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Optimization Methods

Generic Nonlinear Optimization Problem

Nonlinear Programming (NLP) problem
minimize

x
f(x) objective

subject to c(x) = 0 constraints
x ≥ 0 variables

• f : Rn → R, c : Rn → Rm smooth (typically C2)

• x ∈ Rn finite dimensional (may be large)

• more general l ≤ c(x) ≤ u possible
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Optimization Methods

Solving Nonlinear Optimization Problems

(P ) minimize
x

f(x) subject to c(x) = 0, x ≥ 0

Main ingredients of iterative solution approaches:

1. Local Method: Given xk (solution guess) find a step s.
• Local problem should be easier to solve than (P ).
• Ensure fast (quadratic) local convergence.
• Connection to global convergence ...

2. Forcing Strategy: Global convergence from remote starting points.

3. Forcing Mechanism: Truncate step s to force progress:
• Trust-region to restrict s of local problem.
• Back-tracking line-search along step s.

... look at each ingredient in turn.
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Optimization Methods

Optimality Conditions for NLP

Constraint qualification (CQ)
Linearizations of c(x) = 0 characterize all feasible perturbations
⇒ rules out cusps etc.

x∗ local minimizer & CQ holds ⇒ ∃ multipliers y∗, z∗:

∇f(x∗)−∇c(x∗)T y∗ − z∗ = 0
c(x∗) = 0
X∗z∗ = 0

x∗ ≥ 0, z∗ ≥ 0

where X∗ = diag(x∗), thus X∗z∗ = 0 ⇔ x∗i z
∗
i = 0

Lagrangian: L(x, y, z) := f(x)− yT c(x)− zTx
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Optimization Methods

Optimality Conditions for NLP

Objective gradient is linear combination of constraint gradients

g(x) = A(x)y, where g(x) := ∇f(x), A(x) := ∇c(x)T
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Optimization Methods

Newton’s Method for Nonlinear Equations

Solve F (x) = 0:
Get approx. xk+1 of solution of F (x) = 0
by solving linear model about xk:

F (xk) +∇F (xk)T (x− xk) = 0

for k = 0, 1, . . .

Theorem: If F ∈ C2, and ∇F (x∗) nonsingular,
then Newton converges quadratically near x∗.
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Optimization Methods

Newton’s Method for Nonlinear Equations

Next: two classes of methods based on Newton ...
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Optimization Methods Active-Set Methods: SQP/SLQP

Active-Set Methods
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Quadratic Programming (SQP)

Consider equality constrained NLP

minimize
x

f(x) subject to c(x) = 0

Optimality conditions:

∇f(x)−∇c(x)T y = 0 and
c(x) = 0

... system of nonlinear equations: F (w) = 0 for w = (x, y).

... solve using Newton’s method
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Quadratic Programming (SQP)

Nonlinear system of equations (KKT conditions)

∇f(x)−∇c(x)T y = 0 and c(x) = 0

Apply Newton’s method from wk = (xk, yk) ... Hk = ∇2L(xk, yk)[
Hk −Ak
ATk 0

](
sx
sy

)
= −

(
∇xL(xk, yk)

ck

)
... set (xk+1, yk+1) = (xk + sx, yk + sy) ... Ak = ∇c(xk)T
... solve for yk+1 = yk + sy directly instead:[

Hk −Ak
ATk 0

](
s

yk+1

)
= −

(
∇fk
ck

)
... set (xk+1, yk+1) = (xk + s, yk+1)
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Quadratic Programming (SQP)

Newton’s Method for KKT conditions leads to:[
Hk −Ak
ATk 0

](
s

yk+1

)
= −

(
∇fk
ck

)
... are optimality conditions of QP{

minimize
s

∇fTk s+ 1
2s
THks

subject to ck +ATk s = 0

... hence Sequential Quadratic Programming
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Optimization Methods Active-Set Methods: SQP/SLQP

Parenthesis: Saddle Point Problems

Given H symmetric n× n, and A m× n matrices.

