NUMERICAL DYNAMIC PROGRAMMING

Kenneth L. Judd
Hoover Institution and NBER

July 29, 2008

Dynamic Programming
e Foundation of dynamic economic modelling

— Individual decisionmaking
— Social planners problems, Pareto efficiency

— Dynamic games
e Computational considerations

— Applies a wide range of numerical methods: Optimization, approximation, integration

— Can exploit any architecture, including high-power and high-throughput computing

Outline

e Review of Dynamic Programming

e Necessary Numerical Techniques

— Approximation

— Integration

e Numerical Dynamic Programming

Discrete-Time Dynamic Programming

e Objective:
T
E {Z (e, ue,) + W(CET+1)} , (12.1.1)
t=1
— X is set of states and D is the set of controls

— 7(x, u, t) payoffs in period ¢, for x € X at the beginning of period ¢, and control u € D is
applied in period ¢.

— D(x,t) C D: controls which are feasible in state = at time ¢.

— F(A;x,u,t) : probability that x;,1 € A C X conditional on time ¢ control and state

e Value function definition

T
V(z,t) = sup F {Z m(xs, Us,)+ Wl(xpsr)|a: = x} : (12.1.2)
U(z,t) o—t

e Bellman equation

Ve, t)= sup 7(x, u, t)+ E{V(xs1, t+)|z = z,ur = u} (12.1.3)
ueD(x,t)

e Existence: boundedness of 7 is sufficient

Autonomous, Infinite-Horizon Problem:

e Objective:

niLXE {i Bim(z, ut)}
=1

e Value function definition: if I/(x) is set of all feasible strategies starting at .

Viz)=supFE {Z B (s, uy)

U(x) =0

ZE()ZE},

e Bellman equation for V' (x)

V(z)= sup w(z,u)+BE {V(eh)|z,u} =(TV) (),

ueD(x)
e Optimal policy function, U(x), if it exists, is defined by

U(z) € arg max m(x, u)+ B E{V(z")|z, u}
uc T

(12.1.1)

(12.1.8)

(12.1.9)

e Standard existence theorem: If X is compact, 5 < 1, and 7 is bounded above and below, then

TV = sup w(x,u)+LE{V(z") |z, u}
ueD(x)

(12.1.10)

is monotone in V', and a contraction mapping with modulus 3 in the space of bounded functions,

and has a unique fixed point.

Deterministic Growth Example

e Problem:
V (ko) = maxq, 32,5 Bulcy),
kt—i—l = F(k?t) — Ct (12112)

ko given

— Euler equation:
u'(er) = Bu'(ceen) FY (ki)

— Bellman equation

V(k) = max u(c) + BV (F (k) — c). (12.1.13)

— Solution to (12.1.12) is a policy function C(k) and a value function V (k) satisfying
0=u'(C(k))F'(k) — V'(k) (12.1.15)
V(k)=u(C(k))+ BV(F(k) — C(k)) (12.1.16)

e (12.1.16) defines the value of an arbitrary policy function C'(k), not just for the optimal C(k).
e The pair (12.1.15) and (12.1.16)

— expresses the value function given a policy, and

— a first-order condition for optimality.

Stochastic Growth Accumulation

e Problem:

V(k,0) = e E {Z 3 u(ct)}

ki1 = F(k,01) — ¢
0141 = g(eta €t)

g; : 11.d. random variable
ko =k, 6y=20.

e State variables:

— k: productive capital stock, endogenous

— 6: productivity state, exogenous

e The dynamic programming formulation is
V(k,0) = max u(c)+ BE{V(F(k,0) —c,07)|0}
0" =g(0,¢)

e The control law ¢ = C(k, 0) satisfies the first-order conditions

0 = u. (C(k,0)) — B E {u(C(k+,07) FL(k*,07) | 0},

where

k= F(k, L(k, 0),0) — C(k,0),

(12.1.21)

(12.1.23)

Discrete State Space Problems

e State space X = {z;,i=1,--- ,n}

e Controls D = {w;|i =1, ...,m}

o qu(u) = Pr (2441 = xj|lar = 2, ur =)

e Q'(u) = (qu(u))w : Markov transition matrix at t if u; = w.

