Optimization Software Survey

SVEN LEYFFER AND TODD MUNSON Mathematics and Computer Division Argonne National Laboratory {leyffer,tmunson}@mcs.anl.gov

Institute for Computational Economics University of Chicago July 29, 2008

Overview

1. Optimization Methods

Active-Set Methods: SQP/SLQP Interior Point Methods Global Convergence

2. Optimization Software

Available Solvers Failures & Exception Handling Local Solutions

3. Beyond Nonlinear Optimization

Optimization with Integer Variables Global Optimization & Optimization Without Derivatives Control and Optimization

Generic Nonlinear Optimization Problem

Nonlinear Programming (NLP) problem

 $\left\{\begin{array}{ll} \underset{x}{\text{minimize}} & f(x) & \text{objective} \\ \text{subject to} & c(x) = 0 & \text{constraints} \\ & x \ge 0 & \text{variables} \end{array}\right.$

- $f: R^n \to R$, $c: R^n \to R^m$ smooth (typically \mathcal{C}^2)
- $x \in \mathbb{R}^n$ finite dimensional (may be large)
- more general $l \leq c(x) \leq u$ possible

Solving Nonlinear Optimization Problems

 $(P) \quad \underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) = 0, \quad x \ge 0$

Main ingredients of iterative solution approaches:

- 1. Local Method: Given x_k (solution guess) find a step s.
 - Local problem should be easier to solve than (P).
 - Ensure fast (quadratic) local convergence.
 - Connection to global convergence ...
- 2. Forcing Strategy: Global convergence from remote starting points.
- 3. Forcing Mechanism: Truncate step s to force progress:
 - Trust-region to restrict *s* of local problem.
 - Back-tracking line-search along step s.

... look at each ingredient in turn.

Optimality Conditions for NLP

Constraint qualification (CQ) Linearizations of c(x) = 0 characterize all feasible perturbations \Rightarrow rules out cusps etc.

 x^* local minimizer & CQ holds $\Rightarrow \exists$ multipliers $y^*\text{, }z^*\text{:}$

$$abla f(x^*) -
abla c(x^*)^T y^* - z^* = 0$$

 $c(x^*) = 0$
 $X^* z^* = 0$
 $x^* \ge 0, \ z^* \ge 0$

where
$$X^* = \text{diag}(x^*)$$
, thus $X^*z^* = 0 \Leftrightarrow x_i^*z_i^* = 0$
Lagrangian: $\mathcal{L}(x, y, z) := f(x) - y^T c(x) - z^T x$

Optimality Conditions for NLP

Objective gradient is linear combination of constraint gradients

$$g(x) = A(x)y,$$
 where $g(x) := \nabla f(x), \ A(x) := \nabla c(x)^T$

Solve F(x) = 0: Get approx. x_{k+1} of solution of F(x) = 0by solving linear model about x_k :

$$F(x_k) + \nabla F(x_k)^T (x - x_k) = 0$$

for $k = 0, 1, \ldots$

 $\label{eq:constraint} \begin{array}{l} \underline{\mbox{Theorem}}: \mbox{ If } F \in \mathcal{C}^2, \mbox{ and } \nabla F(x^*) \mbox{ nonsingular,} \\ \\ \mbox{ then Newton converges quadratically near } x^*. \end{array}$

Active-Set Methods

Leyffer and Munson (Argonne)

Consider equality constrained NLP

 $\underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) = 0$

Optimality conditions:

$$abla f(x) -
abla c(x)^T y = 0$$
 and
 $c(x) = 0$

... system of nonlinear equations: F(w) = 0 for w = (x, y).