Let K =
[
H −A
AT 0

]
When is K nonsingular (i.e. invertible)?

Lemma If A has full rank, and if

Au = 0, u 6= 0⇒ uTHu > 0

then K is nonsingular.

i.e. partial positive definiteness of H covers null-space of A
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Quadratic Programming (SQP)

SQP for inequality constrained NLP:

minimize
x

f(x) subject to c(x) = 0 & x ≥ 0

REPEAT

1. Solve QP for (s, yk+1, zk+1)
minimize

s
∇fTk s+ 1

2s
THks

subject to ck +ATk s = 0
xk + s ≥ 0

2. Set xk+1 = xk + s

... QP solve computationally expensive
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Quadratic Programming

NLP: minimize
x

f(x) subject to c(x) = 0, x ≥ 0

Sequential Quadratic Programming (SQP)

minimize
s

gTk s+ 1
2s
TWks

subject to ck +ATk s = 0
xk + s ≥ 0

where gk = ∇f(xk), Ak = ∇c(xk)T , Wk = ∇2L(xk, yk)
set xk+1 ← xk + s, update trust-region etc.

• unsuitable for large problems: QP pivoting ⇒ basis factors

• solve LPs with million unknowns on PC
trust-region ‖s‖∞ ≤ ∆k to avoid unbounded LP
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Linear Programming

NLP: minimize
x

f(x) subject to c(x) = 0, x ≥ 0

Sequential Linear Programming (SLP)

minimize
s

gTk s+
1
2s
TWks

subject to ck +ATk s = 0
xk + s ≥ 0 ‖s‖∞ ≤ ∆k

where gk = ∇f(xk), Ak = ∇c(xk)T , Wk = ∇2L(xk, yk)
set xk+1 ← xk + s, update trust-region etc.
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Linear Programming

with EQP

while (not optimal) begin

1. Compute displacement sLP by solving LP subproblem

2. Identify active constraints: A = {i : ci + aTi sLP = 0}

(EQP)
[
W −A:,A
AT:,A

](
s
yA

)
=
(
−g
−cA

)
... solve equality QP for step s

3. if step s acceptable then
xk+1 = xk + s & increase TR ∆ = 2 ∗∆

else xk+1 = xk & decrease TR ∆ = ∆/2
end

• SLP ⇒ slow local convergence ... steepest descent

• EQP ⇒ fast local convergence ... ' Newton on A:,A

• use with knitro options = "algorithm=3"; ... or ASTROS
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Optimization Methods Interior Point Methods

Modern Interior-Point Methods (IPM)
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Optimization Methods Interior Point Methods

Modern Interior-Point Methods (IPM)

General NLP

minimize
x

f(x) subject to c(x) = 0 & x ≥ 0

Perturbed µ > 0 optimality conditions (x, z > 0)

Fµ(x, y, z) =


∇f(x)−∇c(x)T y − z

c(x)
Xz − µe

 = 0

• Primal-dual formulation, where X = diag(x)
• Central path {x(µ), y(µ), z(µ) : µ > 0}
• Apply Newton’s method for sequence µ↘ 0
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Optimization Methods Interior Point Methods

Modern Interior-Point Methods (IPM)

Newton’s method applied to primal-dual system ... ∇2Lk −Ak −I
ATk 0 0
Zk 0 Xk

 ∆x
∆y
∆z

 = −Fµ(xk, yk, zk)

where Ak = ∇c(xk)T , Xk diagonal matrix of xk.

