
NUMERICAL DYNAMIC PROGRAMMING

Kenneth L. Judd

Hoover Institution and NBER

July 29, 2008

1

Dynamic Programming

• Foundation of dynamic economic modelling
— Individual decisionmaking

— Social planners problems, Pareto efficiency

— Dynamic games

• Computational considerations
— Applies a wide range of numerical methods: Optimization, approximation, integration

— Can exploit any architecture, including high-power and high-throughput computing

Outline

• Review of Dynamic Programming
• Necessary Numerical Techniques

— Approximation

— Integration

• Numerical Dynamic Programming

2

Discrete-Time Dynamic Programming

• Objective:
E

(
TX
t=1

π(xt, ut, t) +W (xT+1)

)
, (12.1.1)

— X is set of states and D is the set of controls
— π(x, u, t) payoffs in period t, for x ∈ X at the beginning of period t, and control u ∈ D is
applied in period t.

— D(x, t) ⊆ D: controls which are feasible in state x at time t.
— F (A;x, u, t) : probability that xt+1 ∈ A ⊂ X conditional on time t control and state

• Value function definition

V (x, t) ≡ sup
U(x,t)

E

(
TX
s=t

π(xs, us, s) +W (xT+1)|xt = x

)
. (12.1.2)

• Bellman equation
V (x, t) = sup

u∈D(x,t)
π(x, u, t) + E {V (xt+1, t + 1)|xt = x, ut = u} (12.1.3)

• Existence: boundedness of π is sufficient

3

Autonomous, Infinite-Horizon Problem:

• Objective:
max
ut

E

(∞X
t=1

βtπ(xt, ut)

)
(12.1.1)

• Value function definition: if U(x) is set of all feasible strategies starting at x.

V (x) ≡ sup
U(x)

E

(∞X
t=0

βtπ(xt, ut)

¯̄̄̄
¯x0 = x

)
, (12.1.8)

• Bellman equation for V (x)
V (x) = sup

u∈D(x)
π(x, u) + β E

©
V (x+)|x, uª ≡ (TV)(x), (12.1.9)

• Optimal policy function, U(x), if it exists, is defined by
U(x) ∈ arg max

u∈D(x)
π(x, u) + β E

©
V (x+)|x, uª

• Standard existence theorem: If X is compact, β < 1, and π is bounded above and below, then

TV = sup
u∈D(x)

π(x, u) + βE
©
V (x+) | x, uª (12.1.10)

is monotone in V , and a contraction mapping with modulus β in the space of bounded functions,
and has a unique fixed point.

4

Deterministic Growth Example

• Problem:
V (k0) = maxct

P∞
t=0 β

tu(ct),

kt+1 = F (kt)− ct
k0 given

(12.1.12)

— Euler equation:
u0(ct) = βu0(ct+1)F 0(kt+1)

— Bellman equation
V (k) = max

c
u(c) + βV (F (k)− c). (12.1.13)

— Solution to (12.1.12) is a policy function C(k) and a value function V (k) satisfying

0=u0(C(k))F 0(k)− V 0(k) (12.1.15)

V (k)=u(C(k)) + βV (F (k)− C(k)) (12.1.16)

• (12.1.16) defines the value of an arbitrary policy function C(k), not just for the optimal C(k).
• The pair (12.1.15) and (12.1.16)

— expresses the value function given a policy, and

— a first-order condition for optimality.

5

Stochastic Growth Accumulation

• Problem:

V (k, θ) = max
ct,ct

E

(∞X
t=0

βt u(ct)

)
kt+1 = F (kt, θt)− ct

θt+1 = g(θt, εt)

εt : i.i.d. random variable

k0 = k, θ0 = θ.

• State variables:
— k: productive capital stock, endogenous

— θ: productivity state, exogenous

• The dynamic programming formulation is
V (k, θ) = max

c
u(c) + βE{V (F (k, θ)− c, θ+)|θ} (12.1.21)

θ+ = g(θ, ε)

• The control law c = C(k, θ) satisfies the first-order conditions

0 = uc (C(k, θ))− β E {uc(C(k+, θ+))Fk(k
+, θ+) | θ}, (12.1.23)

where
k+≡ F (k, L(k, θ), θ)−C(k, θ),

6

Discrete State Space Problems

• State space X = {xi, i = 1, · · · , n}
• Controls D = {ui|i = 1, ...,m}
• qtij(u) = Pr (xt+1 = xj|xt = xi, ut = u)

• Qt(u) =
¡
qtij(u)

¢
i,j
: Markov transition matrix at t if ut = u.

