EABCN TRAINING SCHOOL: MONETARY-FISCAL POLICY INTERACTIONS

LECTURE 7. EFFICACY OF FISCAL STIMULUS

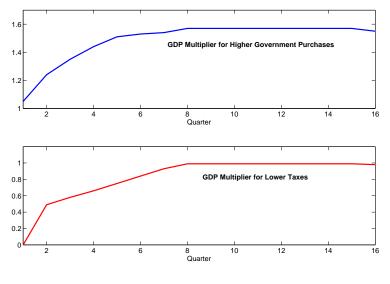
Eric M. Leeper

Indiana University

September 2010

THEMES

- Monetary and fiscal policy responses to recession and financial crisis of 2007-2009 have been unusual aggressive
- United States, Japan, China, many European countries employed large "discretionary" fiscal stimulus packages
- Many central banks have driven interest rates to near zero and engaged in unconventional operations that have exploded their balance sheets
- This lecture pulls together themes of previous lectures to address potential consequences of these actions
 - interaction of monetary-fiscal policies
 - role of fiscal financing for policy effects
 - how fiscal foresight can affect short-run impacts of policy
 - regime switching in monetary and fiscal policies
- Draws on Leeper-Plante-Traum (2010), Leeper-Walker-Yang (2009), Davig-Leeper (2010)


THE MESSAGES

- Estimates of fiscal stimulus depend strongly on
 - how stimulus is implemented—tax cuts (which taxes); spending increases (which spending)
 - *how* and *when* the private sector expects the resulting debt expansion will be financed
 - whether the stimulus occurs gradually, so agents have fiscal foresight
 - how monetary policy behaves—whether it is active or passive
- Unfortunately, many of these considerations play little role in government projections of impacts of fiscal stimulus

THE U.S. EXAMPLE

- American Reinvestment and Recovery Act: \$787 Billion (5 % GDP)
- Financed with new government debt issuance
- Rationale provided by paper by Romer-Bernstein reporting
 - multipliers for permanent 1% of GDP increase in *G* and decrease in *T*
 - forecasts of unemployment rate with and with stimulus
 - claim GDP will be 3.7% higher; 3.6 million new jobs

ROMER-BERNSTEIN MULTIPLIERS

Permanent Fiscal Shocks

Some Questions

- What economic models underlie the multipliers?
- Are the numbers reproducible?
- Why consider *permanent* changes when the Act makes transitory changes?
- What are the consequences of the stimulus for government debt?
- What are the repercussions of significantly higher debt?
- Will the debt run-up be sustained or retired?
- At what level will debt stabilize?
- How will policies adjust in the future to either sustain or retire debt?
- What assumptions about current and future monetary policy are embedded in the multipliers?

Some Answers from Obama Administration

Some Answers from Economic Research

- Three models of fiscal policy
- 1. Neoclassical growth model I (Leeper-Plante-Traum)
 - fiscal detail: 3 taxes rates, G consumption, transfers
 - sources of inertia
 - · estimated to U.S. data
- 2. Neoclassical growth model II (Leeper-Walker-Yang)
 - fiscal detail: 2 tax rates, *G* consumption, *G* investment, transfers
 - time-to-build in government infrastructure \Rightarrow foresight
 - calibrated to U.S. data
- 3. New Keynesian model (Davig-Leeper)
 - monetary & fiscal policy
 - regime switching in policies
 - calibrated to U.S. data

NEOCLASSICAL GROWTH MODEL I

- · Conventional except for specification of policy behavior
 - tax rules

$$\begin{aligned} \hat{\tau}_t^k &= \varphi_k \hat{Y}_t + \gamma_k \hat{B}_{t-1} + \phi_{kl} u_t^l + \phi_{kc} u_t^c + u_t^k \\ \hat{\tau}_t^l &= \varphi_l \hat{Y}_t + \gamma_l \hat{B}_{t-1} + \phi_{lk} u_t^k + \phi_{lc} u_t^c + u_t^l \\ \hat{\tau}_t^c &= \phi_{kc} u_t^k + \phi_{lc} u_t^l + u_t^c \end{aligned}$$

• spending rules

$$\hat{G}_t = -\varphi_g \hat{Y}_t - \gamma_g \hat{B}_{t-1} + u_t^g$$
$$\hat{Z}_t = -\varphi_Z \hat{Y}_t - \gamma_Z \hat{B}_{t-1} + u_t^z$$

hats are log-deviations, $u\mbox{'s}$ are AR(1) with innovations N(0,1)