... solve using Newton's method

10 / 72

Nonlinear system of equations (KKT conditions)

$$abla f(x) -
abla c(x)^T y = 0$$
 and $c(x) = 0$

Apply Newton's method from $w_k = (x_k, y_k) \dots H_k = \nabla^2 \mathcal{L}(x_k, y_k)$

$$\begin{bmatrix} H_k & -A_k \\ A_k^T & 0 \end{bmatrix} \begin{pmatrix} s_x \\ s_y \end{pmatrix} = - \begin{pmatrix} \nabla_x \mathcal{L}(x_k, y_k) \\ c_k \end{pmatrix}$$

... set $(x_{k+1}, y_{k+1}) = (x_k + s_x, y_k + s_y) \dots A^k = \nabla c(x_k)^T$... solve for $y_{k+1} = y_k + s_y$ directly instead:

$$\left[\begin{array}{cc}H_k & -A_k\\A_k^T & 0\end{array}\right]\left(\begin{array}{c}s\\y_{k+1}\end{array}\right) = -\left(\begin{array}{c}\nabla f_k\\c_k\end{array}\right)$$

... set $(x_{k+1}, y_{k+1}) = (x_k + s, y_{k+1})$

Newton's Method for KKT conditions leads to:

$$\left[\begin{array}{cc}H_k & -A_k\\A_k^T & 0\end{array}\right]\left(\begin{array}{c}s\\y_{k+1}\end{array}\right) = -\left(\begin{array}{c}\nabla f_k\\c_k\end{array}\right)$$

... are optimality conditions of QP

$$\begin{cases} \begin{array}{ll} \underset{s}{\text{minimize}} & \nabla f_k^T s + \frac{1}{2} s^T H_k s \\ \text{subject to} & c_k + A_k^T s = 0 \end{cases} \end{cases}$$

... hence Sequential Quadratic Programming

12 / 72

Parenthesis: Saddle Point Problems

Given H symmetric $n\times n,$ and A $m\times n$ matrices.

Let
$$K = \begin{bmatrix} H & -A \\ A^T & 0 \end{bmatrix}$$

When is *K* nonsingular (i.e. invertible)?

Lemma If A has full rank, and if

$$Au = 0, u \neq 0 \Rightarrow u^T Hu > 0$$

then K is nonsingular.

i.e. partial positive definiteness of ${\cal H}$ covers null-space of ${\cal A}$

SQP for inequality constrained NLP:

$$\underset{x}{\text{minimize } f(x) \quad \text{subject to } c(x) = 0 \quad \& \quad x \ge 0$$

REPEAT

1. Solve QP for
$$(s, y_{k+1}, z_{k+1})$$

$$\begin{array}{ll} \underset{s}{\text{minimize}} & \nabla f_k^T s + \frac{1}{2} s^T H_k s \\ \text{subject to} & c_k + A_k^T s = 0 \\ & x_k + s \geq 0 \end{array}$$

2. Set $x_{k+1} = x_k + s$

... QP solve computationally expensive

NLP: minimize f(x) subject to $c(x) = 0, x \ge 0$

Sequential Quadratic Programming (SQP)

$$\begin{array}{ll} \underset{s}{\text{minimize}} & g_k^T s + \frac{1}{2} s^T W_k s \\ \text{subject to} & c_k + A_k^T s = 0 \\ & x_k + s \geq 0 \end{array}$$

where $g_k = \nabla f(x_k)$, $A_k = \nabla c(x_k)^T$, $W_k = \nabla^2 \mathcal{L}(x_k, y_k)$ set $x_{k+1} \leftarrow x_k + s$, update trust-region etc.

• unsuitable for large problems: QP pivoting \Rightarrow basis factors

Sequential Linear Programming

NLP: minimize f(x) subject to $c(x) = 0, x \ge 0$

Sequential Linear Programming (SLP)

$$\begin{array}{ll} \underset{s}{\text{minimize}} & g_k^T s + \frac{1}{2} s^T W_k s \\ \text{subject to} & c_k + A_k^T s = 0 \\ & x_k + s \geq 0 & \|s\|_{\infty} \leq \Delta_k \end{array}$$

where $g_k = \nabla f(x_k)$, $A_k = \nabla c(x_k)^T$, $W_k = \nabla^2 \mathcal{L}(x_k, y_k)$ set $x_{k+1} \leftarrow x_k + s$, update trust-region etc.

