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Random-Coefficients Demand Estimation

Structural Estimation

e Great interest in estimating models based on economic structure
e DP models of individual behavior: Rust (1987) — NFXP

Nash equilibria of games — static, dynamic: Ag-M (2007) — PML

Demand Estimation: BLP(1995), Nevo(2000)

Auctions: Paarsch and Hong (2006), Hubbard and Paarsch (2008)

Dynamic stochastic general equilibrium
Popularity of structural models in empirical IO and marketing

e Model sophistication introduces computational difficulties

o General belief: Estimation is a major computational challenge
because it involves solving the model many times

e Our goal: Propose a unified, reliable, and more computational
efficient way of estimating structural models

e Our finding: Many supposed computational “difficulties” can be
avoided by using constrained optimization methods and software
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Current Views on Structural Estimation

Tulin Erdem, Kannan Srinivasan, Wilfred Amaldoss, Patrick Bajari, Hai Che,
Teck Ho, Wes Hutchinson, Michael Katz, Michael Keane, Robert Meyer, and
Peter Reiss, “Theory-Driven Choice Models", Marketing Letters (2005)

Estimating structural models can be computationally difficult. For
example, dynamic discrete choice models are commonly estimated
using the nested fixed point algorithm (see Rust 1994). This requires
solving a dynamic programming problem thousands of times during
estimation and numerically minimizing a nonlinear likelihood
function....[SJome recent research ... proposes computationally simple
estimators for structural models ... The estimators ... use a two-step
approach. .... The two-step estimators can have drawbacks. First,
there can be a loss of efficiency. .... Second, stronger assumptions
about unobserved state variables may be required. .... However,
two-step approaches are computationally light, often require minimal
parametric assumptions and are likely to make structural models
accessible to a larger set of researchers.

Che-Lin Su Structural Estimation



Random-Coefficients Demand Estimation

Optimization and Computation in Structural Estimation

e Optimization often perceived as 2nd-order importance to research
agenda

e Typical computational methohd is Nested fixed-point problem:
fixed-point calculation embedded in calculation of objective function
e compute an “equilibrium”
e invert a model (e.g. non-linearity in disturbance)
e compute a value function (i.e. dynamic model)

e Mis-use of optimization can lead to the “wrong answer”

naively use canned optimization algorithms — e.g., fmincon
use the default settings
adjust default-settings to improve speed not accuracy
assume there is a unique fixed-point
CHECK SOLVER OUTPUT MESSAGE!!!

e KNITRO: LOCALLY OPTIMAL SOLUTION FOUND.

e Filter-MPEC: Optimal Solution Found.

e SNOPT: Optimal Solution Found.

Che-Lin Su Structural Estimation



Random-Coefficients Demand Estimation

Random-Coefficients Logit Demand

e Berry, Levinsohn and Pakes (1995): Logit with endogenous
regressors and unobserved heterogeneity

e Estimated frequently in empirical 10 and marketing

e Utility of consumer ¢ from purchasing product j in market ¢

uije = B + ;87 — BPpji + Eji + cijt

e &1 not observed

e 1, p;i observed; cov(§;¢,pje) # 0
e (3. individual-specific taste coefficients to be estimated; 3 ~ Fj(3;0)

e Predicted market share

exp(B° + ;1% — BPpjt + &jt)
1437, exp(80 + 24037 — BPprs + Exe)

5 (@0 pi Eiv:0) =/ﬁ dF5(3:0)
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Random-Coefficients Logit Demand: GMM Estimation

e Assume E [{izj¢|zj:] = 0 for some vector of instruments z;;

e Empirical analog g (0) = 7 23:1 Z;Ll izt
o Estimate 0MM = argmin {g (0) Wg (0)}
0

e Cannot compute §; analytically
o “Invert” & from system of predicted market shares numerically

St 3($tapt7§t§9)
= &) = s (v, pe,Si0)

e BLP propose contraction-mapping for inversion, i.e., fixed-point
calculation
e Inversion nested into parameter search ... NFP

e inner-loop: fixed-point calculation, &(#)

e outer-loop: minimization, MM
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BLP/NFP Estimation Algorithm

e Outer loop: mein g(0) Wy ()

T J
e Guess ) parameters to compute g() = % Z Z 0) zjt

* Stop when [|Vo(g (0)' Wg (D) < cou

Che-Lin Su Structural Estimation



BLP/NFP Estimation Algorithm

e Outer loop: mein g(0) Wy ()

