EABCN TRAINING SCHOOL: MONETARY-FISCAL POLICY INTERACTIONS

LECTURE 5. LUCAS CRITIQUE & MODEST POLICY INTERVENTIONS

Eric M. Leeper

Indiana University

September 2010

THE MESSAGES

- Draws on Leeper-Zha (*JME*, 2003)
- There are two typical reactions to empirical work on policy
 - acknowledge the Lucas critique, assert it doesn't apply to what you're doing, and move on
 - say "Lucas critique!" claim that the empirical work is invalid, and chant the DSGE mantra
- These responses are neither constructive nor thoughtful
- Both responses ignore a key point by Hurwicz
 - a model is structural—meaning invariant—only with respect to some class of interventions
 - so "structural" is a concept that is relative to some set of questions
- Taking Hurwicz seriously leads to desire to assess the quantitative importance of the LC

- Compute and evaluate linear projections conditional on hypothetical paths of monetary policy
- Framework includes:
 - theory that reports when linear projections reliable even though policy switches regime
 - empirical model of U.S. monetary policy, used to probe range of interventions that do not generate large expectations-formation effects, which Lucas (1976) emphasizes
- True economy: policy regime a Markov chain; regime hidden state variable
- Private agents Bayesian updaters—infer regime from policy history
- Both anticipated and unanticipated money growth affect output

- True economy generates 3 objects of interest:
 - nonlinear dynamics with agents updating beliefs about regime
 - 2. linear dynamics conditional on given regime
 - 3. large-sample linear dynamics that average across regimes
- Policy advisor: positive policy evaluation to inform policymakers
 - does not have access to (1)
 - (3) not interestinglinear combination systematically wrong
 - armed with misspecified linear model like (2)
 - want to know the class of interventions for which linear projections are good approximations to the truth

- Advisor estimates linear model over single regime
 - conditioning on regime, report projections conditional on hypothetical policies PLUS
 - class of interventions that make current regime tenuous ⇒ linear projections unreliable
 - class of interventions consistent with current regime ⇒ linear projections good approximations
- Theory decomposes total impact of policy intervention into:
 - direct effects: usual impacts when regime fixed
 - include intra-regime shifts in expectations—do not shift decision rules
 - expectations-formation effects: arise from agents updating beliefs about regime
 - include inter-regime shifts in expectations—shift expectations-formation rules and decision rules
 - we associate EFE with behavior Lucas emphasizes

- Consider interventions that vary in magnitude and dynamic pattern
 - compute a statistic indicating if DE are improbably large relative to history
 - intervention is modest when statistic close to its mean
- We find:
 - modest policy interventions may have big DE's without big EFE's
 - linear model more likely to break down after small, persistent interventions than after large, fleeting ones
 - interventions that describe routine Fed choices are unlikely to change beliefs about prevailing regime
 - modest interventions matter: shift probability distributions of variables
 - modest interventions capture Fed's appraisal/reappraisal process

CONTACTS WITH LITERATURE

- Most analyses mimic Lucas's experiment of once-for-all policy choice
- Logical problems with once-for-all [Cooley, LeRoy, Raymon; Sargent; Sims]
 - regime change as a surprise that will never again occur is inconsistent with actual behavior—government takes actions agents thought were impossible
 - CLR: "...any entity which changes over time in a way that is not completely predictable should be modeled as a sequence of random variables."
- Place probability distribution over all possible rules and define interventions as realizations of policy variables
 - decision rules incorporate belief that it's always possible for policy to return to its past ways [Sargent's Conquest]
- Sims interprets LC as pointing to a source of nonlinearity
- None of this denies potential importance of LC
 framework isolates & quantifies beh. Lucas emphasizes

THEORETICAL FRAMEWORK

- Extend's Cochrane's use of Rotemberg's costly price adjustment
 - $\alpha \in [0, 1]$ cost of adjusting prices
- Monopolistically competitive firm chooses $\{p_t\}$ to max profits cond'l on information at t-1

$$-.5E\sum_{t} \beta^{t}[(1-\alpha)(1-\alpha\beta)(p_{t}-m_{t})^{2}+\alpha(p_{t}-p_{t-1})^{2}].$$