Value Function Iteration: Discrete-State Problems

• State space X = {xi, i = 1, · · · , n} and controls D = {ui|i = 1, ...,m}
• Terminal value:

V T+1
i =W (xi), i = 1, · · · , n.

• Bellman equation: time t value function is

V t
i = max

u
[π(xi, u, t) + β

nX
j=1

qtij(u)V
t+1
j], i = 1, · · · , n

• Bellman equation can be directly implemented - called value function iteration. Only choice for
finite T .

7

• Infinite-horizon problems
— Bellman equation is now a simultaneous set of equations for Vi values:

Vi = max
u

⎡⎣π(xi, u) + β
nX

j=1

qij(u)Vj

⎤⎦ , i = 1, · · · , n
— Value function iteration is

V k+1
i =max

u

⎡⎣π(xi, u) + β
nX

j=1

qij(u)V
k
j

⎤⎦ , i = 1, · · · , n
Uk+1
i =argmax

u

⎡⎣π(xi, u) + β
nX

j=1

qij(u)V
k
j

⎤⎦ , i = 1, · · · , n
— Can use value function iteration with arbitrary V 0

i and iterate k →∞.
— Error is given by contraction mapping property:°°V k − V ∗

°° ≤ 1

1− β

°°V k+1 − V k
°°

— Stopping rule: continue until
°°V k − V ∗

°° < ε where ε is desired accuracy.

8

Policy Iteration (a.k.a. Howard improvement)

• Value function iteration is a slow process
— Linear convergence at rate β

— Convergence is particularly slow if β is close to 1.

• Policy iteration is faster
— Current guess:

V k
i , i = 1, · · · , n.

— Iteration: compute optimal policy today if V k is value tomorrow:

Uk+1
i = argmax

u

⎡⎣π(xi, u) + β
nX

j=1

qij(u)V
k
j

⎤⎦ , i = 1, · · · , n,
— Compute the value function if the policy Uk+1 is used forever, which is solution to the linear
system

V k+1
i = π

¡
xi, U

k+1
i

¢
+ β

nX
j=1

qij(U
k+1
i)V k+1

j , i = 1, · · · , n,

— Policy iteration depends on only monotonicity

∗ If initial guess is above or below solution then policy iteration is between truth and value
function iterate

∗ Works well even for β close to 1.
9

Linear Programming Approach

• If D is finite, we can reformulate dynamic programming as a linear programming problem.
• (12.3.4) is equivalent to the linear program

minVi
Pn

i=1 Vi
s.t. Vi ≥ π(xi, u) + β

Pn
j=1 qij(u)Vj, ∀i, u ∈ D,

(12.4.10)

• Computational considerations
— (12.4.10) may be a large problem

— Trick and Zin (1997) pursued an acceleration approach with success.

— Recent work by Daniela Pucci de Farias and Ben van Roy has revived interest.

Continuous states: Discretization

• Method:
— “Replace” continuous X with a finite X∗ = {xi, i = 1, · · · , n} ⊂ X

— Proceed with a finite-state method.

• Problems:
— Sometimes need to alter space of controls to assure landing on an x in X.

— A fine discretization often necessary to get accurate approximations

10

Continuous Methods for Continuous-State Problems

• Basic Bellman equation:
V (x) = max

u∈D(x)
π(u, x) + β E{V (x+)|x, u)} ≡ (TV)(x). (12.7.1)

— Discretization essentially approximates V with a step function

— Approximation theory provides better methods to approximate continuous functions.

• General Task
— Choose a finite-dimensional parameterization

V (x)
.
= V̂ (x; a), a ∈ Rm (12.7.2)

and a finite number of states
X = {x1, x2, · · · , xn}, (12.7.3)

— Find coefficients a ∈ Rm such that V̂ (x; a) “approximately” satisfies the Bellman equation.