T J
e Guess ) parameters to compute g() = % Z Z 0) zjt

o Stop when [|Vg(g (6) Wg (0))]| < cou
e Inner loop: compute & () for a given 0
e Solve si(xj,ps, & 0) = S for £ by contraction mapping:

f’+l = E? + log St — IOg St($j7pt7€t;9)

until ||§}2+1 - f}szH < €in
e Denote the approximated demand shock by £(0, ¢;,,)

e Stopping rules: need to choose tolerance/stopping criterion for both
inner loop (¢€;,) and outer loop (€yut)
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Concerns with NFP/BLP

o Inefficient amount of computation

e we only need to know £(0) at the true 0

e NFP solves inner-loop exactly each stage of parameter search
e Stopping rules: choosing inner-loop and outer-loop tolerances

e inner-loop can be slow (especially for bad guesses of 6): contraction
mapping is linear convergent at best
e tempting to loosen inner loop tolerance ¢;,, used

e often see ¢;,, = 1.e — 6 or higher
e outer loop may not converge with loose inner loop tolerance

o check solver output message; see Knittel and Metaxoglou (2008)
e tempting to loosen outer loop tolerance ¢;,, to promote convergence
e often see €,,+ = 1.e — 3 or higher

e Inner-loop error propagates into outer-loop
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Random-Coefficients Demand Estimation

Numerical Experiment: 100 different starting points

e 1 dataset: 75 markets, 25 products, 10 structural parameters
o NFP tight: €¢;,, = 1.e—10 €5yt = 1.—6
e NFP loose inner: ¢;, = l.e—4 €yt = 1.e—6
e NFP loose both: ¢, = l.e—4 €,y = 1.e—2

GMM objective values
[ Starting point | NFP tight [ NFP loose inner [ NFP loose both |

1 4.3084e — 02 Fail 7.9967¢ + 01
2 4.3084e — 02 Fail 9.7130e — 02
3 4.3084e — 02 Fail 1.1873e — 01
4 4.3084e — 02 Fail 1.3308e — 01
5 4.3084e — 02 Fail 7.3024e — 02
6 4.3084e — 02 Fail 6.0614e + 01
7 4.3084e — 02 Fail 1.5909¢e + 02
8 4.3084e — 02 Fail 2.1087e — 01
9 4.3084e — 02 Fail 6.4803e + 00
10 4.3084e — 02 Fail 1.2271e + 03

Main findings: Loosening tolerance leads to non-convergence
e Check optimization exit flags!
e algorithm may not produce a local optimum!
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Stopping Rules

e Notations:

e Q(&(0,¢,)): the programmed GMM objective function with ¢;,,
e [: the Lipschitz constant of the inner-loop contraction mapping

e Analytic derivatives VgQ(£(0)) is provided: €,y = O(ﬁem)

e Finite-difference derivatives are used: ¢,,; = O(\/g)
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MPEC Applied to BLP

e Mathematical Programming with Equilibrium Constraints

e Su and Judd (2008), application by Vitorino (2008)
e Use constrained optimization - system defining fixed-point used as
constraints

e For our Logit Demand example with GMM:
min - g(§)' Wy ()

)

subject to s(&0) =S

No inner loop (no contraction-mapping)
e No need to worry about setting up two tolerance levels

Easier to implement

Potentially faster than NFP b/c share only needs to hold at solution
Even larger benefits for problems with multiple inner-loops (i.e.
dynamic demand)
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AMPL Model: MPEC_BLP.mod

param
param
param
param
param
param
param
param
param

set

set

set MJ

set K1
set K2
set De
set DS
set K2

set H

S :
set M :
J

ns ; # := 20 ;
nmkt ; # := 94 ;
nbrn ; # := 24 ;
nbrnPLUS1 := nbrn+1;
nkl ; # := 25;
nk2 ; # :=4 ;
niv ; # =21 ;
nz := niv-1 + nkl
nd ; # =4 ;
=1..ns ; #
= 1..nmkt ; #
= 1..nbrn ; #
= 1..nmkt*nbrn; #
= 1..nkl ; #
= 1..nk2 ; #
mogr := 1..nd;
= 1..nd*ns;
S := 1..nk2*ns;
:=1..nz ; #

of
of
of
of
of

H O H H O H R H R

index
index
index
index
index
index

index

number of simulated "individuals" per market
number of markets

number of brands per market

number of products plus outside good

observable characteristics
observable characteristics
instrument variables
instruments including iv and X1
demographic characteristics

set of individuals

set of market

set of brand (products), including outside good
of market and brand

set of product observable characteristics

set of product observable characteristics

set of instrument including iv and X1
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AMPL Model: MPEC_BLP.mod