 $p_t = m_t$ is the eqm when $\alpha = 0$

Solve first-order condition for the price level to yield

$$p_t = \alpha p_{t-1} + (1 - \alpha)(1 - \alpha\beta)E_{t-1} \sum_{i=0}^{\infty} (\alpha\beta)^i m_{t+j}$$

where m is nominal money stock; all variables in logs

• Add simple aggregate demand: $m_t - p_t = y_t$

THEORETICAL FRAMEWORK

Equilibrium output

$$y_t = \left[m_t - \frac{1 - \alpha}{1 - \alpha L} E_{t-1} \frac{1 - \alpha \beta}{1 - \alpha \beta L^{-1}} m_t \right]$$

- Note that
 - $\alpha \rightarrow 0: y_t = m_t E_{t-1}m_t$ Lucas's unanticipated money model
 - α → 1 : y_t = m_t − p anticipated and unanticipated money matter

POLICY SPECIFICATION

• Monetary policy: g_t is money growth between t-1 and t

$$m_t = g_t + m_{t-1}$$

given $m_0 > 0$

• Letting R_t be regime at t, the policy rule is

$$g_t = \mu(R_t) + \rho(R_t)g_{t-1} + \sigma(R_t)\varepsilon_{Pt}, \quad \varepsilon_{Pt} \sim N(0, 1), \quad g_0 > 0$$

- Label the two policy regime R^1 and R^2
- Regime switches obey a Markov chain with transition probabilities

$$P = \left[\begin{array}{c|c} P[R_t = R^1 \mid R_{t-1} = R^1] & P[R_t = R^1 \mid R_{t-1} = R^2] \\ P[R_t = R^2 \mid R_{t-1} = R^1] & P[R_t = R^2 \mid R_{t-1} = R^2] \end{array} \right] = \left[\begin{array}{c|c} p_{11} & 1-p_{22} \\ 1-p_{11} & p_{22} \end{array} \right]$$

and associated policy parameters

$$(\mu(R_t), \rho(R_t), \sigma(R_t)) = \begin{cases} (\mu_1, \rho_1, \sigma_1^2) \text{ if } R_t = R^1 \\ (\mu_2, \rho_2, \sigma_2^2) \text{ if } R_t = R^2 \end{cases}$$

POLICY SPECIFICATION

- The *policy process* is defined by above equations and values for the vector of policy parameters $\Pi \equiv (\mu_1, \mu_2, \rho_1, \rho_2, \sigma_1^2, \sigma_2^2, p_{11}, p_{22})$
- A realization of policy at t is the pair (g_t, R_t)
- Let $\Omega_t = \{p(R_0), m_0, g_0, g_1, \dots, g_t\}$, where $p(R_0)$ is agents' prior belief about regime at the initial date 0
- Agents' decisions at t are based on information contained in Ω_{t-1} , along with Π and their beliefs about regime, $P\left(R_{t-1}=R^s\mid\Omega_{t-1}\right)$, for s=1,2
- We assume agents observe the history of money growth realizations but none of the realizations of regime

DIRECT & EXPECTATIONS FORMATION EFFECTS

- Fixed regime ⇒ constant-coeff VAR rep
- Forecast conditional on Regime 1

$$x_{T+K} = \sum_{s=0}^{K-1} C_s \varepsilon_{T+K-s} + E\left(x_{T+K} \mid \Omega_T, R_{t+k} = R^1, k = 1, 2, \dots, K\right)$$

where $x_t = (p_t, y_t, m_t)'$ is a vector of variables from the model, C_s is the impulse response matrix at horizon s, and $E\left(x_{T+K} \mid \Omega_T, R_{t+k} = R^1, k = 1, 2, \ldots, K\right)$ is the projection conditional on information in Ω_T and on policy remaining in Regime 1 over the projection period

• Intervention at T: $I_T = \{\tilde{\varepsilon}_{PT+1}, \dots \tilde{\varepsilon}_{PT+K}\}$

DES & EFES

Now can define

$$\begin{split} \text{Direct Effects} & \equiv \eta_{PT+K} = \sum_{s=0}^{K-1} C_s \tilde{\varepsilon}_{PT+K-s} \\ & = & E\left(x_{T+K} \mid \Omega_T^I(k), k=1,2,\ldots,K; R_{t+k} = R^1, k=1,2,\ldots,K\right) \\ & - E\left(x_{T+K} \mid \Omega_T, R_{t+k} = R^1, k=1,2,\ldots,K\right) \end{split}$$

 η expresses direct effects as a percentage difference from a baseline forecast of no intervention

- Direct effects arise when regime is fixed and, therefore, the model is linear
- In the linear case, direct effects are impulse responses following the contemplated intervention