Value Function Iteration: Discrete-State Problems
e State space X = {x;, i =1,--- ,n} and controls D = {w;|i =1,...,m}

e Terminal value:
VI = W(xy), i=1,---,n.

e Bellman equation: time ¢ value function is

u

‘/z't = nax [W(CE@,U,?’J) —I_ﬁz qu(U) ‘/jH—l]? S 17 e,
j=1

e Bellman equation can be directly implemented - called value function iteration. Only choice for
finite 7.

e Infinite-horizon problems

— Bellman equation is now a simultaneous set of equations for V; values:
V;:ml?*x xl) +BZQZJ 77::17"'772

— Value function iteration is

Uf“:arg max | 7(x;, u) + ﬁZq@j(U) ij , 1=1,-+-

— Can use value function iteration with arbitrary V;* and iterate k — oo,

— Error is given by contraction mapping property:
Vi =Vl < g5 IV =V

— Stopping rule: continue until HVk — V*H < € where ¢ is desired accuracy.

Policy Iteration (a.k.a. Howard improvement)
e Value function iteration is a slow process

— Linear convergence at rate 3

— Convergence is particularly slow if [is close to 1.
e Policy iteration is faster

— Current guess:

— Iteration: compute optimal policy today if V* is value tomorrow:
U = argmax | 7(z;, u) + ﬁz g V|, i=1,--n,
j=1

— Compute the value function if the policy U**! is used forever, which is solution to the linear
system

n
‘//H_l =T (xi7 Uik—i_l) + 6 Z QZj<UZk+1) ij+17 1= 17 T, N,
j=1
— Policy iteration depends on only monotonicity
« If initial guess is above or below solution then policy iteration is between truth and value
function iterate

x Works well even for (3 close to 1.

Linear Programming Approach

e If D is finite, we can reformulate dynamic programming as a linear programming problem.

e (12.3.4) is equivalent to the linear program

miny; 3, Vi
s.t. V; > 7T<£EZ', U) + 6 Z?:1 qij<U)V}, V’I;, u < D,

e Computational considerations

— (12.4.10) may be a large problem
— Trick and Zin (1997) pursued an acceleration approach with success.

— Recent work by Daniela Pucci de Farias and Ben van Roy has revived interest.

Continuous states: Discretization

e Method:

— “Replace” continuous X with a finite X* = {z;, i =1,--- ,n} C X

— Proceed with a finite-state method.
e Problems:

— Sometimes need to alter space of controls to assure landing on an x in X.

— A fine discretization often necessary to get accurate approximations

(12.4.10)

Continuous Methods for Continuous-State Problems

e Basic Bellman equation:

V() = urerlg();) m(u,z) + B E{V(z")|z,u)} = (TV)(x). (12.7.1)

— Discretization essentially approximates V' with a step function

— Approximation theory provides better methods to approximate continuous functions.
e General Task

— Choose a finite-dimensional parameterization

A

V(z)=V(z;a), a € R (12.7.2)

and a finite number of states
X ={x, 29, ,x,}, (12.7.3)

— Find coefficients a € R™ such that V(az, a) “approximately” satisfies the Bellman equation.

General Parametric Approach: Approximating 7T’
e For each z;, (T'V)(x;) is defined by

v; = (TV)(z;) = max w(u,x; +6/ 7 a)dF (7|2, u) (12.7.5)

u€D(z ;)
e In practice, we compute the approximation T
v = (TV)(x;) = (TV)(x;)

— Integration step: for w; and z; for some numerical quadrature formula
BV a)las, b= [Viatsa)dP (el

~ [Vglaj w.cha)ir ()
ﬁZWgV(Q(ﬁEj; U, €¢); a)
14

— Maximization step: for z; € X, evaluate

— Fitting step:
« Data: (v;,x;), i=1,---.,n
+« Objective: find an ¢ € R™ such that V(z:a) best fits the data
« Methods: determined by V(z;a)

Approximation Methods

e General Objective: Given data about f(x) construct simpler g(z) approximating f(x).
e QQuestions:
— What data should be produced and used?

— What family of “simpler” functions should be used?

— What notion of approximation do we use?
e Comparisons with statistical regression

— Both approximate an unknown function and use a finite amount of data
— Statistical data is noisy but we assume data errors are small

— Nature produces data for statistical analysis but we produce the data in function approximation

Interpolation Methods
e Interpolation: find g (x) from an n-D family of functions to exactly fit n data items
e Lagrange polynomial interpolation
— Data: (x;,y;),i=1,..,n.
— Objective: Find a polynomial of degree n — 1, p,(z), which agrees with the data, i.e.,
vy, = f(z;), i=1,..,n
— Result: If the x; are distinct, there is a unique interpolating polynomial

e Does p,(x) converge to f (x) as we use more points? Consider f(x) = H—lxg, x; uniform on [—5, 5]

\ 11-point
interpolation

Figure 1:

e Hermite polynomial interpolation

— Data: (x;,y;,v.),1=1,..,n.
— Objective: Find a polynomial of degree 2n — 1, p(x), which agrees with the data, i.e.,

yi=p(x;), i=1,..n
yi=p'(x;), i=1,..,n

— Result: If the x; are distinct, there is a unique interpolating polynomial
e Least squares approximation

— Data: A function, f(x).