## Define input data format:

param X1 {mj in MJ, k in K1} ;

param X2 {mj in MJ, k in K2} ;

param ActuShare {m in MJ} ;

param Z {mj in MJ, h in H} ;

param D {m in M, di in DS} ;

param v {m in M, k2i in K2S} ;

param invA {i in H, j in H} ; # optimal weighting matrix = inv(Z’Z);

param OutShare {m in M} := 1 - sum {mj in (nbrn*(m-1)+1)..(nbrn*m)} ActuShare[mj];
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AMPL Model: MPEC_BLP.mod

## Define variables

var thetal {k in K1};

var SIGMA {k in K2};

var PI {k in K2, d in Demogr};

var delta {mj in MJ} ;

var EstShareIndivTop {mj in MJ, i in S} = exp( deltalmj]

+ sum {k in K2} (X2[mj,k]*SIGMA[k]*v[ceil(mj/nbrn), i+(k-1)*ns])

+ sum{k in K2, d in Demogr} (X2[mj,k]*PI[k,d]*D[ceil(mj/nbrn),i+(d-1)*ns]l) );

var EstShareIndiv{mj in MJ, i in S} = EstShareIndivTop[mj,i]l / (1+ sum{
1 in ((ceil(mj/nbrn)-1)*nbrn+1)..(ceil(mj/nbrn)*nbrn)} EstShareIndivTop[l, il);

var EstShare {mj in MJ} = 1/ns * (sum{i in S} EstShareIndiv[mj,il) ;
var w {mj in MJ} = deltalmj] - sum {k in K1} (X1[mj,k]*thetallk]) ;

var Zw {h in H} ; ## Zw{h in H} = sum {mj in MJ} Z[mj,hl*w[mj]l;
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AMPL Model: MPEC_BLP.mod

minimize GMM : sum{hl in H, h2 in H} Zw[hi]#*invA[h1l, h2]*Zw[h2];
subject to
conZw {h in H}: Zw[h] = sum {mj in MJ} Z[mj,hl*w[mjl ;

Shares {mj in MJ}: log(EstShare[mj]) = log(ActuShare[mjl) ;
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Monte Carlo: Varying the Lipschitz Constant

e 50 markets, 25 products, 30 replications per case
e E[B;] ={E[pY],1.5,1.5,0.5,—3}; Var[B;] = {0.5,0.5,0.5,0.5,0.2}
e MPEC: optimality and feasibility tolerances = 1.e — 6

Intercept Lipschitz | Implementation Runs CPU Time Elas Elas
E[BY] Constant Converged (sec.) Bias RMSE
-2 0.780 NFP tight 30 481.1 0.007 0.316
MPEC 30 552.1 -0.007 | 0.358

-1 0.879 NFP tight 30 566.3 0.035 0.364
MPEC 30 527.5 -0.039 | 0.330

0.1 0.944 NFP tight 30 780.0 0.046 0.385
(base case) MPEC 30 564.7 -0.071 | 0.360
1 0.973 NFP tight 30 1381.5 0.009 0.370
MPEC 30 521.7 -0.072 | 0.367

2 0.989 NFP tight 30 2860.7 0.046 0.382
MPEC 30 551.6 -0.044 | 0.344

3 0.996 NFP tight 30 5720.7 0.055 0.406
MPEC 30 600.7 -0.073 | 0.370

4 0.998 NFP tight 30 11248.0 0.036 0.349
MPEC 30 858.3 -0.072 | 0.375
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Monte Carlo Results: Various the # of Markets

e 25 products, 30 replications per case
o Intercept E[37] = 0.1

# of Markets | Lipschitz Stopping Runs CPU Time Elas Elas
Constant Rule Converged (sec.) Bias RMSE

25 0.937 NFP tight 30 258.5 0.060 | 0.432
MPEC 30 226.8 -0.055 | 0.349

50 0.944 NFP tight 30 780.0 0.046 | 0.385
(base case) MPEC 30 564.7 -0.071 | 0.360
100 0.951 NFP tight 30 2559.6 0.032 | 0.377
MPEC 30 2866.0 -0.038 | 0.216

200 0.953 NFP tight 30 6481.7 0.036 | 0.313
MPEC 30 2543.6 -0.039 | 0.165
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Monte Carlo Evidence
BLP/NFP

e Contraction mapping is linear convergent at best
e Needs to be careful at setting inner and outer tolerance

e With analytic derivatives: €, = O (€;r)
e With finite-difference derivatives: €., = O (‘/em)

e Needs very high accuracy from the inner loop in order for the outer
loop to converge

e Lipschitz constant: bound on convergence of contraction-mapping
e Experiments show datasets with higher Lipschitz converge more slowly