DES & EFES

- Intervention may trigger changes in agents' beliefs about policy regime
- Changing beliefs about regime affect agents' expectations of future policy and, therefore, their optimal choices
- Total effects relative to the no-intervention projection in the linear model are:

Total Effects
$$\equiv E\left(x_{T+K} \mid \Omega_T^I(k), k = 1, 2, \dots, K\right)$$

 $-E\left(x_{T+K} \mid \Omega_T, R_{t+k} = R^1, k = 1, 2, \dots, K\right)$

where the same intervention is conditioned on in DE & TE

 Because regime can shift, the total effects of an intervention depend on agents' beliefs about regime at the time of the intervention

Expectations-Formation Effects \equiv Total Effects - Direct Effects

DES & EFES

- Expectations-formation effects arise from the changes in behavior that lie at the heart of Lucas's critique
- Natural way to judge whether the Lucas critique is important is to check if expectations-formation effects are small
- If expectations-formation effects are small, then forecasts from a model that assumes policy regime is fixed will be reasonably accurate
- If, in contrast, expectations-formation effects are large relative to direct effects, then the fixed-regime model's predictions will be systematically wrong because the model does not capture expectations-formation effects
- In this case, the linear approximation is likely to breakdown as the nonlinearity triggered by expectations-formation effects is relatively important
- · This is the situation on which Lucas focuses

LEARNING ABOUT REGIME

- Bayesian updating about hidden regime
- prediction step:

$$P\left(R_{t+h} \mid \Omega_{t+h-1}\right) = \sum_{R_{t+h-1} = R^{1}, R^{2}} \left\{ P\left(R_{t+h} \mid R_{t+h-1}\right) P\left(R_{t+h-1} \mid \Omega_{t+h-1}\right) \right\}$$

· updating step:

$$P(R_{t+h} \mid \Omega_{t+h}) = \frac{\varphi(g_{t+h} - \mu(R_{t+h}) - \rho(R_{t+h})g_{t+h-1}; \sigma^{2}(R_{t+h})) P(R_{t+h} \mid \Omega_{t+h-1})}{\sum_{R_{t+h}=R^{1}, R^{2}} \{\varphi(g_{t+h} - \mu(R_{t+h}) - \rho(R_{t+h})g_{t+h-1}; \sigma^{2}(R_{t+h})) P(R_{t+h} \mid \Omega_{t+h-1})\}}$$

where $\varphi(x;y)$ is the standard normal pdf

SIMULATING THE MODEL

- Have defined a modest policy intervention in terms of the economic behavior that Lucas emphasizes
- By separating DEs & EFEs of an intervention, the theory implies a natural measure of whether a particular intervention is modest
- The theory offers a laboratory for finding examples of interventions where the Lucas critique bites
- Inferences about whether the LC bites for an intervention depend on parameters
- Focus on two different sets of parameters
 - policy regimes are far apart so shifts in beliefs about regime can generate quantitatively important EFEs under certain conditions
 - loosely calibrated to U.S. monetary data, so regimes much closer and EFEs tend to be small for many hypothetical interventions

SIMULATING THE MODEL

- Parameters calibrated to match a monthly model
 - $\beta \Rightarrow 4\%$ real rate
 - $\alpha = .9 \Rightarrow$ costly price adjustment
 - $p_{11} \Rightarrow 30$ years (low g)
 - $p_{22} \Rightarrow 10$ years (high g)
- Two processes for g
 - extreme differences
 - U.S. data

A MODESTY METRIC

- For a given intervention, the distribution of direct effects may be obtained from the sequence of forecast errors computed in DE
 - $\eta_{PT+K} \sim N(0, \sum_{s=0}^{K-1} C_s^2)$
 - scale the statistic by the standard error of the direct effect on each variable, denoted by η_{PT+K}^{*}
 - · scale total effects similarly

Definition. An intervention is *modest* if its direct effects are small. More precisely, an intervention is modest over a specified forecast horizon, K, and for variable i, if

$$\left| e_i \eta_{PT+K}^* \right| < 2$$

where e_i is a row vector of zeros with unity in the i^{th} column

 I_T is modest if its effects are "small" relative to typical random variation in MP (i.e., DE's)