- unsuitable for large problems: QP pivoting \Rightarrow basis factors
- solve LPs with million unknowns on PC trust-region $||s||_{\infty} \leq \Delta_k$ to avoid unbounded LP

Sequential Linear Programming

while (not optimal) begin

1. Compute displacement s_{LP} by solving LP subproblem

```
3. if step s acceptable then

x_{k+1} = x_k + s \& \text{ increase TR } \Delta = 2 * \Delta

else x_{k+1} = x_k \& \text{ decrease TR } \Delta = \Delta/2

end
```

• SLP \Rightarrow slow local convergence ... steepest descent

Sequential Linear Programming with EQP

while (not optimal) begin

- 1. Compute displacement s_{LP} by solving LP subproblem
- 2. Identify active constraints: $\mathcal{A} = \{i : c_i + a_i^T s_{LP} = 0\}$

$$(\mathsf{EQP}) \left[\begin{array}{c} W & -A_{:,\mathcal{A}} \\ A_{:,\mathcal{A}}^T \end{array} \right] \left(\begin{array}{c} s \\ y_{\mathcal{A}} \end{array} \right) = \left(\begin{array}{c} -g \\ -c_{\mathcal{A}} \end{array} \right)$$

 \ldots solve equality QP for step s

3. if step s acceptable then

 $x_{k+1} = x_k + s$ & increase TR $\Delta = 2 * \Delta$ else $x_{k+1} = x_k$ & decrease TR $\Delta = \Delta/2$

end

- SLP \Rightarrow slow local convergence ... steepest descent
- EQP \Rightarrow fast local convergence ... \simeq Newton on $A_{:,\mathcal{A}}$
- use with knitro_options = "algorithm=3"; ... or ASTROS

Modern Interior-Point Methods (IPM)

Modern Interior-Point Methods (IPM)

General NLP

$$\underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) = 0 \quad \& \quad x \geq 0$$

Perturbed $\mu > 0$ optimality conditions (x, z > 0)

$$F_{\mu}(x,y,z) = \left\{ \begin{array}{c} \nabla f(x) - \nabla c(x)^{T}y - z \\ c(x) \\ Xz - \mu e \end{array} \right\} = 0$$

- Primal-dual formulation, where X = diag(x)
- Central path $\{x(\mu), y(\mu), z(\mu) \ : \ \mu > 0\}$
- Apply Newton's method for sequence $\mu\searrow 0$

Modern Interior-Point Methods (IPM)

Newton's method applied to primal-dual system ...

$$\begin{bmatrix} \nabla^2 \mathcal{L}_k & -A_k & -I \\ A_k^T & 0 & 0 \\ Z_k & 0 & X_k \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} = -F_\mu(x_k, y_k, z_k)$$

where $A_k = \nabla c(x_k)^T$, X_k diagonal matrix of x_k .

Polynomial run-time guarantee for convex problems

$$\underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) = 0 \quad \& \quad x \ge 0$$

Related to classical barrier methods [Fiacco & McCormick]

$$\begin{cases} \min_{x} f(x) - \mu \sum \log(x_i) \\ \text{subject to} \quad c(x) = 0 \end{cases}$$

 $\mu = 1$

minimize $x_1^2 + x_2^2 - \mu \log (x_1 + x_2^2 - 1)$

$$\underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) = 0 \quad \& \quad x \ge 0$$

Related to classical barrier methods [Fiacco & McCormick]

$$\begin{cases} \min_{x} f(x) - \mu \sum \log(x_i) \\ \text{subject to} \quad c(x) = 0 \end{cases}$$

Leyffer and Munson (Argonne)

20 / 72

minimize
$$f(x)$$
 subject to $c(x) = 0$ & $x \ge 0$

Relationship to barrier methods

$$\begin{cases} \min_{x} \inf_{x} f(x) - \mu \sum \log(x_{i}) \\ \text{subject to} \quad c(x) = 0 \end{cases}$$

First order conditions

$$\nabla f(x) - \mu X^{-1} e - A(x) y = 0 \\ c(x) = 0$$

... apply Newton's method ...