11

General Parametric Approach: Approximating T

• For each xj, (TV)(xj) is defined by

vj = (TV)(xj) = max
u∈D(xj)

π(u, xj) + β

Z
V̂ (x+; a)dF (x+|xj, u) (12.7.5)

• In practice, we compute the approximation T̂
vj = (T̂V)(xj)

.
= (TV)(xj)

— Integration step: for ωj and xj for some numerical quadrature formula

E{V (x+; a)|xj, u)}=
Z

V̂ (x+; a)dF (x+|xj, u)

=

Z
V̂ (g(xj, u, ε); a)dF (ε)

.
=
X
c

ωcV̂ (g(xj, u, εc); a)

— Maximization step: for xi ∈ X, evaluate

vi = (T V̂)(xi)

— Fitting step:

∗ Data: (vi, xi), i = 1, · · · , n
∗ Objective: find an a ∈ Rm such that V̂ (x; a) best fits the data

∗ Methods: determined by V̂ (x; a)
12

Approximation Methods

• General Objective: Given data about f(x) construct simpler g(x) approximating f(x).
• Questions:

— What data should be produced and used?

— What family of “simpler” functions should be used?

— What notion of approximation do we use?

• Comparisons with statistical regression
— Both approximate an unknown function and use a finite amount of data

— Statistical data is noisy but we assume data errors are small

— Nature produces data for statistical analysis but we produce the data in function approximation

13

Interpolation Methods

• Interpolation: find g (x) from an n-D family of functions to exactly fit n data items
• Lagrange polynomial interpolation

— Data: (xi, yi) , i = 1, .., n.

— Objective: Find a polynomial of degree n− 1, pn(x), which agrees with the data, i.e.,
yi = f(xi), i = 1, .., n

— Result: If the xi are distinct, there is a unique interpolating polynomial

• Does pn(x) converge to f (x) as we use more points? Consider f(x) = 1
1+x2 , xi uniform on [−5, 5]

Figure 1:

14

• Hermite polynomial interpolation
— Data: (xi, yi, y0i) , i = 1, .., n.

— Objective: Find a polynomial of degree 2n− 1, p(x), which agrees with the data, i.e.,
yi=p(xi), i = 1, .., n

y0i=p
0(xi), i = 1, .., n

— Result: If the xi are distinct, there is a unique interpolating polynomial

• Least squares approximation
— Data: A function, f(x).

— Objective: Find a function g(x) from a class G that best approximates f(x), i.e.,

g = argmax
g∈G

kf − gk2

15

Orthogonal polynomials

• General orthogonal polynomials
— Space: polynomials over domain D

— weighting function: w(x) > 0

— Inner product: hf, gi = RD f(x)g(x)w(x)dx

— Definition: {φi} is a family of orthogonal polynomials w.r.t w (x) iff­
φi, φj

®
= 0, i 6= j

— We like to compute orthogonal polynomials using recurrence formulas

φ0(x)=1

φ1(x)=x

φk+1(x)=(ak+1x + bk)φk(x) + ck+1φk−1(x)

16

• Chebyshev polynomials
— [a, b] = [−1, 1] and w(x) = ¡1− x2

¢−1/2
— Tn(x) = cos(n cos

−1 x)

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x),

• General Orthogonal Polynomials
— Few problems have the specific intervals and weights used in definitions

— One must adapt interval through linear COV: If compact interval [a, b] is mapped to [−1, 1] by

y = −1 + 2x− a

b− a

then φi
¡−1 + 2x−ab−a

¢
are orthogonal over x ∈ [a, b] with respect to w ¡−1 + 2x−ab−a

¢
iff φi (y) are

orthogonal over y ∈ [−1, 1] w.r.t. w (y)

17

Regression

• Data: (xi, yi) , i = 1, .., n.
• Objective: Find a function f(x;β) with β ∈ Rm, m ≤ n, with yi

.
= f(xi), i = 1, .., n.

• Least Squares regression:

min
β∈Rm

X
(yi − f (xi;β))

2

Chebyshev Regression

• Chebyshev Regression Data:
• (xi, yi) , i = 1, .., n > m,xi are the n zeroes of Tn(x) adapted to [a, b]

• Chebyshev Interpolation Data:
(xi, yi) , i = 1, .., n = m,xi are the n zeroes of Tn(x)adapted to [a, b]

18

Algorithm 6.4: Chebyshev Approximation Algorithm in R1

• Objective: Given f(x) defined on [a, b], find its Chebyshev polynomial approximation p(x)
• Step 1: Compute the m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:

zk = −cos
µ
2k − 1
2m

π

¶
, k = 1, · · · ,m.

• Step 2: Adjust nodes to [a, b] interval:

xk = (zk + 1)

µ
b− a

2

¶
+ a, k = 1, ...,m.