— Objective: Find a function g(z) from a class G that best approximates f(x), i.e.,

g =argmax | f — g|°
gelG

Orthogonal polynomials
e General orthogonal polynomials

— Space: polynomials over domain D
— weighting function: w(x) > 0
— Inner product: (f,g) = [, f(x)g(x)w(x)dz
— Definition: {¢,} is a family of orthogonal polynomials w.r.t w (z) iff
(b1, 0j) =0, i #]
— We like to compute orthogonal polynomials using recurrence formulas
¢o(z)=1

¢1(z)=1
Gpor1 () = (ahy12 + bi) @1 () + Chp10p_1 ()

e Chebyshev polynomials

—la,b =[—1,1] and w(z) = (1 _ xQ)—l/Q

— Ty (x) = cos(ncos™!)

T
Vol «Ty
T
TQ($) =1
Ti(x)=x
Tn—l—l(x) —

20T, (x) — Th—1(x),

e General Orthogonal Polynomials

— Few problems have the specific intervals and weights used in definitions

— One must adapt interval through linear COV: If compact interval [a, b] is mapped to [—1, 1] by

Ir—a

y=—1+2

b—a
then ¢, (—1 + 27—

) are orthogonal over = € [a, b] with respect to w (—1 + 2
orthogonal over y € [—1,1] w.r.t. w (y)

r—a

) iff 6, (y) ave

Regression

e Data: (z;,v;),i=1,..,n.

e Objective: Find a function f(z;) with § € R™, m <n, with y; = f(x;),i =1, ..,n.
e Least Squares regression:

min (yi — f (x; 5))2

peER™

Chebyshev Regression

e Chebyshev Regression Data:
o (z;,y;),1=1,..,n>m,x; are the n zeroes of T, (x) adapted to [a,]
e Chebyshev Interpolation Data:

(xi,yi),i = 1,..,n = m,x; are the n zeroes of T, (z)adapted to |a, b]

Algorithm 6.4: Chebyshev Approximation Algorithm in R!

e Objective: Given f(x) defined on |a, b], find its Chebyshev polynomial approximation p(x)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
zk—cos(W),kl,---,m.

2m

e Step 2: Adjust nodes to [a, b] interval:

rp = (21 + 1) (Ta> +a,k=1,..,m.

e Step 3: Evaluate f at approximation nodes:
wk:f(xk) , k:1,--- , .

e Step 4: Compute Chebyshev coefficients, a;,7 =0,--- ,n:

_ 2?21 wi'T(zy,)
ZZL:1 Ti(z1)?

to arrive at approximation of f(z,y) on [a, b|:

p(z) = En:aT (252:2 _ 1)

1=0

a;

Minmax Approximation

e Data: (z;,v;),i=1,..,n.
e Objective: L™ fit

5%11%% m?X |y — f (xi; B)|]

e Problem: Difficult to compute

e Chebyshev minmax property

Theorem 1 Suppose f : [—1,1] — R is C* for some k > 1, and let I,, be the degree n polynomial
interpolation of f based at the zeroes of T,,(x). Then

H f o In Hooé (% log(n+ 1) + 1)

n—k)N sk (b—a\"
) (5F) 1

e Chebyshev interpolation:

— converges in L™
— essentially achieves minmax approximation
— easy to compute

— does not approximate f’

Splines
Definition 2 A function s(x) on [a,b] is a spline of order n iff
1. s is C"% on |a,b], and

2. there is a grid of points (called nodes) a = o < x1 < -+ < T, = b such that s(x) is a polynomial
of degree n — 1 on each subinterval [x;, x;1], 1 =0,...,m — 1.