GROWTH MODEL I: RESULTS

- Data like to have many instruments adjust to stabilize debt
- Multipliers tend not to be very large
- Caveat: with certain monetary policies, multipliers can be *much* larger
 - short-run and long-run multipliers can be very different
- Source of financing can matter a lot, especially at longer horizons
- Both speed at which debt stabilized and size of automatic stabilizers—φ's—matter for fiscal impacts
- Takes many years to establish present-value budget balance—20 or more

FISCAL MULTIPLIERS

• A common measure [Blanchard-Perotti (2002), Romer-Bernstein (2009)]

Impact Multiplier
$$(k) = rac{\Delta Y_{t+k}}{\Delta G_t}$$

- Sweeps dynamics of fiscal variables under the rug
- Present value multiplier [Mountford and Uhlig]

Present Value Multiplier(k) =
$$\frac{E_t \sum_{j=0}^k \prod_{i=0}^j (1+r_{t+i})^{-j} \Delta Y_{t+k}}{E_t \sum_{j=0}^k \prod_{i=0}^j (1+r_{t+i})^{-j} \Delta G_{t+k}}$$

Capital Tax Present-Value Multipliers								
	1 quarter	10 quarters	∞					
$\frac{PV(\Delta Y)}{PV(\Delta T^k)}$	-0.18	-0.33	-0.72					
$\frac{PV(\Delta C)}{PV(\Delta T^k)}$	-0.076	-0.11	-0.47					

Labor Tax Present-Value Multipliers

Variable	1 quarter	10 quarters	∞
$\frac{PV(\Delta Y)}{PV(\Delta T^l)}$	-0.19	-0.19	-0.21
$\frac{PV(\Delta C)}{PV(\Delta T^l)}$	-0.17	-0.29	-0.37

All fiscal instruments respond to debt

Capital Tax Present-Value Multipliers

Variable	1 quarter	10 quarters	∞
$\frac{PV(\Delta Y)}{PV(\Delta T^k)}$	-0.18	-0.33	-0.72
· · · ·	-0.14	-0.18	-3.70
$\frac{PV(\Delta C)}{PV(\Delta T^k)}$	-0.076	-0.11	-0.47
× /	-0.10	-0.18	-0.83

Labor Tax Present-Value Multipliers

Variable	1 quarter	10 quarters	∞
$\frac{PV(\Delta Y)}{PV(\Delta T^l)}$	-0.19	-0.19	-0.21
. ,	-0.14	-0.04	0.92
$\frac{PV(\Delta C)}{PV(\Delta T^l)}$	-0.17	-0.29	-0.37
	-0.19	-0.34	0.06

Only capital and labor taxes respond to debt (red)

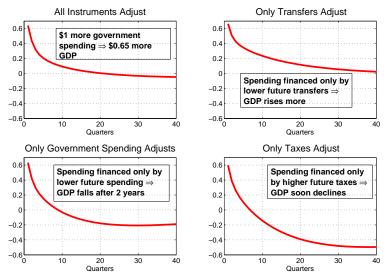
Government Spending Present-Value MultipliersVariable1 quarter10 quarters ∞ $\frac{PV(\Delta Y)}{PV(\Delta G)}$ 0.640.330.03 $\frac{PV(\Delta C)}{PV(\Delta G)}$ -0.26-0.35-0.60

Transfers Present-Value Multipliers

	1 quarter	10 quarters	∞
$\frac{PV(\Delta Y)}{PV(\Delta Z)}$	-0.02	-0.28	-0.59
$\frac{PV(\Delta C)}{PV(\Delta Z)}$	0.01	0.13	0.12

All fiscal instruments respond to debt

Government Spending Present-Value Multipliers


Variable	1 quarter	10 quarters	∞
$\frac{PV(\Delta Y)}{PV(\Delta G)}$	0.64	0.33	0.03
	0.59	0.14	-0.99
$\frac{PV(\Delta C)}{PV(\Delta G)}$	-0.26	-0.35	-0.60
()	-0.24	-0.27	-0.89