21 / 72

Newton's method for barrier problem from $x_k \dots$

$$\begin{bmatrix} \nabla^2 \mathcal{L}_k + \mu X_k^{-2} & -A_k \\ A_k^T & 0 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \dots$$

Introduce
$$Z(x_k) := \mu X_k^{-1} \dots$$
 or $\dots Z(x_k) X_k = \mu e$
$$\begin{bmatrix} \nabla^2 \mathcal{L}_k + Z(x_k) X_k^{-1} & -A_k \\ A_k & 0 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \dots$$

... compare to primal-dual system ...

Recall: Newton's method applied to primal-dual system ...

$$\begin{bmatrix} \nabla^2 \mathcal{L}_k & -A_k & -I \\ A_k^T & 0 & 0 \\ Z_k & 0 & X_k \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} = -F_\mu(x_k, y_k, z_k)$$

Eliminate $\Delta z = -X^{-1}Z\Delta x - Ze - \mu X^{-1}e$

$$\begin{bmatrix} \nabla^2 \mathcal{L}_k + Z_k X_k^{-1} & -A_k \\ A_k & 0 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \dots$$

Interior-Point Methods (IPM)

Primal-dual system ...

$$\begin{bmatrix} \nabla^2 \mathcal{L}_k + Z_k X_k^{-1} & -A_k \\ A_k & 0 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \dots$$

... compare to barrier system ...

$$\begin{bmatrix} \nabla^2 \mathcal{L}_k + Z(x_k) X_k^{-1} & -A_k \\ A_k & 0 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \dots$$

• Z_k is free, not $Z(x_k) = \mu X_k^{-1}$ (primal multiplier)

avoid difficulties with barrier ill-conditioning

Solving Nonlinear Optimization Problems

 $(P) \quad \underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) \geq 0$

Main ingredients of iterative solution approaches:

- 1. Local Method: Given x_k (solution guess) find a step s.
 - Sequential Quadratic Programming (SQP)
 - Sequential Linear/Quadratic Programming (SLQP)
 - Interior-Point Methods
- 2. Forcing Strategy: Global convergence from remote starting points.
- 3. Forcing Mechanism: Truncate step s to force progress:
 - Trust-region to restrict s of local problem ... used in this talk.
 - Back-tracking line-search along step s.

Enforcing Convergence

When's a New Point Better?

Easy for unconstrained minimize f(x) (quadratic model $q_k(s)$):

$$x_{k+1} = x_k + s$$
 better, iff $f(x_{k+1}) \leq f(x_k) - 10^{-4} q_k(s)$

... actual reduction matches portion of reduction predicted by model.

Unclear for constrained problem: c(x) = 0

- step s can reduce both f(x) and ||c(x)||
- step s increases f(x) and decreases ||c(x)||
- step s decreases f(x) and increases ||c(x)||
- step s can increase both f(x) and $\|c(x)\|$

GOOD

???

???

BAD

Penalty Functions (i)

Augmented Lagrangian Methods

minimize
$$L(x, y_k, \rho_k) = f(x) - y_k^T c(x) + \frac{1}{2} \rho_k ||c(x)||^2$$

As
$$y_k \to y_*$$
: • $x_k \to x_*$ for $\rho_k > \bar{\rho}$
• No ill-conditioning, improves convergence rate

- update ρ_k based on reduction in $\|c(x)\|^2$
- approx. minimize $L(x, y_k, \rho_k)$
- first-order multiplier update: $y_{k+1} = y_k \rho_k c(x_k)$ \Rightarrow dual iteration

Penalty Functions (ii)

Exact Penalty Function: minimize_x $\Phi(x,\pi) = f(x) + \pi \|c(x)\|$

- combine constraints and objective
- equivalence of optimality \Rightarrow exact for $\pi > ||y^*||_D$... now apply unconstrained techniques
- Φ nonsmooth, but equivalent to smooth problem (exercise)