• Step 3: Evaluate f at approximation nodes:
wk = f(xk) , k = 1, · · · ,m.

• Step 4: Compute Chebyshev coefficients, ai, i = 0, · · · , n :

ai =

Pm
k=1wkTi(zk)Pm
k=1 Ti(zk)

2

to arrive at approximation of f(x, y) on [a, b]:

p(x) =
nX
i=0

aiTi

µ
2
x− a

b− a
− 1
¶

19

Minmax Approximation

• Data: (xi, yi) , i = 1, .., n.
• Objective: L∞ fit

min
β∈Rm

max
i
kyi − f (xi;β)k

• Problem: Difficult to compute

• Chebyshev minmax property
Theorem 1 Suppose f : [−1, 1] → R is Ck for some k ≥ 1, and let In be the degree n polynomial
interpolation of f based at the zeroes of Tn(x). Then

k f − In k∞≤
µ
2

π
log(n + 1) + 1

¶
× (n− k)!

n!

³π
2

´k µb− a

2

¶k

k f (k) k∞

• Chebyshev interpolation:
— converges in L∞

— essentially achieves minmax approximation

— easy to compute

— does not approximate f 0

20

Splines

Definition 2 A function s(x) on [a, b] is a spline of order n iff

1. s is Cn−2 on [a, b], and

2. there is a grid of points (called nodes) a = x0 < x1 < · · · < xm = b such that s(x) is a polynomial
of degree n− 1 on each subinterval [xi, xi+1], i = 0, . . . ,m− 1.
Note: an order 2 spline is the piecewise linear interpolant.

• Cubic Splines
— Lagrange data set: {(xi, yi) | i = 0, · · · , n}.
— Nodes: The xi are the nodes of the spline

— Functional form: s(x) = ai + bi x + ci x
2 + di x

3 on [xi−1, xi]

— Unknowns: 4n unknown coefficients, ai, bi, ci, di, i = 1, · · ·n.

21

• Conditions:
— 2n interpolation and continuity conditions:

yi =ai + bixi + cix
2
i + dix

3
i ,

i = 1, ., n

yi =ai+1 + bi+1xi + ci+1x
2
i + di+1x

3
i ,

i = 0, ., n− 1

— 2n− 2 conditions from C2 at the interior: for i = 1, · · ·n− 1,
bi + 2cixi + 3dix

2
i =bi+1 + 2ci+1 xi + 3di+1x

2
i

2ci + 6dixi=2ci+1 + 6di+1xi

— Equations (1—4) are 4n− 2 linear equations in 4n unknown parameters, a, b, c, and d.
— construct 2 side conditions:

∗ natural spline: s0(x0) = 0 = s0(xn); it minimizes total curvature,
R xn
x0

s00(x)2 dx, among
solutions to (1-4).

∗ Hermite spline: s0(x0) = y00 and s
0(xn) = y0n (assumes extra data)

∗ Secant Hermite spline: s0(x0) = (s(x1)−s(x0))/(x1−x0) and s0(xn) = (s(xn)−s(xn−1))/(xn−
xn−1).

∗ not-a-knot: choose j = i1, i2, such that i1 + 1 < i2, and set dj = dj+1.

— Solve system by special (sparse) methods; see spline fit packages

22

• Shape-preservation
— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

• Schumaker Procedure:
1. Take level (and maybe slope) data at nodes xi

2. Add intermediate nodes z+i ∈ [xi, xi+1]
3. Run quadratic spline with nodes at the x and z nodes which intepolate data and preserves
shape.

4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction
at book’s website)

• Many other procedures exist for one-dimensional problems, but few procedures exist for two-
dimensional problems

23

• Spline summary:
— Evaluation is cheap

∗ Splines are locally low-order polynomial.
∗ Can choose intervals so that finding which [xi, xi+1] contains a specific x is easy.
∗ Finding enclosing interval for general xi sequence requires at most dlog2 ne comparisons

— Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality
of cubic splines depends only on f (4)(x), not f (5)(x).

— Can use splines to preserve shape conditions

24

Multidimensional approximation methods

• Lagrange Interpolation
— Data: D ≡ {(xi, zi)}Ni=1 ⊂ Rn+m, where xi ∈ Rn and zi ∈ Rm

— Objective: find f : Rn → Rm such that zi = f(xi).

— Need to choose nodes carefully.