Transfers Present-Value Multipliers

	1 quarter	10 quarters	∞
$\frac{PV(\Delta Y)}{PV(\Delta Z)}$	-0.02	-0.28	-0.59
× ,	-0.07	-0.33	-1.40
$\frac{PV(\Delta C)}{PV(\Delta Z)}$	0.01	0.13	0.12
()	0.04	0.14	-0.38

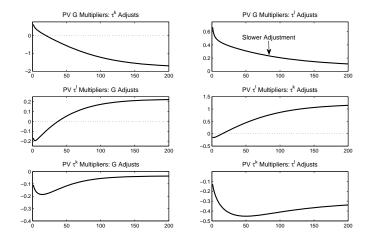
Only capital and labor taxes respond to debt (red)

G Multipliers and Fiscal Financing

Counterfactual exercises

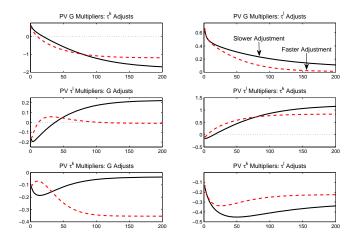
Speed of Adjustment of Fiscal Instruments

- · Modify fiscal rules to vary responsiveness to debt
 - tax rules

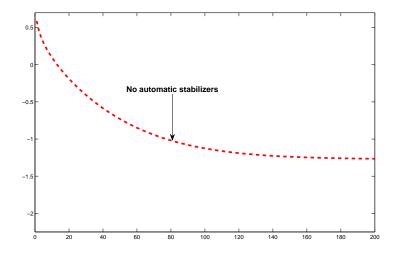

$$\begin{aligned} \hat{\tau}_t^k &= \varphi_k \hat{Y}_t + \mu \gamma_k \hat{B}_{t-1} + \phi_{kl} u_t^l + \phi_{kc} u_t^c + u_t^k \\ \hat{\tau}_t^l &= \varphi_l \hat{Y}_t + \mu \gamma_l \hat{B}_{t-1} + \phi_{lk} u_t^k + \phi_{lc} u_t^c + u_t^l \\ \hat{\tau}_t^c &= \phi_{kc} u_t^k + \phi_{lc} u_t^l + u_t^c \end{aligned}$$

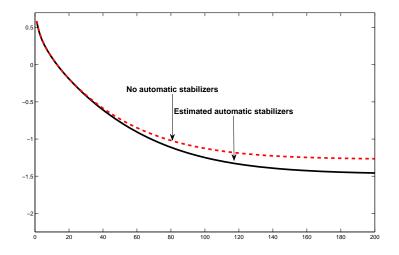
• spending rules

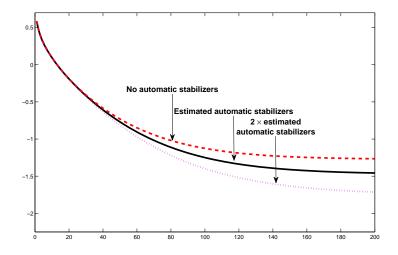
$$\hat{G}_t = -\varphi_g \hat{Y}_t - \mu \gamma_g \hat{B}_{t-1} + u_t^g \hat{Z}_t = -\varphi_Z \hat{Y}_t - \mu \gamma_Z \hat{B}_{t-1} + u_t^z$$

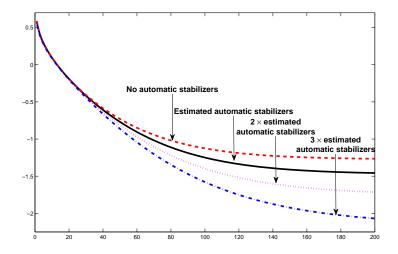

vary μ to speed up or slow down adjustment

DIFFERENT SPEEDS OF ADJUSTMENT




Present-value multipliers for output: slower adjustment ($\mu = 0.5$)


DIFFERENT SPEEDS OF ADJUSTMENT



Present-value multipliers for output: slower adjustment ($\mu = 0.5$); faster adjustment ($\mu = 2$)

FISCAL FINANCING HORIZONS ARE LONG

$$PV_t(K) = E_t \sum_{j=1}^{K} \beta^j [(S/B)S_{t+j} - (1/\beta)R_{t+j-j}]$$

NEOCLASSICAL GROWTH MODEL II

- In U.S. and Europe, heavy emphasis on government infrastructure spending
- Similar in structure to previous model; two important extensions
 - introduction of productive government investment G^I
 - introduction of time-to-build in government capital
- Distinguish between "budget authority" and "outlays"
 - "authority" occurs first, giving total spending and planned path of "outlays"
 - implementation delays modeled with time-to-build