29 / 72

Filter Methods for NLP

Penalty function can be inefficient

- Penalty parameter not known a priori
- Large penalty parameter \Rightarrow slow convergence

Two competing aims in optimization:

- 1. Minimize f(x)
- 2. Minimize $h(x) := \|c(x)\|$... more important

\Rightarrow concept from multi-objective optimization: (h_{k+1}, f_{k+1}) dominates (h_l, f_l) iff $h_{k+1} \le h_l \& f_{k+1} \le f_l$
Filter Methods for NLP

Filter \mathcal{F} : list of non-dominated pairs (h_l, f_l)

• new x_{k+1} acceptable to filter \mathcal{F} , iff 1. $h_{k+1} \leq h_l \ \forall l \in \mathcal{F}$, or 2. $f_{k+1} \leq f_l \ \forall l \in \mathcal{F}$

 \Rightarrow often accept new x_{k+1} , even if penalty function increases

Filter Methods for NLP

Filter \mathcal{F} : list of non-dominated pairs (h_l, f_l)

- new x_{k+1} acceptable to filter \mathcal{F} , iff
 - 1. $h_{k+1} \leq h_l \; orall l \in \mathcal{F}$, or
 - 2. $f_{k+1} \leq f_l \ \forall l \in \mathcal{F}$
- remove redundant entries

 \Rightarrow often accept new x_{k+1} , even if penalty function increases

Filter Methods for NLP

Filter \mathcal{F} : list of non-dominated pairs (h_l, f_l)

- new x_{k+1} acceptable to filter \mathcal{F} , iff
 - 1. $h_{k+1} \leq h_l \; orall l \in \mathcal{F}$, or
 - 2. $f_{k+1} \leq f_l \ \forall l \in \mathcal{F}$
- remove redundant entries
- reject new x_{k+1} , if $h_{k+1} > h_l \& f_{k+1} > f_l$

... reduce trust region radius $\Delta = \Delta/2$

 \Rightarrow often accept new x_{k+1} , even if penalty function increases

Solving Nonlinear Optimization Problems

 $(P) \quad \underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) \geq 0$

Main ingredients of iterative solution approaches:

- 1. Local Method: Given x_k (solution guess) find a step s.
 - Sequential Quadratic Programming (SQP)
 - Sequential Linear/Quadratic Programming (SLQP)
 - Interior-Point Methods
- 2. Forcing Strategy: Augmented Lagrangian, penalty, filter.
- 3. Forcing Mechanism: Truncate step s to force progress:
 - Trust-region to restrict *s* of local problem ... used in this talk.
 - Back-tracking line-search along step s.

Trust-Region Methods

Globalize SQP/IPM using trust region, $\Delta^k > 0$: Consider unconstrained f(x) minimization by trust-region

 $\underset{s}{\text{minimize } q_k(s)} := f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T H(x_k) s \text{ subject to } \|s\| \le \Delta^k$

Trust-Region Framework for Nonlinear Optimization

$$\underset{x}{\text{minimize }} f(x) \quad \text{subject to } c(x) = 0, \quad x \ge 0$$

E.g. SQP: given x_0 starting point, set k = 0 repeat

1. solve trust-region problem around x_k for step s:

$$\min_{s} q_k(s) \text{ s.t. } c_k + A_k^T s = 0, \ x_k + s \ge 0, \ \|s\| \le \Delta^k$$

- 2. if $x_k + s$ improves on x_k then accept step: $x_{k+1} = x_k + s$ else reject step: $x_{k+1} = x_k$
- 3. k = k + 1 & house-keeping

until convergence

Line-Search Methods

Line-Search Methods

SQP/IPM compute s descend direction or penalty function: $s^T \nabla \Phi < 0$

Backtracking-Armijo line search

```
Given \alpha^0 = 1, \beta = 0.1, set l = 0
```

REPEAT

1.
$$\alpha^{l+1} = \alpha^l/2$$
 & evaluate $\Phi(x + \alpha^{l+1}s)$
2. $l = l + 1$
UNTIL $\Phi(x + \alpha^l s) \le f(x) + \alpha^l \beta s^T \nabla \Phi$

