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Optimization Methods

Generic Nonlinear Optimization Problem

Nonlinear Programming (NLP) problem

minimize  f(x) objective
x
subject to c¢(x) =0 constraints
x>0 variables

e f:R" — R, c: R" — R™ smooth (typically C?)
e 1z € R" finite dimensional (may be large)

e more general [ < ¢(x) < u possible
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Optimization Methods

Solving Nonlinear Optimization Problems

(P) minimize f(x) subjecttoc(x)=0, x>0

Main ingredients of iterative solution approaches:
1. Local Method: Given xj, (solution guess) find a step s.
e Local problem should be easier to solve than (P).
e Ensure fast (quadratic) local convergence.
e Connection to global convergence ...
2. Forcing Strategy: Global convergence from remote starting points.
3. Forcing Mechanism: Truncate step s to force progress:

e Trust-region to restrict s of local problem.
e Back-tracking line-search along step s.

... look at each ingredient in turn.
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Optimality Conditions for NLP

Constraint qualification (CQ)
Linearizations of ¢(x) = 0 characterize all feasible perturbations
= rules out cusps etc.

x* local minimizer & CQ holds = 3 multipliers y*, z*:

V(") = Vela) Ty - 2 =

where X* = diag(z*), thus X*2* =0 & 272zf =0
Lagrangian: L(z,y,2) := f(x) —yle(x) — 2Tz
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Optimality Conditions for NLP

contours f(x)

Objective gradient is linear combination of constraint gradients

g(z) = A(x)y, where g(z) := Vf(z), A(z) := Ve(z)?
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Optimization Methods

Newton's Method for Nonlinear Equations

Solve F'(z) = 0:
Get approx. xpy1 of solution of F'(x) =0
by solving linear model about xy:

F(a;k) + VF((L’k)T(:IZ —x,) =0

fork=0,1,...

Theorem: If F € C2, and VF(z*) nonsingular,
then Newton converges quadratically near x*.
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Optimization Methods

Newton's Method for Nonlinear Equations

b Prx)

Next: two classes of methods based on Newton ...
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Optimization Methods

Newton's Method for Nonlinear Equations

 Flx)

Next: two classes of methods based on Newton ...
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Optimization Methods

Newton's Method for Nonlinear Equations

b Py

Next: two classes of methods based on Newton ...
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Optimization Methods

Newton's Method for Nonlinear Equations

b Py

Next: two classes of methods based on Newton ...
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Optimization Methods Active-Set Methods: SQP/SLQP

Active-Set Methods

i Gankaid
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Sequential Quadratic Programming (SQP)

Consider equality constrained NLP
minimize f(xz) subject toc(z) =0
X
Optimality conditions:

Vf(z)—Ve@)Ty = 0 and
clx) = 0

. system of nonlinear equations: F'(w) = 0 for w = (z,y).

. solve using Newton's method
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Sequential Quadratic Programming (SQP)
Nonlinear system of equations (KKT conditions)
Vf(z) = Ve(x)Ty =0 and c(x) =0

Apply Newton's method from wy, = (zg,yx) ... Hi = V2L(zk, yx)

[ Hy —Ag ] ( Sz ) _ ( Ve L(k; yi) >
A;‘g 0 Sy Ck

- set (Thrt, Ykr1) = (Tk + oy Yk + 8y) .. AF = Ve(ap)T

. solve for Y41 = yi + s, directly instead:

e ) =)
AL 0 Ykt1 ) Ck

. set (Tpg1, Y1) = (Tk + 5, Yrt1)
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Sequential Quadratic Programming (SQP)

Newton's Method for KKT conditions leads to:
Gl ) -0
AL 0 Yk+1 Ck
. are optimality conditions of QP

minimize  Vfls+ %STHkS
S
subject to ¢, + ATs =0

... hence Sequential Quadratic Programming
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Parenthesis: Saddle Point Problems

Given H symmetric n X n, and A m X n matrices.

LetK:[H _A]

AT 0
When is K nonsingular (i.e. invertible)?