IMPLEMENTATION DELAYS: EXAMPLE I

Estimated costs for highway construction in Title XII of the American Recovery and Reinvestment Act of 2009

	2009	2010	2011	2012	2013	2014	2015	2016	Total
Budget Authority	27.5	0	0	0	0	0	0	0	27.5
Estimated Outlay	2.75	6.875	5.5	4.125	3.025	2.75	1.925	.55	27.5

Billions of dollars. Source: Congressional Budget Office

IMPLEMENTATION DELAYS: EXAMPLE II

Estimated costs for the National Highway Bridge Reconstruction and Inspection Act of 2008 (not enacted)

	2009	2010	2011	2012	2013	2009-2013
Budget Authority	1,029	5	5	5	5	1,049
Estimated Outlay	280	425	169	56	46	976

Billions of dollars. Source: Congressional Budget Office

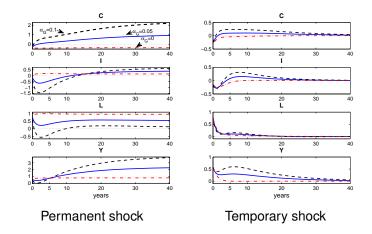
MODELING GOVERNMENT INVESTMENT

Aggregate production

$$Y_t = A \left(u_t K_{t-1} \right)^{\alpha_K} \left(L_t \right)^{\alpha_L} \left(K_{t-1}^G \right)^{\alpha_G}$$

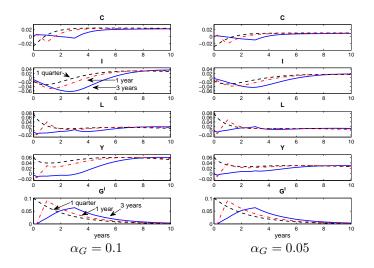
• α_G critical ($\alpha_G = 0 \Rightarrow$ unproductive)

- A_t^I : budget authorization; N quarters to complete project
- · Law of motion for public capital

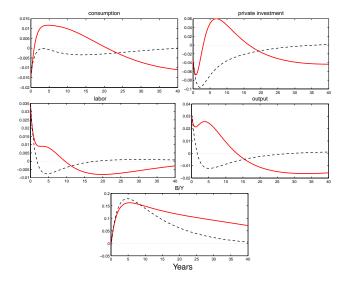

$$K_t^G = (1 - \delta_G) K_{t-1}^G + A_{t-N+1}^I$$

- budget authorization process an AR(1)
- Government investment implemented at t (outlaid)

$$G_t^I = \sum_{n=0}^{N-1} \phi_n A_{t-n}^I,$$


•
$$\sum_{n=0}^{N-1} \phi_n = 1$$
; ϕ 's are outlay rates

ROLE OF GOVERNMENT PRODUCTIVITY


No implementation delays and lump-sum financing

IMPLEMENTATION DELAYS AND FORESIGHT

With implementation delays

DIFFERENT SPEEDS OF ADJUSTMENT

Capital taxes adjust slower (solid) and faster (dashed)

NEW KEYNESIAN MODEL

- Two key distortions that given monetary policy real effects:
 - monopolistic competition
 - sluggish price adjustment
- Elastic labor supply; inelastic capital
- Transmission mechanism of MP: real interest rates
- Transmission mechanism of FP: real interest rates & wealth effects
- Integrate monetary and fiscal policy
 - interest rate rule for MP
 - exogenous process for government spending
 - lump-sum taxes

NEW KEYNESIAN MODEL

- Estimate switching rules for monetary & tax policy
- Embed rules in calibrated model
- Four possible policy regimes:
 - 1. Active MP/Passive FP
 - 2. Passive MP/Active FP
 - 3. Passive MP/Passive FP
 - 4. Active MP/Active FP
- With fixed regime: Passive/Passive \Rightarrow indeterminacy
- With fixed regime: Active/Active \Rightarrow non-existence
- Can study consequences of periodically visiting those forbidden regimes
- Focus on effects of *unproductive* G