— Task: Find combinations of interpolation nodes and spanning functions to produce a nonsin-
gular (well-conditioned) interpolation matrix.

25

Tensor products

• General Approach:
— If A and B are sets of functions over x ∈ Rn, y ∈ Rm, their tensor product is

A⊗B = {ϕ(x)ψ(y) | ϕ ∈ A, ψ ∈ B}.
— Given a basis for functions of xi, Φi = {ϕi

k(xi)}∞k=0, the n-fold tensor product basis for functions
of (x1, x2, . . . , xn) is

Φ =

(
nY
i=1

ϕi
ki
(xi) | ki = 0, 1, · · · , i = 1, . . . , n

)
• Orthogonal polynomials and Least-square approximation

— Suppose Φi are orthogonal with respect to wi(xi) over [ai, bi]

— Least squares approximation of f(x1, · · · , xn) in Φ isX
ϕ∈Φ

hϕ, fi
hϕ,ϕi ϕ,

where the product weighting function

W (x1, x2, · · · , xn) =
nY
i=1

wi(xi)

defines h·, ·i over D =
Q

i[ai, bi] in

hf(x), g(x)i =
Z
D

f(x)g(x)W (x)dx.

26

Algorithm 6.4: Chebyshev Approximation Algorithm in R2

• Objective: Given f(x, y) defined on [a, b] × [c, d], find its Chebyshev polynomial approximation
p(x, y)

• Step 1: Compute the m ≥ n + 1 Chebyshev interpolation nodes on [−1, 1]:
zk = −cos

µ
2k − 1
2m

π

¶
, k = 1, · · · ,m.

• Step 2: Adjust nodes to [a, b] and [c, d] intervals:
xk = (zk + 1)

µ
b− a

2

¶
+ a, k = 1, ...,m.

yk = (zk + 1)

µ
d− c

2

¶
+ c, k = 1, ...,m.

• Step 3: Evaluate f at approximation nodes:
wk,c = f(xk, yc) , k = 1, · · · ,m. , c = 1, · · · ,m.

• Step 4: Compute Chebyshev coefficients, aij, i, j = 0, · · · , n :

aij =

Pm
k=1

Pm
c=1wk,cTi(zk)Tj(zc)

(
Pm

k=1 Ti(zk)
2) (
Pm

c=1 Tj(zc)
2)

to arrive at approximation of f(x, y) on [a, b]× [c, d]:

p(x, y) =
nX
i=0

nX
j=0

aijTi

µ
2
x− a

b− a
− 1
¶
Tj

µ
2
y − c

d− c
− 1
¶

27

Multidimensional Splines

• B-splines: Multidimensional versions of splines can be constructed through tensor products; here
B-splines would be useful.

• Summary
— Tensor products directly extend one-dimensional methods to n dimensions

— Curse of dimensionality often makes tensor products impractical

Complete polynomials

• Taylor’s theorem for Rn produces the approximation

f(x)
.
=f(x0) +

Pn
i=1

∂f
∂xi
(x0) (xi − x0i)

+1
2

Pn
i1=1

Pn
i2=1

∂2f
∂xi1∂xik

(x0)(xi1 − x0i1)(xik − x0ik) + ...

— For k = 1, Taylor’s theorem for n dimensions used the linear functionsPn
1 ≡ {1, x1, x2, · · · , xn}

— For k = 2, Taylor’s theorem uses Pn
2 ≡ Pn

1 ∪ {x21, · · · , x2n, x1x2, x1x3, · · · , xn−1xn}.
• In general, the kth degree expansion uses the complete set of polynomials of total degree k in n

variables.

Pn
k ≡ {xi11 · · ·xinn |

nX
c=1

ic ≤ k, 0 ≤ i1, · · · , in}

28

• Complete orthogonal basis includes only terms with total degree k or less.
• Sizes of alternative bases

degree k Pn
k Tensor Prod.

2 1 + n + n(n + 1)/2 3n

3 1 + n + n(n+1)
2 + n2 + n(n−1)(n−2)

6 4n

— Complete polynomial bases contains fewer elements than tensor products.

— Asymptotically, complete polynomial bases are as good as tensor products.

— For smooth n-dimensional functions, complete polynomials are more efficient approximations

• Construction
— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in
complete basis).