Note: an order 2 spline is the piecewise linear interpolant.

e Cubic Splines

— Lagrange data set: {(z;, v;) |i =0, -+, n}.
— Nodes: The z; are the nodes of the spline
— Functional form: s(z) = a; + b; x + ¢; 2° + d; 2° on [x;_1, x;]

— Unknowns: 4n unknown coefficients, a;, b;, ¢;,d;,2 =1, -- - n.

e Conditions:
— 2n interpolation and continuity conditions:

y; =a; + b;x; + cia:? — dix?,

1=1,.,n
R b1 2
Yi =41 + i+1T5 + Cir1; + i+1T; ,
1=0,..,n—1

— 2n — 2 conditions from C? at the interior: fori =1,---n — 1,

bl' + 26¢$¢ + 3d1$12 = bi—i—l + 26i+1 T; + SdH_lCE?
20@ + 6dl$l = 20@4_1 + 6d¢+1$¢

— Equations (1-4) are 4n — 2 linear equations in 4n unknown parameters, a, b, ¢, and d.

— construct 2 side conditions:

" s"(x)* dzr, among

x natural spline: §'(xrg) = 0 = s'(x,); it minimizes total curvature, f
solutions to (1-4).

x Hermite spline: s'(x) =y, and §'(z,,) = v/, (assumes extra data)

x Secant Hermite spline: s'(x) = (s(x1)—s(xg))/(x1—x0) and s'(x,,) = (s(x,)—s(zn_1))/(Tn—
Tp_1).

* not-a-knot: choose j = i1, 12, such that ¢; + 1 < iy, and set d; = d;.

— Solve system by special (sparse) methods; see spline fit packages

e Shape-preservation

— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

e Schumaker Procedure:

1. Take level (and maybe slope) data at nodes x;
2. Add intermediate nodes z;" € [x;, z;.1]

3. Run quadratic spline with nodes at the z and z nodes which intepolate data and preserves
shape.

4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction
at book’s website)

e Many other procedures exist for one-dimensional problems, but few procedures exist for two-
dimensional problems

e Spline summary:

— Evaluation is cheap

« Splines are locally low-order polynomial.
+ Can choose intervals so that finding which [x;, x;,1] contains a specific x is easy.
* Finding enclosing interval for general x; sequence requires at most [log, n| comparisons
— Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality
of cubic splines depends only on f™(z), not f©)(z).

— Can use splines to preserve shape conditions

Multidimensional approximation methods

e Lagrange Interpolation

— Data: D = {(z;,2)}Y, C R where z; € R" and z; € R™
— Objective: find f : R" — R™ such that z; = f(x;).
— Need to choose nodes carefully.

— Task: Find combinations of interpolation nodes and spanning functions to produce a nonsin-
gular (well-conditioned) interpolation matrix.

Tensor products

e General Approach:

— If A and B are sets of functions over x € R", y € R™, their tensor product is

A® B={p@)Y(y) | ¢ € A, ¢ € B}.

— Given a basis for functions of x;, ' = {¢! (;)}3°,, the n-fold tensor product basis for functions
of (x1,T9,...,,) is

@:{ngzi(xi)m:o,l,--- : izl,...,n}
1=1

e Orthogonal polynomials and Least-square approximation

— Suppose P are orthogonal with respect to w;(z;) over [a;, b;]

(
— Least squares approximation of f(zy, -, x,) in @ is

ZM%

= ()

where the product weighting function

n

Wz, xg, -+) = H w;(;)

1=1

defines (-, -) over D = [];|a;, b;] in
(f(x), glx)) = /D F(2)g(x)W (2)da

Algorithm 6.4: Chebyshev Approximation Algorithm in R?

e Objective: Given f(z,y) defined on [a,b] X [c,d], find its Chebyshev polynomial approximation
p(z,y)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
zk:—cos(W),kzl,---,m.

2m
e Step 2: Adjust nodes to [a, b] and [c, d] intervals:

b_
ajk(zk+1)(2a> +a,k=1,..m.

d—
yk:<2k—|—1)(5 C) +c,k=1,...,m.

e Step 3: Evaluate f at approximation nodes:

W = flTpye), k=1, ,m., £=1,---
e Step 4: Compute Chebyshev coefficients, a,;,4,j =0,--- ,n:
i — > et vy W Ti(21) T (20)
T 0k Tila)?) (2 T(20?)

to arrive at approximation of f(z,y) on [a, b] X [c, d]:

n

p(z,y) :Zzn:%Ti (2§:2_1)Tj (Qy_c—l)

d—c
i=0 j=0

Multidimensional Splines

e B-splines: Multidimensional versions of splines can be constructed through tensor products; here
B-splines would be useful.

e Summary

— Tensor products directly extend one-dimensional methods to n dimensions

— Curse of dimensionality often makes tensor products impractical

Complete polynomials

e Taylor’s theorem for R" produces the approximation

flo) =)+ X 550) (@i —a))

