Optimization Software Survey

SVEN LEYFFER AND TODD MUNSON
Mathematics and Computer Division
Argonne National Laboratory
{leyffer,tmunson}@mcs.anl.gov

Institute for Computational Economics
University of Chicago
July 29, 2008

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 1/72

Overview

1. Optimization Methods
Active-Set Methods: SQP/SLQP
Interior Point Methods
Global Convergence

2. Optimization Software
Available Solvers
Failures & Exception Handling
Local Solutions

3. Beyond Nonlinear Optimization
Optimization with Integer Variables
Global Optimization & Optimization Without Derivatives
Control and Optimization

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods

Generic Nonlinear Optimization Problem

Nonlinear Programming (NLP) problem

minimize f(x) objective
x
subject to c¢(x) =0 constraints
x>0 variables

e f:R" — R, c: R" — R™ smooth (typically C?)
e 1z € R" finite dimensional (may be large)

e more general [< ¢(x) < u possible

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods

Solving Nonlinear Optimization Problems

(P) minimize f(x) subjecttoc(x)=0, x>0

Main ingredients of iterative solution approaches:
1. Local Method: Given xj, (solution guess) find a step s.
e Local problem should be easier to solve than (P).
e Ensure fast (quadratic) local convergence.
e Connection to global convergence ...
2. Forcing Strategy: Global convergence from remote starting points.
3. Forcing Mechanism: Truncate step s to force progress:

e Trust-region to restrict s of local problem.
e Back-tracking line-search along step s.

... look at each ingredient in turn.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 4/72

Optimality Conditions for NLP

Constraint qualification (CQ)
Linearizations of ¢(x) = 0 characterize all feasible perturbations
= rules out cusps etc.

x* local minimizer & CQ holds = 3 multipliers y*, z*:

V(") = Vela) Ty - 2 =

where X* = diag(z*), thus X*2* =0 & 272zf =0
Lagrangian: L(z,y,2) := f(x) —yle(x) — 2Tz

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimality Conditions for NLP

contours f(x)

Objective gradient is linear combination of constraint gradients

g(z) = A(x)y, where g(z) := Vf(z), A(z) := Ve(z)?

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods

Newton's Method for Nonlinear Equations

Solve F'(z) = 0:
Get approx. xpy1 of solution of F'(x) =0
by solving linear model about xy:

F(a;k) + VF((L’k)T(:IZ —x,) =0

fork=0,1,...

Theorem: If F € C2, and VF(z*) nonsingular,
then Newton converges quadratically near x*.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods

Newton's Method for Nonlinear Equations

b Prx)

Next: two classes of methods based on Newton ...

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods

Newton's Method for Nonlinear Equations

 Flx)

Next: two classes of methods based on Newton ...

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods

Newton's Method for Nonlinear Equations

b Py

Next: two classes of methods based on Newton ...

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods

Newton's Method for Nonlinear Equations

b Py

Next: two classes of methods based on Newton ...

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Active-Set Methods: SQP/SLQP

Active-Set Methods

i Gankaid

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 9 /72

Sequential Quadratic Programming (SQP)

Consider equality constrained NLP
minimize f(xz) subject toc(z) =0
X
Optimality conditions:

Vf(z)—Ve@)Ty = 0 and
clx) = 0

. system of nonlinear equations: F'(w) = 0 for w = (z,y).

. solve using Newton's method

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 10 / 72

Sequential Quadratic Programming (SQP)
Nonlinear system of equations (KKT conditions)
Vf(z) = Ve(x)Ty =0 and c(x) =0

Apply Newton's method from wy, = (zg,yx) ... Hi = V2L(zk, yx)

[Hy —Ag] (Sz) _ (Ve L(k; yi) >
A;‘g 0 Sy Ck

- set (Thrt, Ykr1) = (Tk + oy Yk + 8y) .. AF = Ve(ap)T

. solve for Y41 = yi + s, directly instead:

e) =)
AL 0 Ykt1) Ck

. set (Tpg1, Y1) = (Tk + 5, Yrt1)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 11 /72

Sequential Quadratic Programming (SQP)

Newton's Method for KKT conditions leads to:
Gl) -0
AL 0 Yk+1 Ck
. are optimality conditions of QP

minimize Vfls+ %STHkS
S
subject to ¢, + ATs =0

... hence Sequential Quadratic Programming

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 12 /72

Parenthesis: Saddle Point Problems

Given H symmetric n X n, and A m X n matrices.

