\theta} \Delta_{t-1}$$

A MODEL WITH NOMINAL RIGIDITIES

· Policy follows estimated rules and satisfies

$$G_{t} = \tau_{t} + \frac{M_{t} - M_{t-1}}{P_{t}} + E_{t} \left(Q_{t,t+1} \frac{B_{t}}{P_{t}} \right) - \frac{B_{t-1}}{P_{t}}$$

- Two information assumptions:
 - standard: $\Omega_t = \{\varepsilon_{t-j}^r, \varepsilon_{t-j}^\tau, S_{t-j}^M, S_{t-j}^F, j \ge 0\}$
 - foreknowledge: $\Omega_t^* = \Omega_t \cup \{\varepsilon_{t+1}^{\tau}\}$
- Focus on stationary equilibria
 - $b/y \rightarrow \infty$ feasible with lump-sum taxes
 - U.S. b/y appears stationary
- Use monotone map method to solve non-linear model
 - · finds functions mapping state to decisions
 - state: $\Theta_t = \{b_{t-1}, w_{t-1}, \Delta_{t-1}, \varepsilon_t^r, \varepsilon_t^\tau, S_t\}$

THE FISCAL THEORY MECHANISM

• The ubiquitous equilibrium condition

$$\frac{M_{t-1}+B_{t-1}}{P_t} = \sum_{T=t}^{\infty} E_t \left[q_{t,T} \left(\tau_T - G_T + \frac{r_T}{1+r_T} \frac{M_T}{P_T} \right) \right]$$

- Three sources of financing: net-of-interest surpluses; seigniorage; revaluations induced by jumps in *P*_t
- Cut τ_t with exogenous τG and pegged r
 - at initial prices, feel wealthier
 - increase demand for current goods
 - · raises output relative to potential
 - money stock expands passively
 - must also raise inflation & lower real rates
- With positive probability of active FP, the mechanism is always operating

CHARACTERISTICS OF EQUILIBRIUM

- Numerical analysis of uniqueness and stationarity
- Numerical checks
 - randomly perturb decision rules at points in state space: converge back?
 - how monotone map behaves when properties known
 - indeterminacy (non-convergence)
 - non-existence (converges but solutions explode)
 - zero expected present value of debt?
 - histograms

QUANTIFYING THE FISCAL THEORY

- Three regimes are stationary
 - AM/PF, PM/PF, PM/AF
 - AM/AF exhibits slowly growing debt
- A surprise tax cut of 2% of GDP, conditional on each stationary regime
 - 1. condition on remaining in prevailing regime
 - 2. average across future regimes
- Compute tax multipliers
 - condition on initial regime

NON-LINEAR IMPULSE RESPONSES

• Draw from regime after initial shock

TAX MULTIPLIERS

• Defined as

$$PV_n(\Delta y)/\Delta \tau_0 = \frac{1}{\Delta \tau_0} \sum_{s=0}^n q_{0,s}(y_s - \overline{y})$$

 $n=5,10,20,\infty$

- Size depends on conditioning regime
 - always non-trivial
 - potentially large (> 1)
- Similar impacts from unanticipated and anticipated changes
- With draws from future regimes
 - size depends on initial regime
 - range can be very wide

OUTPUT MULTIPLIERS

TABLE 3: 80th percentile bands based on 10,000 draws

PRICE LEVEL EFFECTS

	$\%\Delta P$ after			
Regime	5 quarters	10 quarters	25 quarters	∞
AM/PF	0.324	0.641	1.513	6.704
PM/PF	0.770	1.077	1.232	1.237
PM/AF	0.949	1.369	1.620	1.633

TABLE 4: Cumulative effect on price level of an i.i.d. unanticipated tax cut of 2 percent of output, conditional on regime

FISCAL THEORY ROBUST

• Percentage of time in AM/PF regime

- Observed time series produced by switching DSGE
- Correctly identified VAR, but fixed regime
- Policy rules and pattern matrix:

$$r_t = \alpha_0 + \alpha_\pi \pi_t + \alpha_x x_t + \varepsilon_t^r$$

$$\tau_t = \gamma_0 + \gamma_x x_t + \gamma_b b_{t-1} + \varepsilon_t^r$$

	x	π	b	MP	FP
x	×	×	×	\otimes	\otimes
π		×	×	×	
b			×		
r	Х	Х	X	\times	
au	X	X	X		X

 $\times:$ freely estimated; $\otimes:$ imposed

- Two assumptions about econometrician's information
 - 1. full sample from single regime (draws from shocks & regime)
 - 2. extra-sample information to identify regime (draws only from shocks)
- Econometrician interprets results with fixed-regime DSGE
- Accurate quantitative estimates $\hat{\alpha}_{\pi}, \hat{\gamma}_{b}$

	All Regimes	AM/PF	PM/PF	PM/AF
$\hat{\alpha}_{\pi}$	0.723	1.308	0.595	0.528
$\hat{\gamma}_b$	0.002	0.016	0.018	-0.003

• Inaccurate qualitative inferences

"Fixed": All Regimes parameters in fixed-regime DSGE

- "All regimes" implies PM/AF: fiscal theory equilibrium
 - · correct inference about policy impacts
- Conditioning on regime gives incorrect inferences
 - AM/PF: Taylor principle & Ricardian
 - PM/PF: Indeterminacy & sunspots
- Most accuracy from full sample and averaging across regimes
 - quantitative predictions close
 - qualitative inferences correct

Wrap Up

- Fiscal theory can break down Ricardian equivalence
 - may be quantitatively important in U.S.
 - · likely still more important in other countries
- If fiscal theory important, need to modify models
- Misleading to study MP (or FP) in isolation
 - models must be consistent with evidence on both MP & FP
- Need a serious integration of MP & FP
 - tax distortions
 - other sources of non-neutrality
 - GBC met non-trivially

Wrap Up

- Empirical complications
 - · identification: disentagling monetary and fiscal impacts
 - unobserved fiscal state: foreknowledge of fiscal policy
- Understanding source of regime change
 - optimal policy response?
- Holy Grail
 - joint estimation of policy and private parameters in DSGE with switching
 - some work with just MP switching (Zha et al.) and with everything switching (Svensson-Williams)
 - no work with MP & FP switching