1 0? 0 0
+5 D=1 Daip-1 axilg;% (o) (wiy —) (i, — a3) + ..
— For k = 1, Taylor’s theorem for n dimensions used the linear functions Py" = {1, z1, 2, -+ , .}

— For k = 2, Taylor’s theorem uses Py = Pl U {z?,- - , 22, 2129, 1123, -+ , Tpp_ 1T }.

e In general, the kth degree expansion uses the complete set of polynomials of total degree k in n
variables.

n
Pk,‘ E{xillenlz ’Lgék, OSZD 7Zn}
(=1

e Complete orthogonal basis includes only terms with total degree k or less.

e Sizes of alternative bases

degree k Py Tensor Prod.
2 l+n+nn+1)/2 3"
3 14+ n+ @ T n2 s W AN

— Complete polynomial bases contains fewer elements than tensor products.
— Asymptotically, complete polynomial bases are as good as tensor products.

— For smooth n-dimensional functions, complete polynomials are more efficient approximations
e Construction

— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in
complete basis).

— Complete polynomial version is faster to compute since it involves fewer terms

Integration

e Most integrals cannot be evaluated analytically

e Integrals frequently arise in economics

— Expected utility and discounted utility and profits over a long horizon
— Bayesian posterior

— Solution methods for dynamic economic models
Gaussian Formulas

e All integration formulas choose quadrature nodes x; € [a,b| and quadrature weights w;:

b n
/ Fla)de =3 wif () (72.1)
@ i=1
— Newton-Cotes (trapezoid, Simpson, etc.) use arbitrary z;
— Gaussian quadrature uses good choices of x; nodes and w; weights.
e Exact quadrature formulas:

— Let F;. be the space of degree k£ polynomials
— A quadrature formula is exact of degree k if it correctly integrates each function in F;

— Gaussian quadrature formulas use n points and are exact of degree 2n — 1

Theorem 3 Suppose that {.(v)}72, is an orthonormal family of polynomials with respect to w(x)
on [a, b]. Then there are x; nodes and weights w; such that a < x1 < x3 < -+ < x, < b, and

1.if f € C®[a, b], then for some € € [a, b],

b n (2n)
/w<x)f(x) dﬂf:Zwif(xi)Jrf (©).

¢:(2n)""

2. and Y ! wif(x;) is the unique formula on n nodes that exactly integrates fab flz)w(z)dz for all
polynomzuals i Fo, 1.

Gauss-Chebyshev Quadrature
e Domain: [—1, 1]
e Weight: (1 — 22)~1/2

e Formula:

/ f 1—:(7 1/2d£€ foz 7T_ / n)(g)

for some ¢ € [—1, 1], with quadrature nodes

(Qi—l) :
T; = COS T, 1=1,...,n.
2n

e Want to approximate fab f(z) dx for different range, and/or no weight function

Arbitrary Domains

— Linear change of variables x = —1 4+ 2(y — a)(b — a)
— Multiply the integrand by (1 — z%)1/2 /(1 —)12

/abf(y)d _ 11f<(x+1)2(b—a)+a> 8:211//5 .

— Gauss-Chebyshev quadrature uses the x; Gauss-Chebyshev nodes over [—1, 1]

/abf(y) e W(z—;a)ﬁ;f ((:zcZ + 1)2(19— a) +a> 0 —a:?)l/Z

(7.2.4)

(7.2.5)

Gauss-Hermite Quadrature
e Domain is [—o0, 00| and weight is e’

e Formula: for some £ € (—o0, 00).

) ? - ni\/m (2n)
/OO (2)e " dz = Zwif@i)Jr 12\7{— | f<2n§!§)

N X; Wi N X Wi
2 0.7071067811 0.8862269254 7 0.2651961356(1) 0.9717812450(—3)

0.1673551628(1) 0.5451558281(—1)
3 0.1224744871(1) 0.2954089751 0.8162878828 0.4256072526
0.0000000000 0.1181635900(1) 0.0000000000 0.8102646175

e Normal Random Variables

— Y is distributed N(u, 0?). Expectation is integration.
— Use Gauss-Hermite quadrature: Linear COV x = (y — u)/v/2 o implies

B{f(Y }/f /%) g, /f V3o z+ pe V3o ds

= 7sz‘f V20 i+ p)
i1

where the w; and x; are the Gauss-Hermite quadrature weights and nodes over [—oo, oc].