LetK:[H _A]

AT 0
When is K nonsingular (i.e. invertible)?

Lemma If A has full rank, and if
Au=0,u#0=u"Hu>0
then K is nonsingular.

i.e. partial positive definiteness of H covers null-space of A

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 13 /72

Sequential Quadratic Programming (SQP)

SQP for inequality constrained NLP:
minimize f(z) subjecttoc(z)=0 & x>0
x

REPEAT
1. Solve QP for (s, Yg+1, 2k+1)

minimize kaTs + %STHkS
S

subject to ¢ + A{s =0
T +s>0

2. Set xpy1 =Tk + S

... QP solve computationally expensive

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 14 /72

Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Quadratic Programming
NLP: minimize f(z) subject to ¢(z) =0, x >0

Sequential Quadratic Programming (SQP)

minimize g,{s + %STWkS
S

subject to ¢ + A;;Cs =0
T +s>0

where g = V f(2x), A = Ve(zp)T, Wi, = V2L(2k, yr)
set Ty 1 <« Tp + S, update trust-region etc.

e unsuitable for large problems: QP pivoting = basis factors

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Linear Programming
NLP: minimize f(z) subject to ¢(z) =0, x >0

Sequential Linear Programming (SLP)
minimize ngs
S
subject to ¢ + Ags =0
T +s5>0 [[8]lo0 < Ay

where g = V f(2x), A = Ve(zp)T, Wi, = V2L(2k, yr)
set Ty 1 <« Tp + S, update trust-region etc.

e unsuitable for large problems: QP pivoting = basis factors

e solve LPs with million unknowns on PC
trust-region [|s||cc < Aj to avoid unbounded LP

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Linear Programming
while (not optimal) begin
1. Compute displacement sy p by solving LP subproblem

3. if step s acceptable then
Tp+1 =Tk + 5 & increase TR A =2 % A
else ZTp+1 = o & decrease TR A = A/2

end

e SLP = slow local convergence ... steepest descent

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Sequential Linear Programming with EQP

while (not optimal) begin
1. Compute displacement sy p by solving LP subproblem
2. ldentify active constraints: A = {i: ¢; + aiTst =0}

e e, () = (22

. solve equality QP for step s

3. if step s acceptable then
Tp+1 =Tk + 5 & increase TR A =2 % A
else ZTp+1 = o & decrease TR A = A/2

end
e SLP = slow local convergence ... steepest descent
e EQP = fast local convergence ... ~ Newton on A. 4
e use with knitro_options = "algorithm=3"; ... or ASTROS

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Interior Point Methods

Modern Interior-Point Methods (IPM)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 17 / 72

Modern Interior-Point Methods (IPM)

General NLP
minimize f(z) subjecttoc(z)=0 & x>0

Perturbed 1 > 0 optimality conditions (z, z > 0)

Vf(z)—Ve(x)Ty -z
Fu(z,y,2) = clx) p=0
Xz — pe

e Primal-dual formulation, where X = diag(z)

e Central path {w(1), y(1), 2(u) : > 0}
e Apply Newton's method for sequence p ™\, 0

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 18 / 72

Modern Interior-Point Methods (IPM)

Newton’'s method applied to primal-dual system ...

V2L, —Ap I Az
A0 0 Ay | = —Fu(xr, yr, 2k)

where Aj, = Ve(z)T, X}, diagonal matrix of zy.

Polynomial run-time guarantee for convex problems

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Classical Interior-Point Methods (IPM)

minimize f(z) subjecttoc(z)=0 & x>0
Related to classical barrier methods [Fiacco & McCormick]

{ minimmize f(z) —p> log(x;)

subject to ¢(x) =0

p=10 p=1

minimize x5 + x3 — plog (a:l + 3 — 1)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 20 / 72

Classical Interior-Point Methods (IPM)

minimize f(z) subjecttoc(z)=0 & x>0
Related to classical barrier methods [Fiacco & McCormick]

{ minimmize f(z) —p> log(x;)

subject to ¢(x) =0

p=0.1 1= 0.001

minimize x5 + x3 — plog (a:l + 3 — 1)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 20 / 72

Classical Interior-Point Methods (IPM)

minimize f(xz) subjecttoc(x)=0 & x>0
x
Relationship to barrier methods
minimize f(z) — p) log(z;)
x
subject to ¢(x) =0

First order conditions

Vi(x) —pXte— A(ﬂz)z;

0
0

. apply Newton's method ...