Lemma If A has full rank, and if
Au=0,u#0=u"Hu>0
then K is nonsingular.

i.e. partial positive definiteness of H covers null-space of A
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Sequential Quadratic Programming (SQP)

SQP for inequality constrained NLP:
minimize f(z) subjecttoc(z)=0 & x>0
x

REPEAT
1. Solve QP for (s, Yg+1, 2k+1)

minimize kaTs + %STHkS
S

subject to ¢ + A{s =0
T +s>0

2. Set xpy1 =Tk + S

... QP solve computationally expensive
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Quadratic Programming
NLP: minimize f(z) subject to ¢(z) =0, x >0

Sequential Quadratic Programming (SQP)

minimize g,{s + %STWkS
S

subject to ¢ + A;;Cs =0
T +s>0

where g = V f(2x), A = Ve(zp)T, Wi, = V2L(2k, yr)
set Ty 1 <« Tp + S, update trust-region etc.

e unsuitable for large problems: QP pivoting = basis factors
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Linear Programming
NLP: minimize f(z) subject to ¢(z) =0, x >0

Sequential Linear Programming (SLP)
minimize ngs
S
subject to ¢ + Ags =0
T +s5>0 [[8]lo0 < Ay

where g = V f(2x), A = Ve(zp)T, Wi, = V2L(2k, yr)
set Ty 1 <« Tp + S, update trust-region etc.

e unsuitable for large problems: QP pivoting = basis factors

e solve LPs with million unknowns on PC
trust-region [|s||cc < Aj to avoid unbounded LP
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Optimization Methods Active-Set Methods: SQP/SLQP

Sequential Linear Programming
while (not optimal) begin
1. Compute displacement sy p by solving LP subproblem

3. if step s acceptable then
Tp+1 =Tk + 5 & increase TR A =2 % A
else ZTp+1 = o & decrease TR A = A/2

end

e SLP = slow local convergence ... steepest descent
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Sequential Linear Programming with EQP

while (not optimal) begin
1. Compute displacement sy p by solving LP subproblem
2. ldentify active constraints: A = {i: ¢; + aiTst =0}

e e, () = (22

. solve equality QP for step s

3. if step s acceptable then
Tp+1 =Tk + 5 & increase TR A =2 % A
else ZTp+1 = o & decrease TR A = A/2

end
e SLP = slow local convergence ... steepest descent
e EQP = fast local convergence ... ~ Newton on A. 4
e use with knitro_options = "algorithm=3"; ... or ASTROS
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Optimization Methods Interior Point Methods

Modern Interior-Point Methods (IPM)
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Modern Interior-Point Methods (IPM)

General NLP
minimize f(z) subjecttoc(z)=0 & x>0

Perturbed 1 > 0 optimality conditions (z, z > 0)

Vf(z)—Ve(x)Ty -z
Fu(z,y,2) = clx) p=0
Xz — pe

e Primal-dual formulation, where X = diag(z)

e Central path {w(1), y(1), 2(u) : > 0}
e Apply Newton's method for sequence p ™\, 0
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Modern Interior-Point Methods (IPM)

Newton’'s method applied to primal-dual system ...

V2L, —Ap I Az
A0 0 Ay | = —Fu(xr, yr, 2k)

where Aj, = Ve(z)T, X}, diagonal matrix of zy.

Polynomial run-time guarantee for convex problems
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Classical Interior-Point Methods (IPM)

minimize f(z) subjecttoc(z)=0 & x>0
Related to classical barrier methods [Fiacco & McCormick]

{ minimmize f(z) —p> log(x;)

subject to ¢(x) =0

p=10 p=1

minimize x5 + x3 — plog (a:l + 3 — 1)
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Classical Interior-Point Methods (IPM)

minimize f(z) subjecttoc(z)=0 & x>0
Related to classical barrier methods [Fiacco & McCormick]

{ minimmize f(z) —p> log(x;)

subject to ¢(x) =0

p=0.1 1= 0.001

minimize x5 + x3 — plog (a:l + 3 — 1)
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Classical Interior-Point Methods (IPM)

minimize f(xz) subjecttoc(x)=0 & x>0
x
Relationship to barrier methods
minimize  f(z) — p)  log(z;)
x
subject to ¢(x) =0

First order conditions

Vi(x) —pXte— A(ﬂz)z;

0
0

. apply Newton's method ...
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Classical Interior-Point Methods (IPM)

Newton’s method for barrier problem from xj ...