Polynomial run-time guarantee for convex problems
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Optimization Methods Interior Point Methods

Classical Interior-Point Methods (IPM)

minimize
x

f(x) subject to c(x) = 0 & x ≥ 0

Related to classical barrier methods [Fiacco & McCormick]{
minimize

x
f(x)− µ

∑
log(xi)

subject to c(x) = 0

µ = 10 µ = 1

minimizex2
1 + x2

2 − µ log
(
x1 + x2

2 − 1
)
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Optimization Methods Interior Point Methods

Classical Interior-Point Methods (IPM)

minimize
x

f(x) subject to c(x) = 0 & x ≥ 0

Related to classical barrier methods [Fiacco & McCormick]{
minimize

x
f(x)− µ

∑
log(xi)

subject to c(x) = 0

µ = 0.1 µ = 0.001

minimizex2
1 + x2

2 − µ log
(
x1 + x2

2 − 1
)
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Optimization Methods Interior Point Methods

Classical Interior-Point Methods (IPM)

minimize
x

f(x) subject to c(x) = 0 & x ≥ 0

Relationship to barrier methods{
minimize

x
f(x)− µ

∑
log(xi)

subject to c(x) = 0

First order conditions

∇f(x)− µX−1e−A(x)y = 0
c(x) = 0

... apply Newton’s method ...
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Optimization Methods Interior Point Methods

Classical Interior-Point Methods (IPM)

Newton’s method for barrier problem from xk ...[
∇2Lk + µX−2

k −Ak
ATk 0

](
∆x
∆y

)
= ...

Introduce Z(xk) := µX−1
k ... or ... Z(xk)Xk = µe[

∇2Lk + Z(xk)X−1
k −Ak

Ak 0

](
∆x
∆y

)
= ...

... compare to primal-dual system ...
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Optimization Methods Interior Point Methods

Classical Interior-Point Methods (IPM)

Recall: Newton’s method applied to primal-dual system ... ∇2Lk −Ak −I
ATk 0 0
Zk 0 Xk

 ∆x
∆y
∆z

 = −Fµ(xk, yk, zk)

Eliminate ∆z = −X−1Z∆x− Ze− µX−1e[
∇2Lk + ZkX

−1
k −Ak

Ak 0

](
∆x
∆y

)
= ...
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Optimization Methods Interior Point Methods

Interior-Point Methods (IPM)

Primal-dual system ...[
∇2Lk + ZkX

−1
k −Ak

Ak 0

](
∆x
∆y

)
= ...

... compare to barrier system ...[
∇2Lk + Z(xk)X−1

k −Ak
Ak 0

](
∆x
∆y

)
= ...

• Zk is free, not Z(xk) = µX−1
k (primal multiplier)

• avoid difficulties with barrier ill-conditioning
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Optimization Methods Global Convergence

Solving Nonlinear Optimization Problems

(P ) minimize
x

f(x) subject to c(x) ≥ 0

Main ingredients of iterative solution approaches:

1. Local Method: Given xk (solution guess) find a step s.
• Sequential Quadratic Programming (SQP)
• Sequential Linear/Quadratic Programming (SLQP)
• Interior-Point Methods

2. Forcing Strategy: Global convergence from remote starting points.

3. Forcing Mechanism: Truncate step s to force progress:
• Trust-region to restrict s of local problem ... used in this talk.
• Back-tracking line-search along step s.
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Optimization Methods Global Convergence

Enforcing Convergence
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Optimization Methods Global Convergence

When’s a New Point Better?

Easy for unconstrained minimize f(x) (quadratic model qk(s)):

xk+1 = xk + s better, iff f(xk+1) ≤ f(xk)− 10−4qk(s)

... actual reduction matches portion of reduction predicted by model.

Unclear for constrained problem: c(x) = 0
• step s can reduce both f(x) and ‖c(x)‖ GOOD

• step s increases f(x) and decreases ‖c(x)‖ ???

• step s decreases f(x) and increases ‖c(x)‖ ???