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Classical Interior-Point Methods (IPM)

Newton’s method for barrier problem from xj ...

V2Lk +pX % —Ag Az
AZ 0 Ay

Introduce Z(zx) == pX; ' ... or ... Z(zy) Xy = pe

VQEk + Z(LL’k)Xk_l —Ap Ax
Ak 0 Ay

. compare to primal-dual system ...

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Classical Interior-Point Methods (IPM)

Recall: Newton's method applied to primal-dual system ...

V2L, —A, —I Ax
AT 0 0 Ay | = —Fu(zk, Yk, 2i)
Zy, 0 X Az

Eliminate Az = — X 'ZAz — Ze — uX e

v2£k + Zka_l —Ayp Az
Ag 0 Ay

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Interior-Point Methods (IPM)

Primal-dual system ...

v2£k + Zka_l — Ay Az
Ag 0 Ay

. compare to barrier system ...

V2L + Z(zp) X, Y — Ay Az
Ak 0 Ay

o 7y is free, not Z(xy) = pX, ' (primal multiplier)
o avoid difficulties with barrier ill-conditioning

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 24 /72

Optimization Methods Global Convergence

Solving Nonlinear Optimization Problems

(P) minimize f(z) subject toc(x) >0

Main ingredients of iterative solution approaches:
1. Local Method: Given xj, (solution guess) find a step s.
e Sequential Quadratic Programming (SQP)
e Sequential Linear/Quadratic Programming (SLQP)
e Interior-Point Methods
2. Forcing Strategy: Global convergence from remote starting points.
3. Forcing Mechanism: Truncate step s to force progress:

e Trust-region to restrict s of local problem ... used in this talk.
e Back-tracking line-search along step s.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 25 /72

Optimization Methods Global Convergence

Enforcing Convergence

MAYT GROEDING

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

When's a New Point Better?

Easy for unconstrained minimize f(x) (quadratic model gx(s)):
Thyl = Tk + 8 better, iff f(l'k_H) < f(:Ek) — 10_4(];9(8)

. actual reduction matches portion of reduction predicted by model.

Unclear for constrained problem: ¢(z) =0

e step s can reduce both f(x) and |[|c(x)]| GOOD

e step s increases f(z) and decreases ||c(x)|| 77

e step s decreases f(z) and increases ||c(x)|| 77
|

e step s can increase both f(x) and ||c¢(x)] BAD

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 27 / 72

Optimization Methods Global Convergence

Penalty Functions (i)

Augmented Lagrangian Methods

minimize L(z,yy, pr) = f(x) — yrc(@) + sprllc(x)]?

As Yy — Y. @ xp — T, for pp > p
e No ill-conditioning, improves convergence rate

e update p; based on reduction in |c(z)|?

e approx. minimize L(x, yx, px)

e first-order multiplier update: yi+1 = yr — prc(zk)
= dual iteration

Computational Optimization Computational Optimization

Leyffer and Munson (Argonne)

Penalty Functions (ii)

Exact Penalty Function: minimize, ®(z,7) = f(x)+ 7|/c(z)]|
e combine constraints and objective

e equivalence of optimality = exact for 7 > ||y*||p
now apply unconstrained techniques

e ® nonsmooth, but equivalent to smooth problem (exercise)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Filter Methods for NLP

Penalty function can be inefficient
e Penalty parameter not known a priori

e Large penalty parameter = slow convergence

Two competing aims in optimization:
1. Minimize f(x)

2. Minimize h(x) := ||c(z)|| ... more important

= concept from multi-objective optimization:
(hkt1, fr+1) dominates (hy, fi) iff hpypr < hp & frpr < fy