V2Lk +pX % —Ag Az
AZ 0 Ay

Introduce Z(zx) == pX; ' ... or ... Z(zy) Xy = pe

VQEk + Z(LL’k)Xk_l —Ap Ax
Ak 0 Ay

. compare to primal-dual system ...
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Classical Interior-Point Methods (IPM)

Recall: Newton's method applied to primal-dual system ...

V2L, —A, —I Ax
AT 0 0 Ay | = —Fu(zk, Yk, 2i)
Zy, 0 X Az

Eliminate Az = — X 'ZAz — Ze — uX e

v2£k + Zka_l —Ayp Az
Ag 0 Ay
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Interior-Point Methods (IPM)

Primal-dual system ...

v2£k + Zka_l — Ay Az
Ag 0 Ay

. compare to barrier system ...

V2L + Z(zp) X, Y — Ay Az
Ak 0 Ay

o 7y is free, not Z(xy) = pX, ' (primal multiplier)
o avoid difficulties with barrier ill-conditioning
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Optimization Methods Global Convergence

Solving Nonlinear Optimization Problems

(P) minimize f(z) subject toc(x) >0

Main ingredients of iterative solution approaches:
1. Local Method: Given xj, (solution guess) find a step s.
e Sequential Quadratic Programming (SQP)
e Sequential Linear/Quadratic Programming (SLQP)
e Interior-Point Methods
2. Forcing Strategy: Global convergence from remote starting points.
3. Forcing Mechanism: Truncate step s to force progress:

e Trust-region to restrict s of local problem ... used in this talk.
e Back-tracking line-search along step s.
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Optimization Methods Global Convergence

Enforcing Convergence

MAYT GROEDING
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When's a New Point Better?

Easy for unconstrained minimize f(x) (quadratic model gx(s)):
Thyl = Tk + 8 better, iff f(l'k_H) < f(:Ek) — 10_4(];9(8)

. actual reduction matches portion of reduction predicted by model.

Unclear for constrained problem: ¢(z) =0

e step s can reduce both f(x) and |[|c(x)]| GOOD

e step s increases f(z) and decreases ||c(x)|| 77

e step s decreases f(z) and increases ||c(x)|| 77
|

e step s can increase both f(x) and ||c¢(x)] BAD
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Optimization Methods Global Convergence

Penalty Functions (i)

Augmented Lagrangian Methods

minimize L(z,yy, pr) = f(x) — yrc(@) + sprllc(x)]?

As Yy — Y. @ xp — T, for pp > p
e No ill-conditioning, improves convergence rate

e update p; based on reduction in |c(z)|?

e approx. minimize L(x, yx, px)

e first-order multiplier update: yi+1 = yr — prc(zk)
= dual iteration

Computational Optimization Computational Optimization
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Penalty Functions (ii)

Exact Penalty Function: minimize, ®(z,7) = f(x)+ 7|/c(z)]|
e combine constraints and objective

e equivalence of optimality = exact for 7 > ||y*||p
now apply unconstrained techniques

e ® nonsmooth, but equivalent to smooth problem (exercise)
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Filter Methods for NLP

Penalty function can be inefficient
e Penalty parameter not known a priori

e Large penalty parameter = slow convergence

Two competing aims in optimization:
1. Minimize f(x)

2. Minimize h(x) := ||c(z)|| ... more important

= concept from multi-objective optimization:
(hkt1, fr+1) dominates (hy, fi) iff hpypr < hp & frpr < fy
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Optimization Methods Global Convergence