• step s can increase both f(x) and ‖c(x)‖ BAD
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Optimization Methods Global Convergence

Penalty Functions (i)

Augmented Lagrangian Methods

minimize
x

L(x, yk, ρk) = f(x) − yTk c(x) + 1
2ρk‖c(x)‖2

As yk → y∗: • xk → x∗ for ρk > ρ̄
• No ill-conditioning, improves convergence rate

• update ρk based on reduction in ‖c(x)‖2

• approx. minimize L(x, yk, ρk)
• first-order multiplier update: yk+1 = yk − ρkc(xk)
⇒ dual iteration
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Optimization Methods Global Convergence

Penalty Functions (ii)

Exact Penalty Function: minimizex Φ(x, π) = f(x) + π‖c(x)‖

• combine constraints and objective

• equivalence of optimality ⇒ exact for π > ‖y∗‖D
... now apply unconstrained techniques

• Φ nonsmooth, but equivalent to smooth problem (exercise)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 29 / 72



Optimization Methods Global Convergence

Filter Methods for NLP

Penalty function can be inefficient

• Penalty parameter not known a priori

• Large penalty parameter ⇒ slow convergence

Two competing aims in optimization:

1. Minimize f(x)
2. Minimize h(x) := ‖c(x)‖ ... more important

⇒ concept from multi-objective optimization:
(hk+1, fk+1) dominates (hl, fl) iff hk+1 ≤ hl & fk+1 ≤ fl
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Optimization Methods Global Convergence

Filter Methods for NLP

Filter F : list of non-dominated pairs (hl, fl)

• new xk+1 acceptable to filter F , iff

1. hk+1 ≤ hl ∀l ∈ F , or
2. fk+1 ≤ fl ∀l ∈ F

• remove redundant entries

• reject new xk+1,
if hk+1 > hl & fk+1 > fl
... reduce trust region radius ∆ = ∆/2

⇒ often accept new xk+1, even if penalty function increases
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Optimization Methods Global Convergence

Solving Nonlinear Optimization Problems

(P ) minimize
x

f(x) subject to c(x) ≥ 0

Main ingredients of iterative solution approaches:

1. Local Method: Given xk (solution guess) find a step s.
• Sequential Quadratic Programming (SQP)
• Sequential Linear/Quadratic Programming (SLQP)
• Interior-Point Methods

2. Forcing Strategy: Augmented Lagrangian, penalty, filter.

3. Forcing Mechanism: Truncate step s to force progress:
• Trust-region to restrict s of local problem ... used in this talk.
• Back-tracking line-search along step s.
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Optimization Methods Global Convergence

Trust-Region Methods

Globalize SQP/IPM using trust region, ∆k > 0:
Consider unconstrained f(x) minimization by trust-region

minimize
s

qk(s) := f(xk) +∇f(xk)T s+
1
2
sTH(xk)s subject to ‖s‖ ≤ ∆k
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Optimization Methods Global Convergence

Trust-Region Framework for Nonlinear Optimization

minimize
x

f(x) subject to c(x) = 0, x ≥ 0

E.g. SQP: given x0 starting point, set k = 0
repeat

1. solve trust-region problem around xk for step s:

min
s
qk(s) s.t. ck +ATk s = 0, xk + s ≥ 0, ‖s‖ ≤ ∆k

2. if xk + s improves on xk then
accept step: xk+1 = xk + s

else reject step: xk+1 = xk

3. k = k + 1 & house-keeping

until convergence
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Optimization Methods Global Convergence

Line-Search Methods
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Optimization Methods Global Convergence

Line-Search Methods

SQP/IPM compute s descend direction or penalty function: sT∇Φ < 0

Backtracking-Armijo line search

Given α0 = 1, β = 0.1, set l = 0

REPEAT

1. αl+1 = αl/2 & evaluate Φ(x+ αl+1s)
2. l = l + 1

UNTIL Φ(x+ αls) ≤ f(x) + αlβsT∇Φ

Converges to stationary point, or unbounded, or zero descend
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Optimization Software

Overview
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Active-Set Methods: SQP/SLQP
Interior Point Methods
Global Convergence

2. Optimization Software
Available Solvers
Failures & Exception Handling
Local Solutions

3. Beyond Nonlinear Optimization
Optimization with Integer Variables
Global Optimization & Optimization Without Derivatives
Control and Optimization

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 37 / 72



Optimization Software Available Solvers

Sequential Quadratic Programming

• ASTROS Active-Set Trust-Region Optimization Solvers

• filterSQP
• trust-region SQP; robust QP solver
• filter to promote global convergence