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Global Convergence

Filter Methods for NLP

Filter F: list of non-dominated pairs (hy, f;)

flx)
A

e new 1,1 acceptable to filter F, iff
1. hk+1§hl VieF, or
2. f}c+1 < fl Vie F

letx) |

= often accept new x1, even if penalty function increases

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Global Convergence

Filter Methods for NLP

Filter F: list of non-dominated pairs (hy, f;)

flx)
A

e new 1,1 acceptable to filter F, iff
1. hk+1§hl VieF, or
2. fk+1 < fl Vie F

e remove redundant entries

letx) |

= often accept new x1, even if penalty function increases

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Global Convergence

Filter Methods for NLP

Filter F: list of non-dominated pairs (hy, f7)

fx)
J
e new 1,1 acceptable to filter F, iff /6
1 hjo1 < VIEF, or "/.
2. i < AIVIEF Oé,
e remove redundant entries L Q/)
e reject new Tpyq,
if hgr1 > h & fre1 > i H H
. reduce trust region radius A = A/2 C(x)r

= often accept new x1, even if penalty function increases

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 31/ 72

Optimization Methods Global Convergence

Solving Nonlinear Optimization Problems

(P) minimize f(z) subject toc(x) >0

Main ingredients of iterative solution approaches:
1. Local Method: Given xj, (solution guess) find a step s.
e Sequential Quadratic Programming (SQP)
e Sequential Linear/Quadratic Programming (SLQP)
e Interior-Point Methods
2. Forcing Strategy: Augmented Lagrangian, penalty, filter.
3. Forcing Mechanism: Truncate step s to force progress:

e Trust-region to restrict s of local problem ... used in this talk.
e Back-tracking line-search along step s.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Global Convergence

Trust-Region Methods

Globalize SQP/IPM using trust region, A* > 0:
Consider unconstrained f(x) minimization by trust-region

1 ,
minimize qi(s) := f(xp) + Vf(xp)Ts + §5TH(:ck)s subject to ||s| < A*

==\

)
7

Z 77

)
.

e

FF T T F 7T

o

7

e

—

===

—

m———

=

7
—

N
o)

AN

G
77

N/

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Global Convergence

Trust-Region Framework for Nonlinear Optimization

minimize f(x) subjecttoc(z) =0, x>0
x

E.g. SQP: given xq starting point, set k =0
repeat

1. solve trust-region problem around xj for step s:
min qx(s) s.t. ¢ + A;‘gs =0, 2, +s>0, [[s]| < AF
S

2. if xj + s improves on zj, then
accept step: zpr1 = + S

else reject step: zp1 = a1

3. k=k+ 1 & house-keeping

until convergence

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Methods Global Convergence

Line-Search Methods

b fixpr ts)

Jx) acceptable 1

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 35 /72

Line-Search Methods

SQP/IPM compute s descend direction or penalty function: s”’V® < 0

Backtracking-Armijo line search

Givena?=1,3=0.1,set{ =0

REPEAT
1. ol = al/2 & evaluate ®(z + altls)
2.01=1+1

UNTIL (2 + als) < f(z) + a!BsTVE

Converges to stationary point, or unbounded, or zero descend

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Software

Overview

2. Optimization Software
Available Solvers
Failures & Exception Handling
Local Solutions

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 37/

Optimization Software ~ Available Solvers

Sequential Quadratic Programming

ASTROS Active-Set Trust-Region Optimization Solvers
filterSQP
e trust-region SQP; robust QP solver
e filter to promote global convergence
SNOPT
e line-search SQP; null-space CG option
e /q exact penalty function
SLIQUE (part of KNITRO)
e SLP-EQP ("SQP" for larger problems)
e trust-region with ¢, penalty
e use with knitro_options = "algorithm=3";

Other Methods: CONOPT generalized reduced gradient method

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 38 /72

Interior Point Methods

e IPOPT (free: part of COIN-OR)

e line-search filter algorithm

e 2nd order convergence analysis for filter
e KNITRO

e trust-region Newton to solve barrier problem

e (1 penalty barrier function

e Newton system: direct solves or null-space CG
e 1.0OQO

e line-search method

e Cholesky factorization; no convergence analysis

Other solvers: MOSEK (unsuitable or nonconvex problem)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Augmented Lagrangian Methods

e LANCELOT
e minimize augmented Lagrangian subject to bounds
e trust-region to force convergence
e iterative (CG) solves

e MINGS

e minimize augmented Lagrangian subject to linear constraints
e line-search; recent convergence analysis
e direct factorization of linear constraints

e PENNON

e suitable for semi-definite optimization
e alternative penalty terms

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

COIN-OR

http://www.coin-or.org

COmputational INfrastructure for Operations Research

A library of (interoperable) software tools for optimization

A development platform for open source projects in the OR
community

Possibly Relevant Modules:

OSI: Open Solver Interface

CGL: Cut Generation Library

CLP: Coin Linear Programming Toolkit
CBC: Coin Branch and Cut

IPOPT: Interior Point OPTimizer for NLP
NLPAPI: NonLinear Programming API

Other: SOPLEX ... (MI)LP solver almost as good as CPLEX

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

http://www.coin-or.org

Active-Set vs. Interior-Point

Active-Set usually more robust (identify degeneracy)

e LP/QP solve become bottleneck for large problems
combinatorial pivoting & dense linear algebra

e robust LP/QP find linearly independent set of constraints
= ensures LICQ for subset of constraints

e good warm-start properties ... solving related problems

Interior-Point often faster (in terms of CPU time)

e solve single linear system per iteration
= much faster than LP/QP solve

e poor warm-start properties ... initial point x,z > u
e carry all constraints around at all times
= affected by degeneracy ... cond(KKT) = O(u™!)

... but there are practical differences too, see hs044 .mod

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 42 / 72

Optimization Software ~ Available Solvers

Automatic Differentiation

How do | get the derivatives Vc(x), VZe(z) etc?

e hand-coded derivatives are error prone

e finite differences acl(’”) ~ C"(”&g)_”(@ can be dangerous

where e; = (0, ... ,0, 1,0,...,0) is jth unit vector
Automatic Differentiation
e chain rule techniques to differentiate program
e recursive application = “exact” derivatives
e suitable for huge problems, see www.autodiff.org
. already done for you in AMPL/GAMS etc.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

www.autodiff.org

Optimization Software Failures & Exception Handling

Something Under the Bed is Drooling

1. exception handling
e floating point (IEEE) exceptions
e unbounded problems

2. local solutions

e (locally) inconsistent problems
e suboptimal solutions

A Calvin and Hol
For

. identify problem & suggest remedies

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Software Failures & Exception Handling

Floating Point (IEEE) Exceptions

Bad example: minimize barrier function, barrier.mod

param mu default 1;
var x{1..2} >= -10, <= 10;

var s;
minimize barrier: x[1]172 + x[2]72 - muxlog(s);
subject to

cons: s = x[1] + x[2]"2 - 1;

. results in error message like
Cannot evaluate objective at start
. change initialization of s:
var s := 1; ... difficult, if IEEE during solve ...

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Unbounded Objective

Penalized MPEC (wait till tomorrow) 7 = 1:

minimize :p% + x% —dxix0 + TT1X9
xX

subject to x1,29 >0

. unbounded below for all 7 < 2

param pi >= 0, default 1; # ... penalty parameter
var x{1..2} >= 0;
minimize MPECpen: x[1]°2 + x[2]°2 - 4*x[1]*x[2] + pi*x[1]*x[2];

. what happens to Lipenalty.mod?

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 46 / 72

Optimization Software Local Solutions

Locally Inconsistent Problems

NLP may have no feasible point
var x{1..2} >= -1;
minimize objf: -1000*x[2];
subject to

conl: (x[1]+2)"2 + x[2]"2 <=1
con2: (x[1]1-2)"2 + x[2]"2 <= 1;

Y
O T

feasible set: intersection of circles

.o

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Software Local Solutions

Locally Inconsistent Problems

LOQO

| Primal | Dual
Iter | 0Obj Value Infeas | Obj Value Infeas
1 -1.0000000+03 4.26+00 -6.0000006+00 1.06-00
éé.‘] 2.312535e-04 7.9e-01 1.715213e+12 1.5e-01

LOQO 6.06: iteration limit

... fails to converge ... not useful for user

dual unbounded — oo = primal infeasible

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Software Local Solutions

Locally Inconsistent Problems

FILTER
iter | rho | [1all | £/ hl | [lcll/nJt
—————— Fo————- + —-—- + +
0:0 10.0000 0.00000 -1000.0000 16.000000
1:1 10.0000 2.00000 -1000.0000 8.0000000
[...]