Converges to stationary point, or unbounded, or zero descend

Overview

1. Optimization Methods

Active-Set Methods: SQP/SLQP Interior Point Methods Global Convergence

2. Optimization Software

Available Solvers Failures & Exception Handling Local Solutions

3. Beyond Nonlinear Optimization

Optimization with Integer Variables Global Optimization & Optimization Without Derivatives Control and Optimization

Sequential Quadratic Programming

- ASTROS Active-Set Trust-Region Optimization Solvers
- filterSQP
 - trust-region SQP; robust QP solver
 - filter to promote global convergence
- SNOPT
 - line-search SQP; null-space CG option
 - ℓ_1 exact penalty function
- SLIQUE (part of KNITRO)
 - SLP-EQP ("SQP" for larger problems)
 - trust-region with ℓ_1 penalty
 - use with knitro_options = "algorithm=3";

Other Methods: CONOPT generalized reduced gradient method

Interior Point Methods

- IPOPT (free: part of COIN-OR)
 - line-search filter algorithm
 - 2nd order convergence analysis for filter
- KNITRO
 - trust-region Newton to solve barrier problem
 - ℓ_1 penalty barrier function
 - Newton system: direct solves or null-space CG
- LOQO
 - line-search method
 - · Cholesky factorization; no convergence analysis

Other solvers: MOSEK (unsuitable or nonconvex problem)

Augmented Lagrangian Methods

LANCELOT

- minimize augmented Lagrangian subject to bounds
- trust-region to force convergence
- iterative (CG) solves
- MINOS
 - minimize augmented Lagrangian subject to linear constraints
 - line-search; recent convergence analysis
 - direct factorization of linear constraints
- PENNON
 - suitable for semi-definite optimization
 - alternative penalty terms

COIN-OR

http://www.coin-or.org

- COmputational INfrastructure for Operations Research
- A library of (interoperable) software tools for optimization
- A development platform for open source projects in the OR community
- Possibly Relevant Modules:
 - OSI: Open Solver Interface
 - CGL: Cut Generation Library
 - CLP: Coin Linear Programming Toolkit
 - CBC: Coin Branch and Cut
 - IPOPT: Interior Point OPTimizer for NLP
 - NLPAPI: NonLinear Programming API

Other: SOPLEX ... (MI)LP solver almost as good as CPLEX

Leyffer and Munson (Argonne)

Active-Set vs. Interior-Point

Active-Set usually more robust (identify degeneracy)

- LP/QP solve become bottleneck for large problems combinatorial pivoting & dense linear algebra
- robust LP/QP find linearly independent set of constraints \Rightarrow ensures LICQ for subset of constraints
- good warm-start properties ... solving related problems

Interior-Point often faster (in terms of CPU time)

- solve single linear system per iteration
 ⇒ much faster than LP/QP solve
- poor warm-start properties ... initial point $x, z > \mu$
- carry all constraints around at all times \Rightarrow affected by degeneracy ... cond(KKT) = $\mathcal{O}(\mu^{-1})$

 \ldots but there are practical differences too, see <code>hs044.mod</code>

Automatic Differentiation

How do I get the derivatives $\nabla c(x)$, $\nabla^2 c(x)$ etc?

- hand-coded derivatives are error prone
- finite differences $\frac{\partial c_i(x)}{\partial x_j} \simeq \frac{c_i(x+\delta e_j)-c_i(x)}{\delta}$ can be dangerous where $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ is j^{th} unit vector

Automatic Differentiation

- chain rule techniques to differentiate program
- recursive application \Rightarrow "exact" derivatives
- suitable for huge problems, see www.autodiff.org
- \ldots already done for you in AMPL/GAMS etc.