U.S. POLICY RESPONSES TO RECESSION

- Unusually aggressive **joint** policy response
 - federal funds rate near zero bound since Dec '08
 - Fed's balance sheet has more than doubled: \$800 billion to \$2.5 *trillion*
 - \$125 billion tax refund in '08 and \$787 billion stimulus package in '09
 - deficit is 13% of GDP now; debt will rise from 40% to 80% of GDP over the decade; may reach 277% by 2040
- Objective of stimulus is to create jobs by increasing consumption demand, labor demand, employment

THE MODELING EFFORT

- Model two aspects of the policy response
 - 1. joint monetary and fiscal policy effort
 - 2. current aggressive policies not likely to continue indefinitely
- Use standard new Keynesian model with monetary and fiscal policy regime change
- Bottom-line: government spending multipliers can be large or small, depending on policy regime
- Simulate effects of American Recovery and Reinvestment Act under alternative policy assumptions

GOVERNMENT SPENDING: CROWD OUT OR IN?

- Policy
 - Romer-Bernstein: output multiplier ≈ 1.5 and very persistent
 - CBO: stimulus makes recession less severe and shorter lived
- Research
 - no professional consensus that higher ${\cal G}$ raises private ${\cal C}$
 - RBC or standard new Keynesian models \Rightarrow *G* crowds out *C*
 - empirical evidence mixed, but favors crowding in

POLICY REGIMES

- Since the late 1940s, U.S. monetary & fiscal policies have fluctuated among:
 - Active MP \Rightarrow Taylor principle holds
 - Passive MP \Rightarrow Taylor principle not satisfied
 - Passive $FP \Rightarrow PV$ of taxes = PV of G
 - Active $FP \Rightarrow PV$ of taxes < PV of G
- Current policy: passive MP & active FP

WHY POLICY REGIME MATTERS

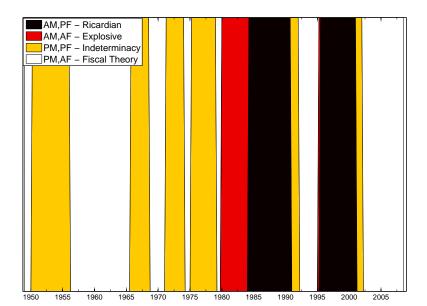
- Following an increase in G...
 - 1. Passive MP allows the real interest rate to fall in response to higher expected inflation
 - 2. Active FP diminishes the negative wealth effect induced by higher taxes
- Both of these increase the stimulative effect of government spending
- These do not happen under the usual active MP/passive FP regime
- A natural & relevant way to get large *G* multipliers

MONETARY POLICY RULE ESTIMATES

• The monetary policy rule is

$$r_t = \alpha_0(S_t^M) + \alpha_\pi(S_t^M)\pi_t + \alpha_y(S_t^M)y_t + \sigma_r(S_t^M)\varepsilon_t^r$$

- S_t^M follows a four-state Markov chain
 - reaction coefficients and shock volatility switch independently
- Monetary policy breaks into regimes with
 - A strong response to inflation (active): $\alpha_{\pi} = 1.29$
 - A weak response to inflation (passive): $\alpha_{\pi} = .53$


FISCAL POLICY RULE ESTIMATES

• The fiscal policy rule is

 $\tau_t = \gamma_0(S_t^F) + \gamma_b(S_t^F)b_{t-1} + \gamma_y(S_t^F)y_t + \gamma_g(S_t^F)G_t + \sigma_\tau(S_t^F)\varepsilon_t^\tau$

- S_t^F follows a two-state Markov chain
- Fiscal policy breaks into regimes with
 - Taxes rise in response to debt (passive): $\gamma_b = .07$
 - Taxes fall in response to debt (active): $\gamma_b = -.025$

U.S. MONETARY AND FISCAL REGIMES

MODEL SETUP

- We use a basic New Keynesian model with variable government purchases
 - fixed capital; elastic labor supply; Calvo price rigidities
- Unproductive government spending financed via:
 - lump-sum taxes; one-period nominal bonds; seigniorage revenues
- Government purchases follow AR(1) (for now...)
- Government demands goods in same proportion as private sector

INFLATION RESPONSE CENTRAL TO GTRANSMISSION

- higher *G* impacts prices as follows:

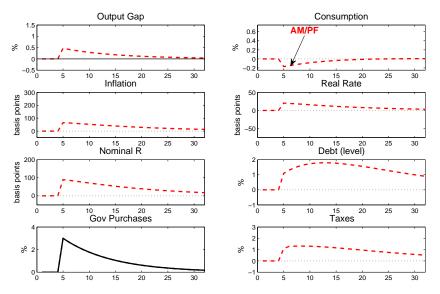
 - firms meet demand at posted prices; \Uparrow labor demand
 - \Uparrow real wages and real marginal costs
 - firms reoptimizing their pricing decision \Uparrow prices
- Sticky prices and serially correlated *G* raise current and expected inflation
- Response of consumption hinges on monetary policy
 - active MP \uparrow real rate; passive MP \downarrow real rate, so agents pull consumption forward
 - passive fiscal policy implies higher future tax liability relative to active fiscal policy

RICARDIAN/MONETARIST WORLD

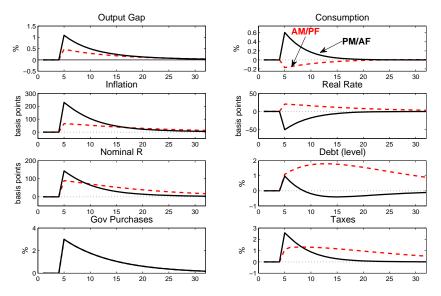
- Temporarily higher G under a fixed AM/PF policy
 - 1. intra-temporal substitution: demand for labor increases, hours worked and wages rise
 - 2. higher wages raise marginal cost and induce firms to raise prices
 - 3. active monetary policy raises the real rate in response to higher inflation
 - 4. inter-temporal substitution: agents postpone consumption due to higher real rate
 - 5. higher expected taxes reduce life-time wealth: agents mark down consumption path
- An increase in G lowers C with fixed AM/PF policy

NON-RICARDIAN/FISCAL WORLD

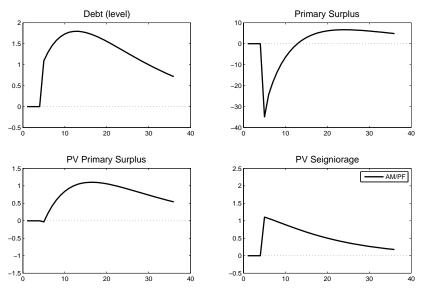
- Temporarily higher G under a fixed PM/AF policy
 - 1. intra-temporal substitution: demand for labor increases, hours worked and wages rise
 - 2. higher wages raise marginal cost and induce firms to raise prices
 - 3. passive monetary policy allows the real rate to decline in response to higher inflation
 - 4. inter-temporal substitution: agents pull consumption forward due to lower real rate
 - 5. PV of taxes < PV of G, mitigates negative wealth effect
- An increase in G raises C with fixed PM/AF policy [Kim]

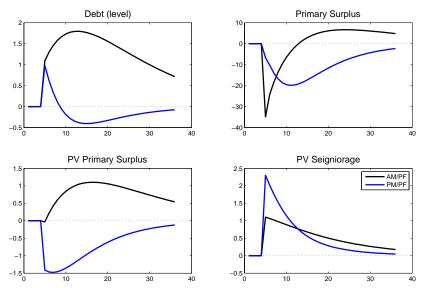

Perspective on Transmission of G

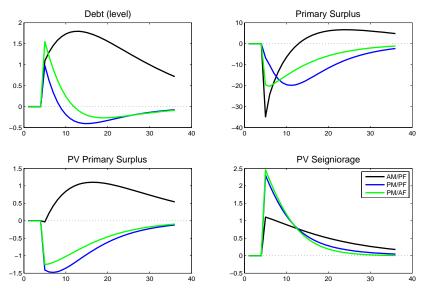
• The ubiquitous Intertemporal Equilibrium Condition holds in all regimes


$$\frac{M_{t-1} + (1+r_{t-1})B_{t-1}}{P_t} = E_t \sum_{T=t}^{\infty} \left[q_{t,T} \left(\tau_T - G_T + \frac{r_T}{1+r_T} \frac{M_T}{P_T} \right) \right]$$

- A government liabilities valuation equation
- Higher path for *G* without an equivalent higher path for τ lowers the present value of primary surpluses
 - creates an imbalance—at initial prices—between the value of debt and its expected backing
- Equilibrium restored via a higher path of *P*, which is consistent with firms raising prices