• SNOPT
• line-search SQP; null-space CG option
• `1 exact penalty function

• SLIQUE (part of KNITRO)
• SLP-EQP (“SQP” for larger problems)
• trust-region with `1 penalty
• use with knitro options = "algorithm=3";

Other Methods: CONOPT generalized reduced gradient method
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Optimization Software Available Solvers

Interior Point Methods

• IPOPT (free: part of COIN-OR)
• line-search filter algorithm
• 2nd order convergence analysis for filter

• KNITRO
• trust-region Newton to solve barrier problem
• `1 penalty barrier function
• Newton system: direct solves or null-space CG

• LOQO
• line-search method
• Cholesky factorization; no convergence analysis

Other solvers: MOSEK (unsuitable or nonconvex problem)
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Optimization Software Available Solvers

Augmented Lagrangian Methods

• LANCELOT
• minimize augmented Lagrangian subject to bounds
• trust-region to force convergence
• iterative (CG) solves

• MINOS
• minimize augmented Lagrangian subject to linear constraints
• line-search; recent convergence analysis
• direct factorization of linear constraints

• PENNON
• suitable for semi-definite optimization
• alternative penalty terms
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Optimization Software Available Solvers

COIN-OR

http://www.coin-or.org

• COmputational INfrastructure for Operations Research

• A library of (interoperable) software tools for optimization

• A development platform for open source projects in the OR
community

• Possibly Relevant Modules:
• OSI: Open Solver Interface
• CGL: Cut Generation Library
• CLP: Coin Linear Programming Toolkit
• CBC: Coin Branch and Cut
• IPOPT: Interior Point OPTimizer for NLP
• NLPAPI: NonLinear Programming API

Other: SOPLEX ... (MI)LP solver almost as good as CPLEX
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Optimization Software Available Solvers

Active-Set vs. Interior-Point

Active-Set usually more robust (identify degeneracy)

• LP/QP solve become bottleneck for large problems
combinatorial pivoting & dense linear algebra

• robust LP/QP find linearly independent set of constraints
⇒ ensures LICQ for subset of constraints

• good warm-start properties ... solving related problems

Interior-Point often faster (in terms of CPU time)

• solve single linear system per iteration
⇒ much faster than LP/QP solve

• poor warm-start properties ... initial point x, z > µ

• carry all constraints around at all times
⇒ affected by degeneracy ... cond(KKT) = O(µ−1)

... but there are practical differences too, see hs044.mod

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 42 / 72



Optimization Software Available Solvers

Automatic Differentiation

How do I get the derivatives ∇c(x), ∇2c(x) etc?

• hand-coded derivatives are error prone

• finite differences ∂ci(x)
∂xj

' ci(x+δej)−ci(x)
δ can be dangerous

where ej = (0, . . . , 0, 1, 0, . . . , 0) is jth unit vector

Automatic Differentiation

• chain rule techniques to differentiate program

• recursive application ⇒ “exact” derivatives

• suitable for huge problems, see www.autodiff.org

... already done for you in AMPL/GAMS etc.
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Optimization Software Failures & Exception Handling

Something Under the Bed is Drooling

1. exception handling
• floating point (IEEE) exceptions
• unbounded problems

2. local solutions
• (locally) inconsistent problems
• suboptimal solutions

... identify problem & suggest remedies
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Optimization Software Failures & Exception Handling

Floating Point (IEEE) Exceptions

Bad example: minimize barrier function, barrier.mod

param mu default 1;
var x{1..2} >= -10, <= 10;
var s;
minimize barrier: x[1]^2 + x[2]^2 - mu*log(s);
subject to

cons: s = x[1] + x[2]^2 - 1;

... results in error message like
Cannot evaluate objective at start

... change initialization of s:
var s := 1; ... difficult, if IEEE during solve ...
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Optimization Software Local Solutions