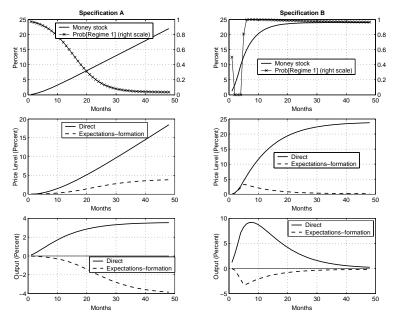
A MODESTY METRIC

- η^* reports how unusual a conditional forecast is relative to the typical size of the direct effects, as measured in units of standard deviations of direct effects
- With η^* a standard normal random variable, the interval [-2,2] defines a 95 percent confidence interval
- Large values of the statistic suggest the forecasted paths are unlikely to be due to direct effects alone, so EFEs must be important
- When an intervention violates the MPI definition, we infer that the behavior underlying the Lucas critique is likely to be quantitatively important, making a linear approximation poor

- Regimes have money growth rates of 3.04% and 13.08%
- Special case of a one-period intervention:

```
I_T = \{1, 0, \dots, 0\}
```

- Conventional impulse response function
 - conditions on being in and remaining in Regime 1
 - · DE's of alternative interventions are functions of this IRF
- Two kinds of interventions of same cumulative size, both 48 months
 - Extreme A: small and persistent— $I_T = \{2/3, 2/3, \dots, 2/3\}$ std. devs.
 - Extreme B: large and fleeting— $I_T = \{8, 8, 8, 8, 0, \dots, 0\}$ std. devs.


Money growth processes

	μ_1	μ_2	ρ_1	$ ho_2$	σ_1	σ_2
Extreme Assumptions	.0005	.0007	.80	.932	.0015	.0015
Calibration to U.S. Data	.0013	.003	.75	.60	.0019	.0024

Calibration to U.S.data achieved by splitting sample into two "regimes" 1959:2-1971:12/1983:4-2000:7 and 1972:1-1982:12 (excluding 1983:1-1983:3 due to exceptionally high money growth rate) and fitting AR(1) processes to monthly growth of M2 in each period.

Parameters for Money Growth Processes

- Small and persistent (Figure)
 - beliefs shift away from Regime 1 ⇒ EFE's grow
 - on p: DE and EFE reinforcing
 - on y: DE and EFE opposing
 - statistic ⇒ intervention immodest
- Large and fleeting (Figure)
 - beliefs shift quickly but briefly
 - DE's on y close to fixed-regime impulse responses
 - EFE's small on p and y
 - statistic ⇒ intervention immodest
 - horizon matters: linear model reliable at longer horizons

	Direct Effects		Expectations-				
	η_{PT+K}^*		Formation Effects				
	(Stand	dard Deviations)		(Standard Deviations)			
Specification	p	y	p	y			
Extreme—A	4.53	3.45	0.86	-3.50			
Extreme—B	5.34	0.22	0.04	-0.17			
Extreme—C	2.07	1.61	0.16	-0.63			
Extreme—D	4.53	3.45	0.30	-1.20			
Extreme—E	1.30	1.04	0.48	-2.01			
U.S. Data—A	4.54	3.32	0.02	-0.06			
U.S. Data—B	5.55	0.19	0.01	-0.05			
U.S. Data—E	1.30	1.04	0.03	-0.10			

Direct Effects (η^*) and Expectations-Formation Effects scaled by standard errors of direct effects based on 5000 draws.

A: $\tilde{\varepsilon}_P = \frac{2}{3}$ in each of 48 months

B: $\tilde{\varepsilon}_P = 8.0$ for first 4 months, $\tilde{\varepsilon}_P = 0$ for next 44 months

C: $\tilde{\varepsilon}_P = \frac{1}{3}$ in each of 48 months

D: $\tilde{\varepsilon}_P = \frac{2}{3}$ in each of 48 months, but $p_{22} = .9167$ (1-year duration of Regime 2)

In Specifications A-D, $P(R_T = R^1) = .98$.

E: $\tilde{\epsilon}_P = 0.2$ in each of 48 months, but $P(R_T = R^1) = .02$.

Impacts of Policy Interventions at 48-Month Horizon

Money growth processes

	μ_1	μ_2	ρ_1	$ ho_2$	σ_1	σ_2
Extreme Assumptions	.0005	.0007	.80	.932	.0015	.0015
Calibration to U.S. Data	.0013	.003	.75	.60	.0019	.0024

Calibration to U.S.data achieved by splitting sample into two "regimes" 1959:2-1971:12/1983:4-2000:7 and 1972:1-1982:12 (excluding 1983:1-1983:3 due to exceptionally high money growth rate) and fitting AR(1) processes to monthly growth of M2 in each period.