Filter Methods for NLP

Filter F: list of non-dominated pairs (hy, f;)

flx)
A

e new 1,1 acceptable to filter F, iff
1. hk+1§hl VieF, or
2. f}c+1 < fl Vie F

letx) |

= often accept new x1, even if penalty function increases

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization



Optimization Methods Global Convergence

Filter Methods for NLP

Filter F: list of non-dominated pairs (hy, f;)

flx)
A

e new 1,1 acceptable to filter F, iff
1. hk+1§hl VieF, or
2. fk+1 < fl Vie F

e remove redundant entries

letx) |

= often accept new x1, even if penalty function increases
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Optimization Methods Global Convergence

Filter Methods for NLP

Filter F: list of non-dominated pairs (hy, f7)

fx)
J
e new 1,1 acceptable to filter F, iff /6
1 hjo1 < VIEF, or "/.
2. i < AIVIEF Oé,
e remove redundant entries L Q/)
e reject new Tpyq,
if hgr1 > h & fre1 > i H H
. reduce trust region radius A = A/2 C(x)r

= often accept new x1, even if penalty function increases
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Optimization Methods Global Convergence

Solving Nonlinear Optimization Problems

(P) minimize f(z) subject toc(x) >0

Main ingredients of iterative solution approaches:
1. Local Method: Given xj, (solution guess) find a step s.
e Sequential Quadratic Programming (SQP)
e Sequential Linear/Quadratic Programming (SLQP)
e Interior-Point Methods
2. Forcing Strategy: Augmented Lagrangian, penalty, filter.
3. Forcing Mechanism: Truncate step s to force progress:

e Trust-region to restrict s of local problem ... used in this talk.
e Back-tracking line-search along step s.
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Optimization Methods Global Convergence

Trust-Region Methods

Globalize SQP/IPM using trust region, A* > 0:
Consider unconstrained f(x) minimization by trust-region

1 ,
minimize qi(s) := f(xp) + Vf(xp)Ts + §5TH(:ck)s subject to ||s| < A*
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Optimization Methods Global Convergence

Trust-Region Framework for Nonlinear Optimization

minimize f(x) subjecttoc(z) =0, x>0
x

E.g. SQP: given xq starting point, set k =0
repeat

1. solve trust-region problem around xj for step s:
min qx(s) s.t. ¢ + A;‘gs =0, 2, +s>0, [[s]| < AF
S

2. if xj + s improves on zj, then
accept step: zpr1 = + S

else reject step: zp1 = a1

3. k=k+ 1 & house-keeping

until convergence
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Optimization Methods Global Convergence

Line-Search Methods

b fixpr ts)

Jx) acceptable 1
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Line-Search Methods

SQP/IPM compute s descend direction or penalty function: s”’V® < 0

Backtracking-Armijo line search

Givena?=1,3=0.1,set{ =0

REPEAT
1. ol = al/2 & evaluate ®(z + altls)
2.01=1+1

UNTIL (2 + als) < f(z) + a!BsTVE

Converges to stationary point, or unbounded, or zero descend
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Optimization Software

Overview

2. Optimization Software
Available Solvers
Failures & Exception Handling
Local Solutions
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Optimization Software ~ Available Solvers

Sequential Quadratic Programming

ASTROS Active-Set Trust-Region Optimization Solvers
filterSQP
e trust-region SQP; robust QP solver
e filter to promote global convergence
SNOPT
e line-search SQP; null-space CG option
e /q exact penalty function
SLIQUE (part of KNITRO)
e SLP-EQP ("SQP" for larger problems)
e trust-region with ¢, penalty
e use with knitro_options = "algorithm=3";

Other Methods: CONOPT generalized reduced gradient method
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Interior Point Methods

e IPOPT (free: part of COIN-OR)

e line-search filter algorithm

e 2nd order convergence analysis for filter
e KNITRO

e trust-region Newton to solve barrier problem

e (1 penalty barrier function

e Newton system: direct solves or null-space CG
e 1.0OQO

e line-search method

e Cholesky factorization; no convergence analysis

Other solvers: MOSEK (unsuitable or nonconvex problem)
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Augmented Lagrangian Methods

e LANCELOT
e minimize augmented Lagrangian subject to bounds
e trust-region to force convergence
e iterative (CG) solves

e MINGS

e minimize augmented Lagrangian subject to linear constraints
e line-search; recent convergence analysis
e direct factorization of linear constraints

e PENNON

e suitable for semi-definite optimization
e alternative penalty terms
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COIN-OR

http://www.coin-or.org

COmputational INfrastructure for Operations Research

A library of (interoperable) software tools for optimization

A development platform for open source projects in the OR
community

Possibly Relevant Modules:

OSI: Open Solver Interface

CGL: Cut Generation Library

CLP: Coin Linear Programming Toolkit
CBC: Coin Branch and Cut

IPOPT: Interior Point OPTimizer for NLP
NLPAPI: NonLinear Programming API

Other: SOPLEX ... (MI)LP solver almost as good as CPLEX
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Active-Set vs. Interior-Point

Active-Set usually more robust (identify degeneracy)

e LP/QP solve become bottleneck for large problems
combinatorial pivoting & dense linear algebra

e robust LP/QP find linearly independent set of constraints
= ensures LICQ for subset of constraints

e good warm-start properties ... solving related problems

Interior-Point often faster (in terms of CPU time)

e solve single linear system per iteration
= much faster than LP/QP solve

e poor warm-start properties ... initial point x,z > u
e carry all constraints around at all times
= affected by degeneracy ... cond(KKT) = O(u™!)

... but there are practical differences too, see hs044 .mod
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Optimization Software ~ Available Solvers

Automatic Differentiation

How do | get the derivatives Vc(x), VZe(z) etc?

e hand-coded derivatives are error prone

e finite differences acl(’”) ~ C"(”&g)_”(@ can be dangerous

where e; = (0, ... ,0, 1,0,...,0) is jth unit vector
Automatic Differentiation
e chain rule techniques to differentiate program
e recursive application = “exact” derivatives
e suitable for huge problems, see www.autodiff.org
. already done for you in AMPL/GAMS etc.
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Optimization Software Failures & Exception Handling

Something Under the Bed is Drooling

1. exception handling
e floating point (IEEE) exceptions
e unbounded problems

2. local solutions

e (locally) inconsistent problems
e suboptimal solutions

A Calvin and Hol
For

. identify problem & suggest remedies
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Optimization Software Failures & Exception Handling

Floating Point (IEEE) Exceptions

Bad example: minimize barrier function, barrier.mod

param mu default 1;
var x{1..2} >= -10, <= 10;

var s;
minimize barrier: x[1]172 + x[2]72 - muxlog(s);
subject to

cons: s = x[1] + x[2]"2 - 1;

. results in error message like
Cannot evaluate objective at start
. change initialization of s:
var s := 1; ... difficult, if IEEE during solve ...
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Unbounded Objective

Penalized MPEC (wait till tomorrow) 7 = 1:

minimize :p% + x% —dxix0  + TT1X9
xX

subject to x1,29 >0

. unbounded below for all 7 < 2

param pi >= 0, default 1; # ... penalty parameter
var x{1..2} >= 0;
minimize MPECpen: x[1]°2 + x[2]°2 - 4*x[1]*x[2] + pi*x[1]*x[2];

. what happens to Lipenalty.mod?

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 46 / 72



Optimization Software Local Solutions

Locally Inconsistent Problems

NLP may have no feasible point
var x{1..2} >= -1;
minimize objf: -1000*x[2];
subject to

conl: (x[1]+2)"2 + x[2]"2 <=1
con2: (x[1]1-2)"2 + x[2]"2 <= 1;

Y
O T

feasible set: intersection of circles

.o
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Optimization Software Local Solutions

Locally Inconsistent Problems

LOQO

| Primal | Dual
Iter | 0Obj Value Infeas | Obj Value Infeas
1 -1.0000000+03  4.26+00  -6.0000006+00  1.06-00
éé.‘] 2.312535e-04 7.9e-01 1.715213e+12 1.5e-01

LOQO 6.06: iteration limit

... fails to converge ... not useful for user

dual unbounded — oo = primal infeasible
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Optimization Software Local Solutions

Locally Inconsistent Problems

FILTER
iter | rho | [1all | £/ hl | [lcll/nJt
—————— Fo————- + —-—- + +
0:0 10.0000 0.00000 -1000.0000 16.000000
1:1 10.0000 2.00000 -1000.0000 8.0000000
[...]