— Complete polynomial version is faster to compute since it involves fewer terms

29

Integration

• Most integrals cannot be evaluated analytically
• Integrals frequently arise in economics

— Expected utility and discounted utility and profits over a long horizon

— Bayesian posterior

— Solution methods for dynamic economic models

Gaussian Formulas

• All integration formulas choose quadrature nodes xi ∈ [a, b] and quadrature weights ωi:Z b

a

f(x) dx
.
=

nX
i=1

ωif(xi) (7.2.1)

— Newton-Cotes (trapezoid, Simpson, etc.) use arbitrary xi

— Gaussian quadrature uses good choices of xi nodes and ωi weights.

• Exact quadrature formulas:
— Let Fk be the space of degree k polynomials

— A quadrature formula is exact of degree k if it correctly integrates each function in Fk

— Gaussian quadrature formulas use n points and are exact of degree 2n− 1

30

Theorem 3 Suppose that {ϕk(x)}∞k=0 is an orthonormal family of polynomials with respect to w(x)

on [a, b]. Then there are xi nodes and weights ωi such that a < x1 < x2 < · · · < xn < b, and

1. if f ∈ C(2n)[a, b], then for some ξ ∈ [a, b],Z b

a

w(x) f(x) dx =
nX
i=1

ωi f(xi) +
f (2n)(ξ)

q2n(2n)!
;

2. and
Pn

i=1 ωif(xi) is the unique formula on n nodes that exactly integrates
R b

a f(x)w(x) dx for all
polynomials in F2n−1.

31

Gauss-Chebyshev Quadrature

• Domain: [−1, 1]
• Weight: (1− x2)−1/2

• Formula: Z 1

−1
f(x)(1− x2)−1/2 dx =

π

n

nX
i=1

f(xi) +
π

22n−1
f (2n) (ξ)

(2n)!
(7.2.4)

for some ξ ∈ [−1, 1], with quadrature nodes

xi = cos

µ
2i− 1
2n

π

¶
, i = 1, ..., n. (7.2.5)

Arbitrary Domains

• Want to approximate R b

a f(x) dx for different range, and/or no weight function

— Linear change of variables x = −1 + 2(y − a)(b− a)

— Multiply the integrand by (1− x2)1/2
±
(1− x2)1/2 .Z b

a

f(y) dy =
b− a

2

Z 1

−1
f

µ
(x + 1)(b− a)

2
+ a

¶ ¡
1− x2

¢1/2
(1− x2)1/2

dx

— Gauss-Chebyshev quadrature uses the xi Gauss-Chebyshev nodes over [−1, 1]Z b

a

f(y) dy
.
=
π(b− a)

2n

nX
i=1

f

µ
(xi + 1)(b− a)

2
+ a

¶¡
1− x2i

¢1/2
32

Gauss-Hermite Quadrature

• Domain is [−∞,∞] and weight is e−x2

• Formula: for some ξ ∈ (−∞,∞).Z ∞
−∞

f(x)e−x
2
dx =

nX
i=1

ωif(xi) +
n!
√
π

2n
· f

(2n)(ξ)

(2n)!

N xi ωi

2 0.7071067811 0.8862269254

3 0.1224744871(1) 0.2954089751
0.0000000000 0.1181635900(1)

N xi ωi

7 0.2651961356(1) 0.9717812450(−3)
0.1673551628(1) 0.5451558281(−1)
0.8162878828 0.4256072526
0.0000000000 0.8102646175

• Normal Random Variables
— Y is distributed N(µ, σ2). Expectation is integration.

— Use Gauss-Hermite quadrature: Linear COV x = (y − µ)/
√
2 σ implies

E{f(Y)}=
Z ∞
−∞

f(y)e−(y−µ)
2/(2σ2) dy =

Z ∞
−∞

f(
√
2σ x+ µ)e−x

2√
2σ dx

.
=π−

1
2

nX
i=1

ωif(
√
2σ xi + µ)

where the ωi and xi are the Gauss-Hermite quadrature weights and nodes over [−∞,∞].
33

Multidimensional Integration

• Most economic problems have several dimensions
— Multiple assets

— Multiple error terms

• Multidimensional integrals are much more difficult
— Simple methods suffer from curse of dimensionality

— There are methods which avoid curse of dimensionality

34

Product Rules

• Build product rules from one-dimension rules
• Let xci, ωc

i, i = 1, · · · ,m, be one-dimensional quadrature points and weights in dimension c from
a Newton-Cotes rule or the Gauss-Legendre rule.