Unbounded Objective

Penalized MPEC (wait till tomorrow) π = 1:

minimize
x

x2
1 + x2

2 − 4x1x2 + πx1x2

subject to x1, x2 ≥ 0

... unbounded below for all π < 2

param pi >= 0, default 1; # ... penalty parameter
var x{1..2} >= 0;
minimize MPECpen: x[1]^2 + x[2]^2 - 4*x[1]*x[2] + pi*x[1]*x[2];

... what happens to L1penalty.mod?
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Optimization Software Local Solutions

Locally Inconsistent Problems

NLP may have no feasible point

var x{1..2} >= -1;
minimize objf: -1000*x[2];
subject to

con1: (x[1]+2)^2 + x[2]^2 <= 1;
con2: (x[1]-2)^2 + x[2]^2 <= 1;

feasible set: intersection of circles
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Optimization Software Local Solutions

Locally Inconsistent Problems

LOQO

| Primal | Dual
Iter | Obj Value Infeas | Obj Value Infeas
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 -1.000000e+03 4.2e+00 -6.000000e+00 1.0e-00

[...]
500 2.312535e-04 7.9e-01 1.715213e+12 1.5e-01
LOQO 6.06: iteration limit

... fails to converge ... not useful for user

dual unbounded →∞ ⇒ primal infeasible
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Optimization Software Local Solutions

Locally Inconsistent Problems

FILTER

iter | rho | ||d|| | f / hJ | ||c||/hJt

------+----------+------------+------------+------------

0:0 10.0000 0.00000 -1000.0000 16.000000

1:1 10.0000 2.00000 -1000.0000 8.0000000

[...]

8:2 2.00000 0.320001E-02 7.9999693 0.10240052E-04

9:2 2.00000 0.512000E-05 8.0000000 0.26214586E-10

filterSQP: Nonlinear constraints locally infeasible

... fast convergence to minimum infeasibility

... identify “blocking” constraints ... modify model/data
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Optimization Software Local Solutions

Locally Inconsistent Problems

Remedies for locally infeasible problems:

1. check your model: print constraints & residuals, e.g.
solve;
display conname, con.lb, con.body, con.ub;
display varname, var.lb, var, var.ub;
... look at violated and active constraints

2. try different nonlinear solvers (easy with AMPL)

3. build-up model from few constraints at a time

4. try different starting points ... global optimization
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Optimization Software Local Solutions

Suboptimal Solution & Multi-start

Problems can have many local minimizers

param pi := 3.1416;
param n integer, >= 0, default 2;
set N := 1..n;
var x{N} >= 0, <= 32*pi, := 1;
minimize objf:
- sum{i in N} x[i]*sin(sqrt(x[i]));

default start point converges to local minimizer
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Optimization Software Local Solutions

Suboptimal Solution & Multi-start

param nD := 5; # discretization
set D := 1..nD;
param hD := 32*pi/(nD-1);
param optval{D,D};
model schwefel.mod; # load model

for {i in D}{
let x[1] := (i-1)*hD;
for {j in D}{

let x[2] := (j-1)*hD;
solve;
let optval[i,j] := objf;

}; # end for
}; # end for
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Optimization Software Local Solutions

Suboptimal Solution & Multi-start

display optval;
optval [*,*]
: 1 2 3 4 5 :=
1 0 24.003 -36.29 -50.927 56.909
2 24.003 -7.8906 -67.580 -67.580 -67.580
3 -36.29 -67.5803 -127.27 -127.27 -127.27
4 -50.927 -67.5803 -127.27 -127.27 -127.27
5 56.909 -67.5803 -127.27 -127.27 -127.27
;

... there exist better multi-start procedures

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 53 / 72



Beyond Nonlinear Optimization

Overview

1. Optimization Methods
Active-Set Methods: SQP/SLQP
Interior Point Methods
Global Convergence

2. Optimization Software
Available Solvers
Failures & Exception Handling
Local Solutions

3. Beyond Nonlinear Optimization
Optimization with Integer Variables
Global Optimization & Optimization Without Derivatives
Control and Optimization
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Beyond Nonlinear Optimization Optimization with Integer Variables