Parameters for Money Growth Processes

- Loosely calibrated to U.S. money growth: money growth rates of 6.4% and 9.4%
- Small and persistent
 - substantial DE's: p rises 19% and y rises 4%
 - beliefs don't move away from Regime 1
 - conditional likelihood more dispersed under Regime 2 $(\sigma_2>\sigma_1)$, so intervention must be larger to make Regime 2 more likely
 - money growth less persistent in Regime 2 ($\rho_2 < \rho_1$), so expect more rapid mean reversion in Regime 2 than a persistent intervention implies
 - Regime 2 less likely than Regime 1 given the intervention
 - small EFE's: statistic ⇒ intervention immodest—reject too often

- Large and fleeting
 - beliefs shift quickly but briefly
 - DE's large: y rises 10% in short run
 - EFE's tiny because two regimes are close
 - statistic ⇒ intervention modest

	Direct Effects		Expectations-				
	η_{PT+K}^*		Formation Effects				
	(Stand	dard Deviations)		(Standard Deviations)			
Specification	p	y	p	y			
Extreme—A	4.53	3.45	0.86	-3.50			
Extreme—B	5.34	0.22	0.04	-0.17			
Extreme—C	2.07	1.61	0.16	-0.63			
Extreme—D	4.53	3.45	0.30	-1.20			
Extreme—E	1.30	1.04	0.48	-2.01			
U.S. Data—A	4.54	3.32	0.02	-0.06			
U.S. Data—B	5.55	0.19	0.01	-0.05			
U.S. Data—E	1.30	1.04	0.03	-0.10			

Direct Effects (η^*) and Expectations-Formation Effects scaled by standard errors of direct effects based on 5000 draws.

A: $\tilde{\varepsilon}_P = \frac{2}{3}$ in each of 48 months

B: $\tilde{\varepsilon}_P = 8.0$ for first 4 months, $\tilde{\varepsilon}_P = 0$ for next 44 months

C: $\tilde{\varepsilon}_P = \frac{1}{3}$ in each of 48 months

D: $\tilde{\varepsilon}_P = \frac{2}{3}$ in each of 48 months, but $p_{22} = .9167$ (1-year duration of Regime 2)

In Specifications A-D, $P(R_T = R^1) = .98$.

E: $\tilde{\epsilon}_P = 0.2$ in each of 48 months, but $P(R_T = R^1) = .02$.

Impacts of Policy Interventions at 48-Month Horizon

- Examine U.S. monetary policy in identified VAR
- Many economists reject VARs—identified or otherwise—as incapable of doing policy analysis
- This is one reason that DSGE modeling is so popular in central banks
- But recall Hurwicz: a model is "structural" only with respect to some class of interventions
- DSGE models are not structural with respect to arbitrary interventions
- And identified VARs may be structural with respect to some useful interventions
- This becomes a quantitative question and the Lucas critique tends to be perceived as theorem that applies globally

- Much routine MP amounts to implementing the "existing regime"
 - in DSGE terms...applying the prevailing MP rule
- By definition, regime change must be relatively rare
 - otherwise, MP isn't really following a rule
- The compelling policy question: How much structure is enough to do policy analysis?
 - Answer: It depends on the analysis being conducted
- Zha and I argue that most routine FOMC questions involve conditioning on modest interventions
 - EFE's are small
 - even though DE's are large
 - particularly true of the appraisal/reappraisal process that is central to routine MP analysis

- Checking the modesty of the interventions being conducted in VARs ought to become standard practice
 - for example, Hamilton-Herrera have done this to examine Bernanke-Gertler-Watson's study on oil prices & MP
 - Sveriges Riksbank does this regularly to examine the interventions they examine
- An appreciation of the class of interventions for which DSGE models are structural would be helpful
 - would combat the tendency to believe that maximizing utility ensures immunity from the Lucas critique regardless of the counterfactuals being conducted in the DSGE model

- Example: no one believes Calvo pricing, Rotemberg pricing, habit formation, various indexation schemes, and a host of other bells & whistles are "structural"
 - we calibrate parameters of those features to historical moments
 - then we compute optimal MP, holding those parameters fixed
 - logic of this exercise: one of two possible inferences
 - Historically MP was nearly optimal, so no big welfare gains are available
 - If there are big welfare gains, then the move to optimal policy will create incentives for private sector to update its behavior ⇒ these feature are not structural
- Either way, we ought to think harder about which features
 of our models really are structural with respect to the
 interventions we contemplate