MPEC

e Newton-based methods are locally quadratic convergent
e Two key factors in efficient implementations:

e Provide analytic-derivatives — huge improvement in speed
e Exploit sparsity pattern in constraint Jacobian — huge saving in
memory requirement
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Random-Coefficients Demand Estimation

Pattern of Constraint Jacobian

SORTING: Products and then Markets SORTING: Markets and then Products

Prod=1 Prod=2 Prod=3
o ;1 T2T3T4TS ;1 T2T3T4T5 ;l T2T3T4TS T=1 T=2 T=3 T=4 T=5
T x X X o )P(l ;P(Z )23 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3
Prod=1 T3 X X X —_— palx X x
By X x X P3[X_X X
5 X X X P1 X X X
X x X T=2 P2 X X X
T2 X X X P3| X X X
Prod=2 T3 X X X P1 X X X
T4 X X X T=3 P2] X X X
TS| X X X Ef X X X —
i
o x X T=4 P2 X X X
| x X X h xxx
Prod=3 T3 X X X p1 XX X
™ X X x T=5 P2 X X X
5| X X X P3 % X %
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Random-Coefficients Demand Estimation

Summary

e Constrained optimization formulation for the random-coefficients
demand estimation model is

min g(&)' Wy (&)

i

subject to  s(&;60) =S

e The MPEC approach is reliable and has speed advantage
o It allows researchers to access best optimization solvers
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Part [l

Estimation of Dynamic Programming Models
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Rust (1987): Zurcher's Data

Bus #: 5297
events year month | odometer at replacement

1st engine replacement | 1979 June 242400
2nd engine replacement | 1984  August 384900

year  month | odometer reading

1974 Dec 112031

1975 Jan 115223

1975 Feb 118322

1975 Mar 120630

1975 Apr 123918

1975 May 127329

1975 Jun 130100

1975 Jul 133184

1975 Aug 136480

1975 Sep 139429
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Zurcher's Bus Engine Replacement Problem

e Rust (1987)

e Each bus comes in for repair once a month
e Bus repairman sees mileage x; at time t since last engine overhaul
e Repairman chooses between overhaul and ordinary maintenance

—C(l‘t, 9“) if dt =0

u(xe, di, 0°, RC) = { —(RC +¢(0,0°) if dy=1

e Repairman solves DP:

(o)
Vilw) = sup  EQ> B [ulay, f5,0) + 5(f;)] |
{fe,fe41,} j=t
e Econometrician
e Observes mileage z; and decision d;, but not cost
e Assumes extreme value distribution for e;(d;)
e Structural parameters to be estimated: 0 = (0¢, RC, 6)
e Coefficients of operating cost function; e.g., c¢(z,0¢) = 0z + 052>
e Qverhaul cost RC
e Transition probabilities in mileages p(xzyy1|x¢, dy, OF)
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Estimation of DP Models

Zurcher's Bus Engine Replacement Problem

e Data: time series (z4,d;)L_,
e Likelihood function

T
L(Q) = H P(dt|$t, (9(:, RC)p(mﬂmt,h dtfl, 91))
t=2
with P(d|z, 0°, RC) = exp{u(z,d,0°, RC) + BEVy(z,d)}

Doy exp{u(z, d',0°, RC) + BEV (2, d)}
EVg(l',d) = Tg(EVg)(:E,d)

_/ log[ > eapfu(a’,d,0°, RC) + BEV (2, d")} | p(da|z, d, 07)
z'=0 d’e{0,1}
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Nested Fixed Point Algo: Rust (1987)

e Quter loop: Solve likelihood

T

max P(dg|zs, 0°, RO)p(a|wi—1,di—1,0")
=0 =2

e Inner loop: Compute expected value function EVy for a given 0
o EVy is the implicit expected value function defined by the Bellman
equation or the fixed point function

EVy=Ty(EVy)

e Rust started with contraction iterations and then switched to Newton
iterations

e Problem with NFXP: Must compute EVy to high accuracy for each
0 examined

e for outer loop to converge
e to obtain accurate numerical derivatives for the outer loop
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MPEC Approach for Solving Zucher Model

e Form augmented likelihood function for data X = (¢, dy)1_;

T
L (9, EV, X) = H P(dt|ﬂft, 96, RC)p(l’tL’Ct,l, dtfl, 9[))
t=2
. . _ exp{u(z,d,0°, RC) + BEV (z,d)}
with P(d|z,0°, RC) = Zd'e{o,l} exp{u(z, d’, 0, RC) + BEV (z,d')}