Multidimensional Integration
e Most economic problems have several dimensions

— Multiple assets

— Multiple error terms
e Multidimensional integrals are much more difficult

— Simple methods suffer from curse of dimensionality

— There are methods which avoid curse of dimensionality

Product Rules

e Build product rules from one-dimension rules

o Let zf, w¢, i=1,---,m, be one-dimensional quadrature points and weights in dimension ¢ from

79

a Newton-Cotes rule or the Gauss-Legendre rule.

e The product rule

- 1 2 d 1 92 d
/[1 1]d f<x)dx N Z o Z wilwiZ T wid f(xila xizj o 7xid)

(4 1:1 Zd:1
e GGaussian structure prevails

— Suppose w'(z) is weighting function in dimension ¢

— Define the d-dimensional weighting function.
d
Wi(x) =Wz, - ,xq) = H w(z))
(=1

— Product Gaussian rules are based on product orthogonal polynomials.
e Curse of dimensionality:

— m? functional evaluations is m? for a d-dimensional problem with m points in each direction.

— Problem worse for Newton-Cotes rules which are less accurate in R!.

General Parametric Approach: Approximating 7T’
e For each z;, (T'V)(x;) is defined by

py(Tm@)rﬁﬁwux]+ﬁ/ v)P (x|,) (12.75)

e In practice, we compute the approximation T
= (TV)(z;) = (TV)(x)

— Integration step: for w; and z; for some numerical quadrature formula
BV ey, uh= [Ve sa)dF (e u
5/wﬂ%w@muma
=Y wiV(g(wj, u,e0);a)
¢

— Maximization step: for x; € X, evaluate
v; = (TV)(x;)
* Hot starts
+ Concave stopping rules
— Fitting step:
« Data: (v;,x;), i=1,---.,n
« Objective: find an ¢ € R™ such that V(z;a) best fits the data
« Methods: determined by V(z;a)

Approximating 1" with Hermite Data

e Conventional methods just generate data on V' (x;):

v = r%%x)w(u,xj) +B/V(:U+;a)dF(x+]xj,u) (12.7.5)
uce(x;

e Envelope theorem:

— If solution w is interior,
v; = T, (u, z;) + B/V(:ﬁ; a)dF,(z" |z, u)
— If solution u is on boundary
v = p+ o (u, x5) + 3 / V(" a)dFy(z" |z, u)
where p is a Kuhn-Tucker multiplier

e Since computing fU} is cheap, we should include it in data:

: / .
— Data: (v, v}, x;), i=1,---,n

— Objective: find an @ € R™ such that V (z; a) best fits Hermite data

A

— Methods: determined by V' (z;a)

General Parametric Approach: Value Function Iteration

guess a — V(x;a)
—>(Ui7xi>7 1= 17 y TV

— New a
e Comparison with discretization

— This procedure examines only a finite number of points, but does not assume that future points
lie in same finite set.

— QOur choices for the z; are guided by systematic numerical considerations.

e Synergies
— Smooth interpolation schemes allow us to use Newton’s method in the maximization step.
— They also make it easier to evaluate the integral in (12.7.5).

e Finite-horizon problems

— Value function iteration is only possible procedure since V' (z,t) depends on time t.
— Begin with terminal value function, V' (x,T)

— Compute approximations for each V' (x,t), t =T — 1,T — 2, etc.

Algorithm 12.5: Parametric Dynamic Programming
with Value Function Iteration
Objective: Solve the Bellman equation, (12.7.1).
Step O: Choose functional form for V(:U, a), and choose
the approximation grid, X = {x1,...,x,}.
Make initial guess V(az, a"), and choose stopping
criterion € > 0.
Step 1: Maximization step: Compute
v; = (TV(:;a"))(x;) for all z; € X.
Step 2: Fitting step: Using the appropriate approximation
method, compute the a'™ € R™ such that
V(z; a"1) approximates the (v;, 2;) data.
Step 3: If | V(z;a') — V(z:a™) ||< €, STOP; else go to step 1.

e Convergence

— 1" is a contraction mapping

—-T may be neither monotonic nor a contraction
e Shape problems

— An instructive example

Figure 2:

— Shape problems may become worse with value function iteration

— Shape-preserving approximation will avoid these instabilities

Summary:
e Discretization methods

— Easy to implement
— Numerically stable
— Amenable to many accelerations

— Poor approximation to continuous problems
e Continuous approximation methods

— Can exploit smoothness in problems
— Possible numerical instabilities

— Acceleration is less possible