Something Under the Bed is Drooling

1. exception handling

- floating point (IEEE) exceptions
- unbounded problems
- 2. local solutions
 - (locally) inconsistent problems
 - suboptimal solutions

... identify problem & suggest remedies

Floating Point (IEEE) Exceptions

Bad example: minimize barrier function, barrier.mod

```
param mu default 1;
var x{1..2} >= -10, <= 10;
var s;
minimize barrier: x[1]^2 + x[2]^2 - mu*log(s);
subject to
    cons: s = x[1] + x[2]^2 - 1;
```

```
... results in error message like
Cannot evaluate objective at start
... change initialization of s:
var s := 1; ... difficult, if IEEE during solve ...
```

Unbounded Objective

Penalized MPEC (wait till tomorrow) $\pi = 1$:

 $\begin{array}{ll} \underset{x}{\text{minimize}} & x_1^2 + x_2^2 - 4x_1x_2 & + \pi x_1x_2\\ \text{subject to} & x_1, x_2 \geq 0 \end{array}$

... unbounded below for all $\pi < 2$

```
param pi >= 0, default 1; # ... penalty parameter
var x{1..2} >= 0;
minimize MPECpen: x[1]^2 + x[2]^2 - 4*x[1]*x[2] + pi*x[1]*x[2];
```

... what happens to L1penalty.mod?

NLP may have no feasible point

```
var x{1..2} >= -1;
minimize objf: -1000*x[2];
subject to
    con1: (x[1]+2)^2 + x[2]^2 <= 1;
    con2: (x[1]-2)^2 + x[2]^2 <= 1;</pre>
```


LOQO

... fails to converge ... not useful for user

dual unbounded $\rightarrow \infty \Rightarrow$ primal infeasible

FILTER

iter	rho	a	f / hJ	c /hJt
0:0	10.0000	0.00000	-1000.0000	16.000000
1:1	10.0000	2.00000	-1000.0000	8.000000
[]				
8:2	2.00000	0.320001E-02	7.9999693	0.10240052E-04
9:2	2.00000	0.512000E-05	8.000000	0.26214586E-10
filter	SQP: Nonli	near constraint	ts locally i	nfeasible

... fast convergence to minimum infeasibility ... identify "blocking" constraints ... modify model/data

Remedies for locally infeasible problems:

- check your model: print constraints & residuals, e.g. solve; display _conname, _con.lb, _con.body, _con.ub; display _varname, _var.lb, _var, _var.ub; ... look at violated and active constraints
- 2. try different nonlinear solvers (easy with AMPL)
- 3. build-up model from few constraints at a time
- 4. try different starting points ... global optimization

Suboptimal Solution & Multi-start

Problems can have many local minimizers


```
param pi := 3.1416;
param n integer, >= 0, default 2;
set N := 1..n;
var x{N} >= 0, <= 32*pi, := 1;
minimize objf:
- sum{i in N} x[i]*sin(sqrt(x[i]));
```

default start point converges to local minimizer

Leyffer and Munson (Argonne)

Suboptimal Solution & Multi-start

```
param nD := 5; # discretization
set D := 1..nD;
param hD := 32*pi/(nD-1);
param optval{D,D};
model schwefel.mod; # load model
for {i in D}{
   let x[1] := (i-1)*hD;
   for {j in D}{
      let x[2] := (j-1)*hD;
      solve:
      let optval[i,j] := objf;
   }; # end for
}; # end for
```

Suboptimal Solution & Multi-start

display optval;									
optval [*,*]									
:	1	2	3	4	5 :=				
1	0	24.003	-36.29	-50.927	56.909				
2	24.003	-7.8906	-67.580	-67.580	-67.580				
3	-36.29	-67.5803	-127.27	-127.27	-127.27				
4	-50.927	-67.5803	-127.27	-127.27	-127.27				
5	56.909	-67.5803	-127.27	-127.27	-127.27				
;									

... there exist better multi-start procedures

Overview

1. Optimization Methods

Active-Set Methods: SQP/SLQP Interior Point Methods Global Convergence

2. Optimization Software

Available Solvers Failures & Exception Handling Local Solutions

3. Beyond Nonlinear Optimization

Optimization with Integer Variables Global Optimization & Optimization Without Derivatives Control and Optimization