8:2 2.00000 0.320001E-02 7.9999693 0.10240052E-04
9:2 2.00000 0.512000E-05 8.0000000 0.26214586E-10
filterSQP: Nonlinear constraints locally infeasible

... fast convergence to minimum infeasibility
. identify “blocking” constraints ... modify model /data

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Software Local Solutions

Locally Inconsistent Problems

Remedies for locally infeasible problems:

1. check your model: print constraints & residuals, e.g.
solve;
display _conname, _con.lb, _con.body, _con.ub;
display _varname, _var.lb, _var, _var.ub;
... look at violated and active constraints

2. try different nonlinear solvers (easy with AMPL)

3. build-up model from few constraints at a time

4. try different starting points ... global optimization

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Optimization Software Local Solutions

Suboptimal Solution & Multi-start

Problems can have many local minimizers

Schwefel Function

- | param pi := 3.1416;

D 1 param n integer, >= 0, default 2;
o] set N :=1..n;
X { var x{N} >= 0, <= 32*pi, := 1;

® 1 minimize objf:

™ | - sum{i in N} x[il*sin(sqrt(x[il));

default start point converges to local minimizer

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 51/

Suboptimal Solution & Multi-start

param nD := 5; # discretization
set D := 1..nD;

param hD := 32%pi/(nD-1);

param optval{D,D};

model schwefel.mod; # load model

for {i in D}{
let x[1] := (i-1)*hD;
for {j in DH{
let x[2] := (j-1)*hD;

solve;
let optvalli,j] := objf;
}; # end for
}; # end for

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Suboptimal Solution & Multi-start

display optval;
optval [*,x]

1 2 3 4 5 1=
1 0 24.003 -36.29 -50.927 56.909
2 24.003 -7.8906 -67.580 -67.580 -67.580
3 -36.29 -67.5803 -127.27 -127.27 -127.27
4 -50.927 -67.5803 -127.27 -127.27 -127.27
5 56.909 -67.5803 -127.27 -127.27 -127.27

)

... there exist better multi-start procedures

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 53 /72

Beyond Nonlinear Optimization

Overview

3. Beyond Nonlinear Optimization
Optimization with Integer Variables
Global Optimization & Optimization Without Derivatives
Control and Optimization

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Optimization with Integer Variables

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)
e modeling discrete choices = 0 — 1 variables

e modeling integer decisions = integer variables
e.g. number of different stocks in portfolio (8-10)
not number of beers sold at Goose Island (millions)

MINLP solvers:
e branch (separate z; = 0 and z; = 1) and cut
e solve millions of NLP relaxations: MINLPBB, SBB

e outer approximation: iterate MILP and NLP solvers
BONMIN (COIN-OR) & FilMINT on NEOS

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Optimization with Integer Variables

Portfolio Management

e N: Universe of asset to purchase
e x;: Amount of asset ¢ to hold
e B: Budget

minimize u(x) subject to ZIL’Z =B, x>0
1EN

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Optimization with Integer Variables

Portfolio Management

e N: Universe of asset to purchase
e x;: Amount of asset ¢ to hold
e B: Budget

minimize u(x) subject to Zazz =B, x>0
1EN

e Markowitz: u(z) © 4T+ AT Qux
e «: maximize expected returns
e (: variance-covariance matrix of expected returns
e)\: minimize risk; aversion parameter

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Optimization with Integer Variables

More Realistic Models

e b e RV of “benchmark” holdings

e Benchmark Tracking: u(z) 3 (x —0)TQ(z —b)
e Constraint on E[Return]: aTz > r

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Optimization with Integer Variables

More Realistic Models

e b e RV of “benchmark” holdings

e Benchmark Tracking: u(z) 3 (x —0)TQ(z —b)
e Constraint on E[Return]: aTz > r

e Limit Names: [ie N : z; > 0| < K
e Use binary indicator variables to model the implication z; > 0=y; =1
e Implication modeled with variable upper bounds:

°* Dien¥i <K

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 57 /72

Beyond Nonlinear Optimization Global Optimization & Optimization Without Derivatives

Global Optimization

| need to find the GLOBAL minimum!

e use any NLP solver (often work well!)

e use the multi-start trick from previous slides

e global optimization based on branch-and-reduce: BARON
constructs global underestimators

refines region by branching

tightens bounds by solving LPs

solve problems with 100s of variables

e “voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 58 / 72

Beyond Nonlinear Optimization Global Optimization & Optimization Without Derivatives

Derivative-Free Optimization

My model does not have derivatives!

e Change your model ... good models have derivatives!
e pattern-search methods for min f(x)
e evaluate f(x) at stencil z; + AM
e move to new best point
e extend to NLP; some convergence theory h
e matlab: NOMADm.m; parallel APPSPACK
e solvers based on building interpolating quadratic models
e DFO project on www.coin-or.org
e Mike Powell's NEWUOA quadratic model
e “voodoo" solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 59 / 72

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Avoid global warming without ruining the economy!