¢ Rationality and Bellman equation imposes a relationship between ¢
and EV

EV =T (EV,0)

e Solve constrained optimization problem
max L(0,EV;X)
(0,EV)
subject to  EV =T (EV,0)
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MPEC Applied to Zucher: Three-Parameter Estimates

e Synthetic data is better: avoids misspecification

e Use Rust's estimates to generate 2 synthetic data sets of 103 and
10* data points respectively.

e Rust discretized mileage space into 90 intervals of length 5000
(N =91)

e AMPL program solved on NEOS server using SNOPT

Estimates CPU Major Evals* | Bell. EQ.
T N RC 05 05 (sec) | Iterations Error
103 101 | 1.112 0.043 0.0029 | 0.14 66 72 3.0E-13
103 201 | 1.140 0.055 0.0015 | 0.31 44 59 2.9E-13
108 501 | 1.130 0.050 0.0019 | 1.65 58 68 1.4E—-12
103 | 1001 | 1.144 0.056 0.0013 | 5.54 58 94 2.5E-13
104 101 | 1.236 0.056 0.0015 | 0.24 59 67 2.9E-13
10* 201 | 1.257 0.060 0.0010 | 0.44 59 67 1.8E—12
104 501 | 1.252 0.058 0.0012 | 0.88 35 45 2.9E-13
104 | 1001 | 1.256 0.060 0.0010 | 1.26 39 52 3.0E—13
*Number of function and constraint evaluations
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MPEC Applied to Zucher: Five-Parameter Estimates

e Rust did a two-stage procedure, estimating transition parameters in
first stage. We do full ML

Estimates CPU | Maj. | Evals Bell.

T N RC 05 05 o7 05 (sec) | Iter. Err.

103 101 | 1.11 0.039 0.0030 0.723 0.262 0.50 | 111 137 | 6E—12
103 201 | 1.14 0.055 0.0015 0.364 0.600 1.14 | 109 120 | 1E-09
103 501 | 1.13 0.050 0.0019 0.339 0.612 3.39 | 115 127 | 3E-11
103 | 1001 | 1.14 0.056 0.0014 0.360 0.608 7.56 84 116 | 5E—12
104 101 | 1.24 0.052 0.0016 0.694 0.284 0.50 76 91 | 5E-11
10* 201 | 1.26 0.060 0.0010 0.367 0.053 0.86 85 97 | 4E-11
104 501 | 1.25 0.058 0.0012 0.349 0.596 2.73 83 98 | 3E-10
104 | 1001 | 1.26 0.060 0.0010 0.370 0.586 | 19.12 | 166 182 | 3E-10
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Estimation of DP Models

Observations

Problem is solved very quickly.

e Timing is nearly linear in the number of states for modest grid size.

The likelihood function, the constraints, and their derivatives are
evaluated only 45-200 times in this example.

In contrast, the Bellman operator (the constraints here) is solved
hundreds of times in NFXP
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Estimation of DP Models

Parametric Bootstrap Experiment

e For calculating statistical inference, bootstrapping is better and
more reliable than asymptotic analysis. However, bootstrap is often
viewed as computationally infeasible

e Examine several data sets to determine patterns

e Use Rust's estimates to generate 1 synthetic data set

e Use the estimated values on the synthetic data set to reproduce 20
independent data sets:
e Five parameter estimation
e 1000 data points
e 201 grid points in DP
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Estimation of DP Models

Maximum Likelihood Parametric Bootstrap Estimates

Table 3: Maximum Likelihood Parametric Bootstrap Results

Estimates CPU | Maj. | Evals Bell.
RC 05 05 o7 05 02 (sec) | Ite Err.
mean | 1.14 0.037 0.004 0.384 0.587 0.029 | 0.54 90 109 | 8E—09
S.E. | 0.15 0.035 0.004 0.013 0.012 0.005 | 0.16 24 37 | 2E-08
Min | 0.95 0.000 0.000 0.355 0.571 0.021 | 0.24 45 59 | 1E-13
Max | 1.46 0.108 0.012 0.403 0.606 0.039 | 0.88 | 152 230 | 6E—08
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MPEC Approach to Method of Moments

e Suppose you want to fit moments. E.g., likelihood may not exist
e Method then is

min Im (6, 0) = M (X)|I”
subject to G(0,0)=0

e Compute moments m (0, EV') numerically via linear equations in
constraints - no simulation
e Objective function for the Rust’s bus example:
M(m, M) = (mg — Mz)* + (ma — Ma)? + (max — Mez)® + (Mg — Mya)?
+ (Maa — Maa)® + (Maze — Mowz)? + (Maga — Myza)?
+ (Mmeda — Myaa)® + (madga — Maaa)*
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Estimation of DP Models