8:2 2.00000 0.320001E-02 7.9999693 0.10240052E-04
9:2 2.00000 0.512000E-05 8.0000000 0.26214586E-10
filterSQP: Nonlinear constraints locally infeasible

... fast convergence to minimum infeasibility
. identify “blocking” constraints ... modify model /data

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization



Optimization Software Local Solutions

Locally Inconsistent Problems

Remedies for locally infeasible problems:

1. check your model: print constraints & residuals, e.g.
solve;
display _conname, _con.lb, _con.body, _con.ub;
display _varname, _var.lb, _var, _var.ub;
... look at violated and active constraints

2. try different nonlinear solvers (easy with AMPL)

3. build-up model from few constraints at a time

4. try different starting points ... global optimization
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Optimization Software Local Solutions

Suboptimal Solution & Multi-start

Problems can have many local minimizers

Schwefel Function

- | param pi := 3.1416;

D 1 param n integer, >= 0, default 2;
o ] set N :=1..n;
X { var x{N} >= 0, <= 32*pi, := 1;

® 1 minimize objf:

™ | - sum{i in N} x[il*sin(sqrt(x[il));

default start point converges to local minimizer
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Suboptimal Solution & Multi-start

param nD := 5; # discretization
set D := 1..nD;

param hD := 32%pi/(nD-1);

param optval{D,D};

model schwefel.mod; # load model

for {i in D}{
let x[1] := (i-1)*hD;
for {j in DH{
let x[2] := (j-1)*hD;

solve;
let optvalli,j] := objf;
}; # end for
}; # end for
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Suboptimal Solution & Multi-start

display optval;
optval [*,x]

1 2 3 4 5 1=
1 0 24.003 -36.29 -50.927 56.909
2 24.003 -7.8906 -67.580 -67.580 -67.580
3 -36.29 -67.5803 -127.27 -127.27 -127.27
4 -50.927 -67.5803 -127.27 -127.27 -127.27
5 56.909 -67.5803 -127.27 -127.27 -127.27

)

... there exist better multi-start procedures

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 53 /72



Beyond Nonlinear Optimization

Overview

3. Beyond Nonlinear Optimization
Optimization with Integer Variables
Global Optimization & Optimization Without Derivatives
Control and Optimization
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Beyond Nonlinear Optimization Optimization with Integer Variables

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)
e modeling discrete choices = 0 — 1 variables

e modeling integer decisions = integer variables
e.g. number of different stocks in portfolio (8-10)
not number of beers sold at Goose Island (millions)

MINLP solvers:
e branch (separate z; = 0 and z; = 1) and cut
e solve millions of NLP relaxations: MINLPBB, SBB

e outer approximation: iterate MILP and NLP solvers
BONMIN (COIN-OR) & FilMINT on NEOS
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Beyond Nonlinear Optimization Optimization with Integer Variables

Portfolio Management

e N: Universe of asset to purchase
e x;: Amount of asset ¢ to hold
e B: Budget

minimize u(x) subject to ZIL’Z =B, x>0
1EN
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Beyond Nonlinear Optimization Optimization with Integer Variables

Portfolio Management

e N: Universe of asset to purchase
e x;: Amount of asset ¢ to hold
e B: Budget

minimize u(x) subject to Zazz =B, x>0
1EN

e Markowitz: u(z) © 4T+ AT Qux
e «: maximize expected returns
e (: variance-covariance matrix of expected returns
e )\: minimize risk; aversion parameter
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Beyond Nonlinear Optimization Optimization with Integer Variables

More Realistic Models

e b e RV of “benchmark” holdings

e Benchmark Tracking: u(z) 3 (x —0)TQ(z —b)
e Constraint on E[Return]: aTz > r
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Beyond Nonlinear Optimization Optimization with Integer Variables

More Realistic Models

e b e RV of “benchmark” holdings

e Benchmark Tracking: u(z) 3 (x —0)TQ(z —b)
e Constraint on E[Return]: aTz > r

e Limit Names: [ie N : z; > 0| < K
e Use binary indicator variables to model the implication z; > 0=y; =1
e Implication modeled with variable upper bounds:

°* Dien¥i <K
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Beyond Nonlinear Optimization Global Optimization & Optimization Without Derivatives

Global Optimization

| need to find the GLOBAL minimum!

e use any NLP solver (often work well!)

e use the multi-start trick from previous slides

e global optimization based on branch-and-reduce: BARON
constructs global underestimators

refines region by branching

tightens bounds by solving LPs

solve problems with 100s of variables

e “voodoo” solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Beyond Nonlinear Optimization Global Optimization & Optimization Without Derivatives

Derivative-Free Optimization

My model does not have derivatives!

e Change your model ... good models have derivatives!
e pattern-search methods for min f(x)
e evaluate f(x) at stencil z; + AM
e move to new best point
e extend to NLP; some convergence theory h
e matlab: NOMADm.m; parallel APPSPACK
e solvers based on building interpolating quadratic models
e DFO project on www.coin-or.org
e Mike Powell's NEWUOA quadratic model
e “voodoo" solvers: genetic algorithm & simulated annealing
no convergence theory ... usually worse than deterministic
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Avoid global warming without ruining the economy!
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Control and Optimization

Beyond Nonlinear Optimization

Optimal Technology Penetration

Goal: Optimize energy production schedule and transition between old and
new reduced-carbon technology to meet carbon targets

e Maximize social welfare

e Constraints:

e GHG target at end of time
e Reduced-carbon technology subject to learning effects
reduced unit cost as new technology becomes widespread

e Assumptions on GHG emission rates, economic growth, energy costs

=- Optimal control problem

model as finite-dimensional optimization problem...
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Time: t € [0,T): function x(t), derivative z(t) = dflgt)

Energy Output: old & new technology energy output: ¢°(¢) and ¢"(t);
total energy output: Q(t) = ¢°(t) + q"(t).

Demand and Consumer Surplus: S’(Q,t): integral of demand derived from
CES utility

Production Costs: ¢, unit cost of old technology
new technology from learning by doing: z(t) = fg q"(r)dr

Greenhouse Gases Emissions: discount at environmental time preference
rate:

T
/ e_“t(boqo(t) -+ bnq"(t))dt < zr
0
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

. T —rt | &
masimize [T [0 +4"(0).0) = ot (1) = calol0)a" ()]

subject to  #(t) =q¢"(t), 2(0)=20=0
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Discretization:
e t €]0,T) replaced by N + 1 equally spaced points t; = ih
e h:=T/N time integration step-length
e approximate ¢;* ~ ¢"(t;) etc.

Replace differential equation

i(t) = q"(t)
by
Tiy1 = x; + hq'

. use h =1 (or even h = 3) years
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Discretization:
e t €]0,T) replaced by N + 1 equally spaced points t; = ih
e h:=T/N time integration step-length
e approximate ¢;* ~ ¢"(t;) etc.

Replace differential equation

by
Tiv1 = ; + hqj

. use h =1 (or even h = 3) years

S

-

24 35
Output of new technology between t = 24 and t = 35
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration with Varying h

Trapezoid discretization
T T T T T T T T T T

31 32 33 34 35

=
3
T

new tech. output g (t)
8
T

N

31 32 33 34 35

100+ .

Output of new technology for different discretization schemes and
step-sizes = sharp transition (does not make sense economically)
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

Add adjustment cost to model building of capacity:
Capital and Investment:

e K(t) amount of capital in technology j at .
e I7(t) investment to increase K7(t).

e initial capital level as K?:

Notation:
* Qt) =q°(t) +¢"(t)
e C(t) = C(q°(t), K°(t)) + C"(q"(t), K"(t))
o I(t)y=1I°)+ I"(t)
o K(t)=K°(t)+ K"(t)
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration

maximize
{q] ?KJ VIJ 7"”72}(t)

subject to

Ki(t) = —6K9(t) + I (t), K’'(0)=K), je{on}
2(t) = e [bog”(t) + bug"(t)],  2(0) =20 =0