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

• modeling discrete choices ⇒ 0− 1 variables

• modeling integer decisions ⇒ integer variables
e.g. number of different stocks in portfolio (8-10)
not number of beers sold at Goose Island (millions)

MINLP solvers:

• branch (separate zi = 0 and zi = 1) and cut

• solve millions of NLP relaxations: MINLPBB, SBB

• outer approximation: iterate MILP and NLP solvers
BONMIN (COIN-OR) & �FilMINT on NEOS
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Beyond Nonlinear Optimization Optimization with Integer Variables

Portfolio Management

• N : Universe of asset to purchase

• xi: Amount of asset i to hold

• B: Budget

minimize u(x) subject to
∑
i∈N

xi = B, x ≥ 0

• Markowitz: u(x) def= −αTx+ λxTQx
• α: maximize expected returns
• Q: variance-covariance matrix of expected returns
• λ: minimize risk; aversion parameter
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Beyond Nonlinear Optimization Optimization with Integer Variables

More Realistic Models

• b ∈ R|N | of “benchmark” holdings

• Benchmark Tracking: u(x) def= (x− b)TQ(x− b)
• Constraint on E[Return]: αTx ≥ r

• Limit Names: |i ∈ N : xi > 0| ≤ K
• Use binary indicator variables to model the implication xi > 0⇒ yi = 1
• Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N

•
∑

i∈N yi ≤ K
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Beyond Nonlinear Optimization Global Optimization & Optimization Without Derivatives

Global Optimization

I need to find the GLOBAL minimum!

• use any NLP solver (often work well!)

• use the multi-start trick from previous slides

• global optimization based on branch-and-reduce: BARON
• constructs global underestimators
• refines region by branching
• tightens bounds by solving LPs
• solve problems with 100s of variables

• “voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Beyond Nonlinear Optimization Global Optimization & Optimization Without Derivatives

Derivative-Free Optimization

My model does not have derivatives!

• Change your model ... good models have derivatives!

• pattern-search methods for min f(x)
• evaluate f(x) at stencil xk + ∆M
• move to new best point
• extend to NLP; some convergence theory h
• matlab: NOMADm.m; parallel APPSPACK

• solvers based on building interpolating quadratic models
• DFO project on www.coin-or.org
• Mike Powell’s NEWUOA quadratic model

• “voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Avoid global warming without ruining the economy!
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Goal: Optimize energy production schedule and transition between old and
new reduced-carbon technology to meet carbon targets

• Maximize social welfare

• Constraints:
• GHG target at end of time
• Reduced-carbon technology subject to learning effects

... reduced unit cost as new technology becomes widespread

• Assumptions on GHG emission rates, economic growth, energy costs

⇒ Optimal control problem

... model as finite-dimensional optimization problem...
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Time: t ∈ [0, T ]: function x(t), derivative ẋ(t) = dx(t)
dt

Energy Output: old & new technology energy output: qo(t) and qn(t);
total energy output: Q(t) = qo(t) + qn(t).

Demand and Consumer Surplus: S̃(Q, t): integral of demand derived from
CES utility

Production Costs: co unit cost of old technology
new technology from learning by doing: x(t) =

∫ t
0 q

n(τ)dτ
Greenhouse Gases Emissions: discount at environmental time preference

rate: ∫ T

0
e−at

(
boq

o(t) + bnq
n(t)

)
dt ≤ zT

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 62 / 72



Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

maximize
{qo,qn,x,z}(t)

∫ T

0
e−rt

[
S̃(qo(t) + qn(t), t)− coqo(t)− cn(x(t))qn(t)

]
dt

subject to ẋ(t) = qn(t), x(0) = x0 = 0

ż(t) = e−at
(
boq

o(t) + bnq
n(t)

)
, z(0) = z0 = 0

z(T ) ≤ zT

qo(t) ≥ 0, qn(t) ≥ 0.
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Discretization:

• t ∈ [0, T ] replaced by N + 1 equally spaced points ti = ih

• h := T/N time integration step-length

• approximate qni ' qn(ti) etc.