Formulation for Method of Moments

e Constraints imposing equilibrium conditions and moment definitions,
transition matrix II and computes stationary distribution p

max
(0,EV,I1,p,m)
subject to

M (m, M)

EV =T (0,EV), Il=H(0,EV)

pli=p’, > pra=1
zeZ,de{0,1}

My = me,d Z, mq = me,d d
x,d x,d
Mo = Zpr a(@=me)? mea =Y pea(@—ms)(d—ma)
x,d
Mdad = pr d 7nr1

Myzr = pr,d T — 771.7:)37 Myxd = pr,d (:)3 - nLI)2(d - 771’([)

z,d x,d
Mydd = sz,d (:E - mz)(d - 7”’(1)2’ mddd = sz,d (d - mzl)3
x,d x,d
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Estimation of DP Models

Method of Moments Parametric Bootstrap Estimates

Table 4: Method of Moments Parametric Bootstrap Results

Estimates CPU | Major | Evals Bell
RC 6% 05 oy 05 6% (sec) Iter Err.
mean | 1.0 0.05 0.001 0.397 0.603 0.000 | 22.6 525 | 1753 | 7TE—06
S.E. 0.3 0.03 0.002 0.040 0.040 0.001 | 16.9 389 | 1513 | 1E-05
Min 0.1 0.00 0.000 0.340 0.511 0.000 5.4 168 389 | 2E-10
Max | 1.5 010 0.009 0.489 0.660 0.004 | 70.1 1823 | 6851 | 4E—05

e Solving GMM is not as fast as solving MLE

o the larger size of the moments problem
e the nonlinearity introduced by the constraints related to moments,
particularly the skewness equations.
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Part 111

General Formulations
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Standard Problem and Current Approach

e Individual solves an optimization problem

e Econometrician observes states and decisions

e Want to estimate structural parameters and equilibrium solutions
that are consistent with structural parameters

e Current standard approach

Structural parameters: 6
Behavior (decision rule, strategy, price): o
Equilibrium (optimality or competitive or Nash) imposes

G(0,0)=0

Likelihood function for data X and parameters ¢

mQaXL (0; X)

where equilibrium can be presented by o = 3(0)
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NFXP Applied to DP — Rust (1987)

e X(0) is single-valued
e Outline of NFXP

e Given 6, compute o = X(0) by solving G (0,0) =0

e For each 0, define
L(0; X) = likelihood given o = ()

e Compute
max L(6; X)
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NFXP Applied to Games with Multiple Equilibria

e Y(0) is multi-valued
e Qutline of NFXP

e Given 6, compute all 0 € ¥(6)

e For each 0, define
L(0; X) = max likelihood over all o € X(0)

e Compute
max L(6; X)

e If 3(0) is multi-valued, then L can be nondifferentiable and/or
discontinuous
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General Formulation

NFXP Applied to Games with Multiple Equilibria

L(0)

r/ }
) < A u
— C o’ > /
- /
L ] -
0, 0s 0" "
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MPEC Ideas Applied to Estimation

Structural parameters: ¢

Behavior (decision rule, strategy, price mapping): o

Equilibrium conditions impose

G(0,0)=0

Denote the augmented likelihood of a data set, X, by £ (0,0; X)

e L(0,0;X) decomposes L(0; X) so as to highlight the seperate
dependence of likelihood on 6 and o

e Infact, L(0; X) = L(0,2(0); X)

Therefore, maximum likelihood estimation is

max L(0,0;X)
(0,0)

subject to G(0,0)=0
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General Formulation

MPEC Applied to Games with Multiple Equilibria
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General Formulation

Our Advantanges

e Both £ and G are smooth functions

e We do not require that equilibrium conditions be defined as a
solution to a fixed-point equation

e We do not need to specify an algorithm for computing o given ¢
e We do not need to solve for all equilibria o for every ¢

e Using a constrained optimization approach allows one to take
advantage of the best available methods and software (AMPL,
KNITRO, SNOPT, filterSQP, PATH, etc)
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So ... What is NFXP?

e NFXP is equivalent to nonlinear elimination of variables

e Consider
max f(z,y)
(z.y)
subject to g(z,y) =0

o Define Y (z) implicitly by g(x,Y (x)) =0
e Solve the unconstrained problem

max f(z, Y (x))

e Used only when memory demands are too large

e Often creates very difficult unconstrained optimization problems
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General Formulation

Constrained Estimation

e The MPEC approach is an example of constrained estimation, be it
maximum likelihood or method of moments.

e Sampling of previous literature

Aitchison, J. & S.D. Silvey (1958): Maximum likelihood estimation of parameters
subject to restraints. Annals of Mathematical Statistics, 29, 813—828.