AT) < 2p

¢'(t) 2 0, j € {o,n}

I(t) >0, j€{o,n}
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Beyond Nonlinear Optimization Control and Optimization

Optimal Technology Penetration
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Optimal output, investment, and capital for 50% CO2 reduction.
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Beyond Nonlinear Optimization Control and Optimization

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

1
minimize %/ u?(t) + 2% (t)dt
0

subject to
g(t) = y(t) +ult), t €[0,1],
y(0) = L
2e3t 4¢3
) = — T~
jy () e3t/2(2+63)7
3t .3
ur(t) = M'
e3t/2(2 + €3)
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Beyond Nonlinear Optimization Control and Optimization

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem Discretize with 2nd order RK

1 K—1
L .. . h
minimize %/0 u?(t) + 292 (t)dt minimize - E ui+1/2+2yi+1/2
k=0

subject to subject to (k =0,...,K):
h 4
: = + —(5yx +uk),
y(t) = %y(t) 4 u(t), te [07 1]7 Yk+1/2 Yk 9 (1zyk k) |
y(0) = 1. Yet1 = Yk T h(GYks1/2 + Uriye
263t + 63
=y t) = o,
Yy (t) e31/2(2 + ¢3)
92 3t _ .3
ur(t) = RiC
e31/2(2 + ¢3)
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Beyond Nonlinear Optimization

Control and Optimization

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

1
minimize %/ u?(t) + 2% (t)dt
0

subject to
g(t) = y(t) +ult), t €[0,1],
y(0) = L
2e3t 4¢3
) = — T~
jy () e3t/2(2+63)7
3t .3
ur(t) = M'
e3t/2(2 + €3)

Leyffer and Munson (Argonne)

Computational Optimization

Discretize with 2nd order RK

K-1
minimize 5 Z “i+1/2 + 2yi+1/2
k=0

subject to (k=0,...,K):

h 1
Ye+1/2 = Yk t+ §(§yk + uyg),
Yt = Yk + h(5Yks12 + Ui o

Discrete solution (k =0,...,K):

Yk = 17 yk‘+1/2 - O?
4+ h
U = T Ton Uk41/2 = 0,

DOES NOT CONVERGE!
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Beyond Nonlinear Optimization Control and Optimization

Discretize-Then-Optimize

Discretization state equation implies discretization of adjoint
. may have different convergence properties.
Example problem (independent of solution of discretized problem!)

. 1 At 4
y(t) = 5y(t) + u(t), Yk+1/2 = Yk T ?(fyk + ug),
]-, Yk+1 = yk+At(§yk+1/2 +uk+1/2)7

A(t) = —3A(t) + 2y(2), Ait1/2 = A5t — 2Uk41/2),
A(l) :0, )\k :Ak+1+<1+At/4)Ak+1/2,

_Ak+l/2 = 07
Ugt1/2 — Ag+1 = 0.

Leyffer and Munson (Argonne) Computational Optimization Computational Optimization 70/ 72



Beyond Nonlinear Optimization Control and Optimization

Tips to Solve Continuous-Time Problems

Alternative: Optimize-Then-Discretize

e consistent adjoint/dual discretization

e discretized gradients can be wrong!

e OK for equality constraints; harder for inequality constraints

Tips for handling continuous-time models

1.

2
3.
4

use discretize-then-optimize (easier)
. refine discretization: h = 1 year discretization is nonsense
use different discretization schemes ... refine answers

. check implied discretization of adjoints

. always be wary of fixed step-lengths
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Beyond Nonlinear Optimization Control and Optimization

Optimization Conclusions

Optimization is General Modeling Paradigm
e linear, nonlinear, equations, inequalities
e integer variables, equilibrium, control
AMPL (GAMS) Modeling and Programming Languages
e express optimization problems
e use automatic differentiation
e easy access to state-of-the-art solvers
Optimization Software
e open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)

e current solver limitations on laptop:

e 1,000,000 variables/constraints for LPs

e 100,000 variables/constraints for NLPs/NCPs

e 100 variables/constraints for global optimization
¢ 500,000,000 variable LP on BlueGene/L
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