Replace differential equation

ẋ(t) = qn(t)

by
xi+1 = xi + hqni

... use h = 1 (or even h = 3) years

Output of new technology between t = 24 and t = 35
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration with Varying h

Output of new technology for different discretization schemes and
step-sizes ⇒ sharp transition (does not make sense economically)
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

• Kj(t) amount of capital in technology j at t.

• Ij(t) investment to increase Kj(t).

• initial capital level as K̄j
0 :

Notation:

• Q(t) = qo(t) + qn(t)
• C(t) = Co(qo(t),Ko(t)) + Cn(qn(t),Kn(t))
• I(t) = Io(t) + In(t)
• K(t) = Ko(t) +Kn(t)

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 66 / 72



Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

maximize
{qj ,Kj ,Ij ,x,z}(t)

{∫ T

0
e−rt

[
S̃(Q(t), t)− C(t)−K(t)

]
dt+ e−rTK(T )

}
subject to ẋ(t) = qn(t), x(0) = x0 = 0

K̇j(t) = −δKj(t) + Ij(t), Kj(0) = K̄j
0 , j ∈ {o, n}

ż(t) = e−at[boqo(t) + bnq
n(t)], z(0) = z0 = 0

z(T ) ≤ zT

qj(t) ≥ 0, j ∈ {o, n}

Ij(t) ≥ 0, j ∈ {o, n}
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Optimal output, investment, and capital for 50% CO2 reduction.
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Beyond Nonlinear Optimization Control and Optimization

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize 1
2

∫ 1

0
u2(t) + 2y2(t)dt

subject to

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

⇒ y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)
e3t/2(2 + e3)

.

Discretize with 2nd order RK

minimize
h

2

K−1∑
k=0

u2
k+1/2 + 2y2

k+1/2

subject to (k = 0, . . . ,K):

yk+1/2 = yk +
h

2
(1
2yk + uk),

yk+1 = yk + h(1
2yk+1/2 + uk+1/2),

Discrete solution (k = 0, . . . ,K):

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

DOES NOT CONVERGE!
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Beyond Nonlinear Optimization Control and Optimization

Discretize-Then-Optimize

Discretization state equation implies discretization of adjoint
... may have different convergence properties.
Example problem (independent of solution of discretized problem!)

ẏ(t) = 1
2y(t) + u(t),

y(0) = 1,

λ̇(t) = −1
2λ(t) + 2y(t),

λ(1) = 0,

u(t)− λ(t) = 0.

yk+1/2 = yk +
∆t
2

(1
2yk + uk),

yk+1 = yk + ∆t(1
2yk+1/2 + uk+1/2),

λk+1/2 = ∆t(1
2λk+1 − 2yk+1/2),

λk = λk+1 + (1 + ∆t/4)λk+1/2,

−λk+1/2 = 0,
uk+1/2 − λk+1 = 0.
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Beyond Nonlinear Optimization Control and Optimization

Tips to Solve Continuous-Time Problems

Alternative: Optimize-Then-Discretize

• consistent adjoint/dual discretization

• discretized gradients can be wrong!

• OK for equality constraints; harder for inequality constraints

Tips for handling continuous-time models

1. use discretize-then-optimize (easier)

2. refine discretization: h = 1 year discretization is nonsense

3. use different discretization schemes ... refine answers

4. check implied discretization of adjoints

... always be wary of fixed step-lengths
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Beyond Nonlinear Optimization Control and Optimization

Optimization Conclusions

Optimization is General Modeling Paradigm

• linear, nonlinear, equations, inequalities

• integer variables, equilibrium, control

AMPL (GAMS) Modeling and Programming Languages

• express optimization problems

• use automatic differentiation

• easy access to state-of-the-art solvers

Optimization Software

• open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)

• current solver limitations on laptop:
• 1,000,000 variables/constraints for LPs
• 100,000 variables/constraints for NLPs/NCPs
• 100 variables/constraints for global optimization
• 500,000,000 variable LP on BlueGene/L
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