Gallant, A.R., and A. Holly (1980): Statistical inference in an implicit, nonlinear,
simultaneous equation model in the context of maximum likelihood estimation.
Econometrica, 48, 697—-720.

Gallant, A.R., and G. Tauchen (1989): Seminonparametric estimation of
conditionally constrained heterogeneous processes: asset pricing applications.
Econometrica, 57, 1091-1120.

Silvey, S.D. Statistical Inference. London: Chapman & Hall, 1970.

Wolak, F.A. (1987): An exact test for multiple inequality and equality constraints
in the linear regression model. J. Am. Statist. Assoc. 82, 782-793.

Wolak, F.A. (1989): Testing inequality constraints in linear econometric models.
Journal of Econometrics, 41, 205-235.
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Part IV

Estimation of Games
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NFXP and Related Methods to Games

e For any given 0, NFXP requires finding all o that solve G (0,0) =0,
compute the likelihood at each such o, and report the max as the
likelihood value L(0)

e Finding all equilibria for arbitrary games is an essentially intractable
problem - see Judd and Schmedders (2006)

e One fundamental issue: G-S or G-J type methods (e.g.,
Pakes-McGuire) are often used to solve for an equilibrium. This
implicitly imposes an undesired equilibrium selection rule:
converge only to equilibria that are stable under best reply
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MPEC Approach to Games

e Suppose the game has parameters 0.

e Let o denote the equilibrium strategy given 6; that is, ¢ is an
equilibrium if and only if for some function G

G(0,0)=0

e Suppose that likelihood of a data set, X, if parameters are 6 and
players follow strategy o is £ (0,0, X). Therefore, maximum
likelihood is the problem

12191&))( L(0,0,X)
subjeyct to G (0,0 =0)
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Example: Pricing Game with Multiple Equilibria

e Bertrand pricing game with 3 types of customers
e Type 1 customers only want good x

Dz1(pz) = A—ps; Dyr =0
e Type 3 customers only want good y, and have a linear demand curve:
Dx3 = 0; Dys(py) = A —py

e Type 2 customers want some of both. Let n be the number of type 2
customers in a city.

_ —o (,1-0 | ,1—0\"Tis
Y=o
Dy2(pw7py) = np;U (p;—a + pgl/_a) e
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Example: Pricing Game with Multiple Equilibria

e Total demand for good x (y) is

Dx(py,py) = Dxi(ps,py) + D2o(ps,py)
Dy(pz,py) = Dy2(pz,py) + Dys(pz,py)

e Let m be the unit cost of production for each firm. Profit for good
z (y) is

Rw(pmpy) = (pl" - m)DZE(pm,py)
Ry(pz, py) = (py — m)Dy(pz, py)
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Example: Pricing Game with Multiple Equilibria

o Let MR, be marginal profits for good x; similarly for M R,,.

N1
MRy (ps,py) = A—pa+n (pi (p3—° +p§“’)“>

ni(o — ) B no

O )

Jr(px*m) -1+

1 1 q=e\ 71
MRy(pxapy) =A- Dy +n (p‘; (pf*ff _i_pyfa) al>
n(o —7) B no

+ (py —m) | =1+ = =
‘ _ o\ 14+Z2=2 _ _ wa
pZU (pglﬂ o +p?1; O') o—1 pgl;+0 (pglg o +p1}; O') 1
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Example: Pricing Game with Multiple Equilibria

e The other parameters are common across markets:
c=3;v=2;,m=1; A=50

e We solve the FOC
MRx(pl‘apy) = 0
MRy(pw7py> =0

and check the second-order conditions global optimality for each
firm in each potential equilibria
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Estimation of Games with Multiple Equilibria Bertrand Pricing Games

Equilibrium Prices for Different Populations

Equilibrium Prices

30 T T T T T T T T T
% High Profit
+  Low Profit
25’-._"'".-—.....;“." |
20 4
2 15f 4
a
10+ -
5 a
P o o~ - ¢
0 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Market Size
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Example: Pricing Game with Multiple Equilibria

e Strategies for each firm
e Niche strategy: price high, get low elasticity buyers.
e Mass market strategy: price low to get type 2 people.
e Equilibrium possibilities for each firm

e Low population implies both do niche

e Medium population implies one does niche, other does mass market,
but both combinations are equilibria.