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 60 / 72

Control and Optimization

Beyond Nonlinear Optimization

Optimal Technology Penetration

Goal: Optimize energy production schedule and transition between old and
new reduced-carbon technology to meet carbon targets

e Maximize social welfare

e Constraints:

e GHG target at end of time
e Reduced-carbon technology subject to learning effects
reduced unit cost as new technology becomes widespread

e Assumptions on GHG emission rates, economic growth, energy costs

=- Optimal control problem

model as finite-dimensional optimization problem...

Computational Optimization Computational Optimization 61 /72

Leyffer and Munson (Argonne)

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Time: t € [0,T): function x(t), derivative z(t) = dflgt)

Energy Output: old & new technology energy output: ¢°(¢) and ¢"(t);
total energy output: Q(t) = ¢°(t) + q"(t).

Demand and Consumer Surplus: S’(Q,t): integral of demand derived from
CES utility

Production Costs: ¢, unit cost of old technology
new technology from learning by doing: z(t) = fg q"(r)dr

Greenhouse Gases Emissions: discount at environmental time preference
rate:

T
/ e_“t(boqo(t) -+ bnq"(t))dt < zr
0

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 62 /72

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

. T —rt | &
masimize [T [0 +4"(0).0) = ot (1) = calol0)a" ()]

subject to #(t) =q¢"(t), 2(0)=20=0

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 63 / 72

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Discretization:
e t €]0,T) replaced by N + 1 equally spaced points t; = ih
e h:=T/N time integration step-length
e approximate ¢;* ~ ¢"(t;) etc.

Replace differential equation

i(t) = q"(t)
by
Tiy1 = x; + hq'

. use h =1 (or even h = 3) years

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Discretization:
e t €]0,T) replaced by N + 1 equally spaced points t; = ih
e h:=T/N time integration step-length
e approximate ¢;* ~ ¢"(t;) etc.

Replace differential equation

by
Tiv1 = ; + hqj

. use h =1 (or even h = 3) years

S

-

24 35
Output of new technology between t = 24 and t = 35

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration with Varying h

Trapezoid discretization
T T T T T T T T T T

31 32 33 34 35

=
3
T

new tech. output g (t)
8
T

N

31 32 33 34 35

100+ .

Output of new technology for different discretization schemes and
step-sizes = sharp transition (does not make sense economically)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

e K(t) amount of capital in technology j at .
e I7(t) investment to increase K7(t).

e initial capital level as K?:

Notation:
* Qt) =q°(t) +¢"(t)
e C(t) = C(q°(t), K°(t)) + C"(q"(t), K"(t))
o I(t)y=1I°)+ I"(t)
o K(t)=K°(t)+ K"(t)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

maximize
{q] ?KJ VIJ 7"”72}(t)

subject to

Ki(t) = —6K9(t) + I (t), K’'(0)=K), je{on}
2(t) = e [bog”(t) + bug"(t)], 2(0) =20 =0

AT) < 2p

¢'(t) 2 0, j € {o,n}

I(t) >0, j€{o,n}

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 67 / 72

Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

150 - ! | : ! ! : ! T
3 100} L e
..g /—“ ----- New
5 50 -7 Total| -|
o //
4
0 il |
0 5 10 15 20 25 30 35 40 45 50
1500 - | | : ! | : ! T
= 1000 i~ 4
£ [N
2 H Ses
7 500 T
2 i
£) H
o I
0 5 10 15 20 25 30 35 40 45 50
6000 : : : : : : : : T
~ 4000 L iiemmmmmmmmmmmmmmRmEE]
s 7
S 2000 & e N
8 "_’\
)i
0 1 1 / N
0 5 10 15 20 25 30 35 40 45 50