HIGHER G: ACTIVE MP / PASSIVE FP


HIGHER G: PASSIVE MP / ACTIVE FP


INTERTEMPORAL ADJUSTMENTS

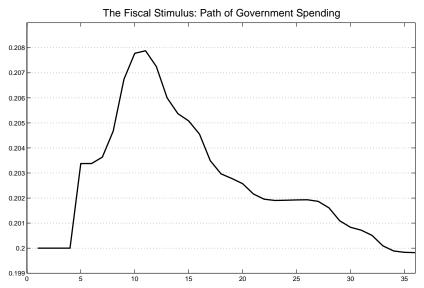
INTERTEMPORAL ADJUSTMENTS

INTERTEMPORAL ADJUSTMENTS

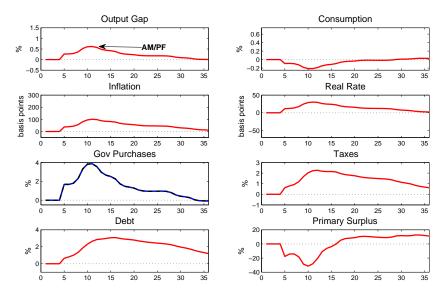
PRESENT VALUE MULTIPLIERS

		$rac{PV(\Delta Y)}{PV(\Delta G)}$ after				
Regime	e 5 quarters	10 quarters	25 quarters	∞		
AM/PF	0.79	0.80	0.84	0.86		
PM/PF	1.64	1.51	1.39	1.3		
PM/AF	1.72	1.58	1.40	1.36		

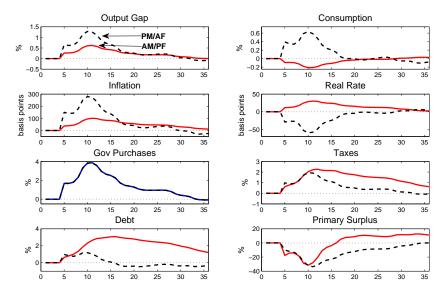
• Values greater than unity imply a positive consumption response to increases in *G*


IMPACT ON THE PRICE LEVEL

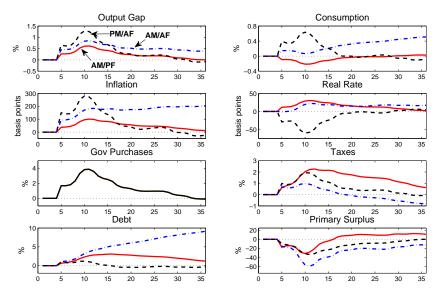
	$\%\Delta P$ after		
Regime	5 quarters	10 quarters	25 quarters
AM/PF	.76	1.34	2.37
PM/PF	2.19	3.18	3.98
PM/AF	2.41	3.40	3.95


SIMULATING STIMULUS: THE 2009 ARRA

- The 2009 ARRA includes around \$350 billion in spending on infrastructure, energy, healthcare, etc.
- \$144 billion in federal transfers to state and local governments
 - Following Romer and Bernstein assume 60 percent is devoted to new spending
- We use the same path for additional *G* as Cogan, Cwik, Taylor, Wieland
- Simulate under different monetary-fiscal combinations


The ARRA's Path for G

2009 ARRA: AM/PF


2009 ARRA: AM/PF & PM/AF

A RISKY GAME OF CHICKEN

- What if, as inflation begins to rise, the Fed switches to an active stance (from PM/AF)?
- This is a very real possibility when there is no coordination between MP & FP
- Then there are two unstable relationships:
 - inflation due to the active MP
 - debt due to the active FP
- In a fixed AM/AF regime, there would be no equilibrium
- With switching, so long as you are sufficiently far from the "fiscal limit," there is a build up of debt
- And persistently higher inflation because MP has lost control of inflation

THE 2009 ARRA: ACTIVE/ACTIVE

Wrap Up

- Will fiscal stimulus stimulate?
- Devil is in the details:
 - what kind of G increases?
 - what kind of T decreases?
 - are there implementation delays?
 - · how do agents expect debt will be financed?
 - will debt be retired back to initial level?
 - how quickly will policy adjust to stabilize debt?
 - how will monetary policy behave?
 - how do agents expect monetary policy to behave in future?
- Policy institutions, as now structured, do not deliver clear answers to these questions
- Until they do, fiscal effects will be difficult to predict