e High population implies both go for mass market
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Example: Pricing Game with Multiple Equilibria

e Four markets that differ only in terms of type 2 customer population
with (n1,n2,ns, ng) = (1500, 2500, 3000, 4000)
e Unique equilibrium for City 1 and City 4:
City 11 (pz1,p1) = (24.24,24.24)
City 41 (ppa,pya) = (1.71,1.71)

e Two equilibria in City 2 and City 3:

City 22 (ply,pl,) = (25.18, 2.19)
(pl.plh) = (2.19, 25.18)
City 3:  (plg,pl3) = (215, 25.12)
(i plf) = (25.12, 2.15)
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Estimation of Games with Multiple Equilibria Bertrand Pricing Games

Generating Synthetic Data

e Assume that the equilibria in the four city types are

(phy.pf1) = (24.24,24.24)
(Pig: 1) = (25.18, 2.19)
(pispis) = (2.15, 25.12)
Py Ply) = (1.71,1.71)

e Econometrician observes price data with measurement errors for 4K
cities, with K cities of each type

e We used a normally distributed measurement error ¢ ~ N (0, 50) to
simulate price data for 40,000 cities, with 10,000 cities of each type
(K = 10,000)

e We want to estimate the unknown structural parameters
(0,7, A,m) as well as equilibrium prices (pyi, pyi)i_, implied by the
data in all four cities.
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Estimation of Games with Multiple Equilibria Bertrand Pricing Games

Example: Pricing Game with Multiple Equilibria

e MPEC formulation

K 4
min Z Z ((pﬁz - pmi)z + (P};z - pyz‘)Q)

(PzisPyi 0,7, Aym)

k=1i=1
subject to: Pzi >0, pyi >0, Vi
[FOC] MRm(pwiapyi) = MRy(pa:i7pyi) =0, Vi

[Samp“ng g|0ba| Opt:] (p'u - /”L)D‘T(pxiapyi) Z (pj - ”L)Dz(pjapyi)a VZ,]
[sampling global opt:] (pyi — 1) Dy(pei, Pyi) = (pj — M)DyY(pzi, p;), Vi, j

e We do not impose an equilibrium selection criterion
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Estimation of Games with Multiple Equilibria Bertrand Pricing Games

Game Estimation Results

e Case 1: Estimate only o and ~y and fix A, = A, = 50 and
my =my =1

e Case 2: Estimate all six structural parameters but impose the
symmetry constraints on the two firms: A, = A, and m, = m,

e Case 3: Estimated all six structural parameters without imposing the
symmetry constraints

True Case 1 Case 2 Case 3

(0,7) (3,2) ( 3.01, 2.02) ( 2.82, 1.99) ( 3.08, 2.09)
(Az, Ay) (50, 50) (50.40,50.40)  (50.24,49.54)
(Mg, my) (1,1) ( 0.98, 0.98) ( 1.08, 0.97)
(Pe1,Dy1)  (24.24,24.24)  (24.29,24.29) (24.44,24.44) (24.69,24.24)
(pa2,py2)  (25.18, 2.19) (25.19, 2.17) (25.25, 2.14) (25.43, 2.00)
(Pz3,pys) ( 2.15,25.12) ( 2.13,25.14) ( 2.10,25.16) ( 2.24,24.93)
(Pza,pya) (171, 1.71) (172, 1.72) ( 1.73, 1.73) ( 1.81, 1.65)
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Estimation of Games with Multiple Equilibria Bertrand Pricing Games

Other Applications of MPEC Approach in Estimation

e Vitorino (2007): Estimation of shopping mall entry

e Standard analyses assume strategic substitutes to make contraction

more likely in NFXP, but complementarities are obviously important
e Vitorino used MPEC for estimation, and did find complementarities
e Vitorino used bootstrap methods to compute standard errors.

e Chen, Esteban and Shum (2008): Dynamic equilibrium model of
durable good oligopoly

e Hubbard and Paarsch (2008): Low-price, sealed-bid auctions
e Dubé, Su and Vitorino (2008): Empirical Pricing Games

e Dynamic demand estimation

e Estimation of dynamic games

e Estimation of multi-bidder multi-unit auctions (with Paarsch) —
PDE constrained optimization
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Estimation of Games with Multiple Equilibria Bertrand Pricing Games

Conclusion

e Structural estimation methods are far easier to construct if one uses
the structural equations

e The advances in computational methods (SQP, Interior Point, AD,
MPEC) with NLP solvers such as KNITRO, SNOPT, filterSQP,
PATH, makes this tractable

e User-friendly interfaces (e.g., AMPL, GAMS) makes this as easy to
do as Stata, Gauss, and Matlab

e This approach makes structural estimation really accessible to a
larger set of researchers
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