Optimal output, investment, and capital for 50% CO2 reduction.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 68 / 72

Beyond Nonlinear Optimization Control and Optimization

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

1
minimize %/ u?(t) + 2% (t)dt
0

subject to
g(t) = y(t) +ult), t €[0,1],
y(0) = L
2e3t 4¢3
) = — T~
jy () e3t/2(2+63)7
3t .3
ur(t) = M'
e3t/2(2 + €3)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Control and Optimization

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem Discretize with 2nd order RK

1 K—1
L .. . h
minimize %/0 u?(t) + 292 (t)dt minimize - E ui+1/2+2yi+1/2
k=0

subject to subject to (k =0,...,K):
h 4
: = + —(5yx +uk),
y(t) = %y(t) 4 u(t), te [07 1]7 Yk+1/2 Yk 9 (1zyk k) |
y(0) = 1. Yet1 = Yk T h(GYks1/2 + Uriye
263t + 63
=y t) = o,
Yy (t) e31/2(2 + ¢3)
92 3t _ .3
ur(t) = RiC
e31/2(2 + ¢3)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 69 / 72

Beyond Nonlinear Optimization

Control and Optimization

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

1
minimize %/ u?(t) + 2% (t)dt
0

subject to
g(t) = y(t) +ult), t €[0,1],
y(0) = L
2e3t 4¢3
) = — T~
jy () e3t/2(2+63)7
3t .3
ur(t) = M'
e3t/2(2 + €3)

Leyffer and Munson (Argonne)

Computational Optimization

Discretize with 2nd order RK

K-1
minimize 5 Z “i+1/2 + 2yi+1/2
k=0

subject to (k=0,...,K):

h 1
Ye+1/2 = Yk t+ §(§yk + uyg),
Yt = Yk + h(5Yks12 + Ui o

Discrete solution (k =0,...,K):

Yk = 17 yk‘+1/2 - O?
4+ h
U = T Ton Uk41/2 = 0,

DOES NOT CONVERGE!

Computational Optimization 69 / 72

Beyond Nonlinear Optimization Control and Optimization

Discretize-Then-Optimize

Discretization state equation implies discretization of adjoint
. may have different convergence properties.
Example problem (independent of solution of discretized problem!)

. 1 At 4
y(t) = 5y(t) + u(t), Yk+1/2 = Yk T ?(fyk + ug),
]-, Yk+1 = yk+At(§yk+1/2 +uk+1/2)7

A(t) = —3A(t) + 2y(2), Ait1/2 = A5t — 2Uk41/2),
A(l) :0,)\k :Ak+1+<1+At/4)Ak+1/2,

_Ak+l/2 = 07
Ugt1/2 — Ag+1 = 0.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 70/ 72

Beyond Nonlinear Optimization Control and Optimization

Tips to Solve Continuous-Time Problems

Alternative: Optimize-Then-Discretize

e consistent adjoint/dual discretization

e discretized gradients can be wrong!

e OK for equality constraints; harder for inequality constraints

Tips for handling continuous-time models

1.

2
3.
4

use discretize-then-optimize (easier)
. refine discretization: h = 1 year discretization is nonsense
use different discretization schemes ... refine answers

. check implied discretization of adjoints

. always be wary of fixed step-lengths

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

Beyond Nonlinear Optimization Control and Optimization

Optimization Conclusions

Optimization is General Modeling Paradigm
e linear, nonlinear, equations, inequalities
e integer variables, equilibrium, control
AMPL (GAMS) Modeling and Programming Languages
e express optimization problems
e use automatic differentiation
e easy access to state-of-the-art solvers
Optimization Software
e open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)

e current solver limitations on laptop:

e 1,000,000 variables/constraints for LPs

e 100,000 variables/constraints for NLPs/NCPs

e 100 variables/constraints for global optimization
¢ 500,000,000 variable LP on BlueGene/L

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization

72/ 72

	Optimization Methods
	Active-Set Methods: SQP/SLQP
	Interior Point Methods
	Global Convergence

	Optimization Software
	Available Solvers
	Failures & Exception Handling
	Local Solutions

	Beyond Nonlinear Optimization
	Optimization with Integer Variables
	Global Optimization & Optimization Without Derivatives
	Control and Optimization