• The product rule Z
[−1,1]d

f(x)dx
.
=

mX
i1=1

· · ·
mX

id=1

ω1i1ω
2
i2
· · ·ωd

id
f(x1i1, x

2
i2
, · · · , xdid)

• Gaussian structure prevails
— Suppose wc(x) is weighting function in dimension c

— Define the d-dimensional weighting function.

W (x) ≡W (x1, · · · , xd) =
dY

c=1

wc(xc)

— Product Gaussian rules are based on product orthogonal polynomials.

• Curse of dimensionality:
— md functional evaluations is md for a d-dimensional problem with m points in each direction.

— Problem worse for Newton-Cotes rules which are less accurate in R1.

35

General Parametric Approach: Approximating T

• For each xj, (TV)(xj) is defined by
vj = (TV)(xj) = max

u∈D(xj)
π(u, xj) + β

Z
V̂ (x+; a)dF (x+|xj, u) (12.7.5)

• In practice, we compute the approximation T̂
vj = (T̂V)(xj)

.
= (TV)(xj)

— Integration step: for ωj and xj for some numerical quadrature formula

E{V (x+; a)|xj, u)}=
Z

V̂ (x+; a)dF (x+|xj, u)

=

Z
V̂ (g(xj, u, ε); a)dF (ε)

.
=
X
c

ωcV̂ (g(xj, u, εc); a)

— Maximization step: for xi ∈ X, evaluate

vi = (T V̂)(xi)

∗ Hot starts
∗ Concave stopping rules

— Fitting step:

∗ Data: (vi, xi), i = 1, · · · , n
∗ Objective: find an a ∈ Rm such that V̂ (x; a) best fits the data

∗ Methods: determined by V̂ (x; a)
36

Approximating T with Hermite Data

• Conventional methods just generate data on V (xj):

vj = max
u∈D(xj)

π(u, xj) + β

Z
V̂ (x+; a)dF (x+|xj, u) (12.7.5)

• Envelope theorem:
— If solution u is interior,

v0j = πx(u, xj) + β

Z
V̂ (x+; a)dFx(x

+|xj, u)

— If solution u is on boundary

v0j = µ+ πx(u, xj) + β

Z
V̂ (x+; a)dFx(x

+|xj, u)

where µ is a Kuhn-Tucker multiplier

• Since computing v0j is cheap, we should include it in data:
— Data: (vi, v0i, xi), i = 1, · · · , n
— Objective: find an a ∈ Rm such that V̂ (x; a) best fits Hermite data

— Methods: determined by V̂ (x; a)

37

General Parametric Approach: Value Function Iteration

guess a−→ V̂ (x; a)

−→(vi, xi), i = 1, · · · , n
−→new a

• Comparison with discretization
— This procedure examines only a finite number of points, but does not assume that future points
lie in same finite set.

— Our choices for the xi are guided by systematic numerical considerations.

• Synergies
— Smooth interpolation schemes allow us to use Newton’s method in the maximization step.

— They also make it easier to evaluate the integral in (12.7.5).

• Finite-horizon problems
— Value function iteration is only possible procedure since V (x, t) depends on time t.

— Begin with terminal value function, V (x, T)

— Compute approximations for each V (x, t), t = T − 1, T − 2, etc.

38

Algorithm 12.5: Parametric Dynamic Programming
with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).
Step 0: Choose functional form for V̂ (x; a), and choose

the approximation grid, X = {x1, ..., xn}.
Make initial guess V̂ (x; a0), and choose stopping
criterion � > 0.

Step 1: Maximization step: Compute
vj = (T V̂ (·; ai))(xj) for all xj ∈ X.

Step 2: Fitting step: Using the appropriate approximation
method, compute the ai+1 ∈ Rm such that
V̂ (x; ai+1) approximates the (vi, xi) data.

Step 3: If k V̂ (x; ai)− V̂ (x; ai+1) k< �, STOP; else go to step 1.

39

• Convergence
— T is a contraction mapping

— T̂ may be neither monotonic nor a contraction

• Shape problems
— An instructive example

Figure 2:

— Shape problems may become worse with value function iteration

— Shape-preserving approximation will avoid these instabilities

40

Summary:

• Discretization methods
— Easy to implement

— Numerically stable

— Amenable to many accelerations

— Poor approximation to continuous problems

• Continuous approximation methods
— Can exploit smoothness in problems

— Possible numerical instabilities

— Acceleration is less possible

41