Optimization with Integer Variables

Mixed-Integer Nonlinear Program (MINLP)

- modeling discrete choices $\Rightarrow 0-1$ variables
- modeling integer decisions ⇒ integer variables
 e.g. number of different stocks in portfolio (8-10)
 not number of beers sold at Goose Island (millions)

MINLP solvers:

- branch (separate $z_i = 0$ and $z_i = 1$) and cut
- solve millions of NLP relaxations: MINLPBB, SBB
- outer approximation: iterate MILP and NLP solvers BONMIN (COIN-OR) & FilMINT on NEOS

Portfolio Management

- N: Universe of asset to purchase
- x_i : Amount of asset i to hold
- B: Budget

minimize
$$u(x)$$
 subject to $\sum_{i \in N} x_i = B, \quad x \ge 0$

Portfolio Management

- N: Universe of asset to purchase
- x_i : Amount of asset i to hold
- B: Budget

minimize
$$u(x)$$
 subject to $\sum_{i\in N} x_i = B, \quad x \ge 0$

- Markowitz: $u(x) \stackrel{\text{def}}{=} -\alpha^T x + \lambda x^T Q x$
 - α: maximize expected returns
 - Q: variance-covariance matrix of expected returns
 - λ : minimize risk; aversion parameter

More Realistic Models

- $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings
- Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$
 - Constraint on $\mathbb{E}[\mathsf{Return}]$: $\alpha^T x \ge r$

More Realistic Models

- Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$
 - Constraint on $\mathbb{E}[\mathsf{Return}]$: $\alpha^T x \ge r$
- Limit Names: $|i \in N : x_i > 0| \le K$
 - Use binary indicator variables to model the implication $x_i > 0 \Rightarrow y_i = 1$
 - Implication modeled with variable upper bounds:

$$x_i \le By_i \qquad \forall i \in N$$

•
$$\sum_{i \in N} y_i \le K$$

Global Optimization

I need to find the GLOBAL minimum!

- use any NLP solver (often work well!)
- use the multi-start trick from previous slides
- global optimization based on branch-and-reduce: BARON
 - constructs global underestimators
 - refines region by branching
 - tightens bounds by solving LPs
 - solve problems with 100s of variables
- "voodoo" solvers: genetic algorithm & simulated annealing no convergence theory ... usually worse than deterministic

Derivative-Free Optimization

My model does not have derivatives!

- Change your model ... good models have derivatives!
- pattern-search methods for $\min f(x)$
 - evaluate f(x) at stencil $x_k + \Delta M$
 - move to new best point
 - extend to NLP; some convergence theory h
 - matlab: NOMADm.m; parallel APPSPACK
- · solvers based on building interpolating quadratic models
 - DFO project on www.coin-or.org
 - Mike Powell's NEWUOA quadratic model
- "voodoo" solvers: genetic algorithm & simulated annealing no convergence theory ... usually worse than deterministic

Optimal Technology Penetration

Avoid global warming without ruining the economy!

Optimal Technology Penetration

Goal: Optimize energy production schedule and transition between old and new reduced-carbon technology to meet carbon targets

- Maximize social welfare
- Constraints:
 - GHG target at end of time
 - Reduced-carbon technology subject to learning effects
 ... reduced unit cost as new technology becomes widespread
- Assumptions on GHG emission rates, economic growth, energy costs

 \Rightarrow Optimal control problem

... model as finite-dimensional optimization problem...

Optimal Technology Penetration

Time: $t \in [0,T]$: function x(t), derivative $\dot{x}(t) = \frac{dx(t)}{dt}$

Energy Output: old & new technology energy output: $q^o(t)$ and $q^n(t)$; total energy output: $Q(t) = q^o(t) + q^n(t)$.

Demand and Consumer Surplus: $\tilde{S}(Q,t)$: integral of demand derived from CES utility

Production Costs: c_o unit cost of old technology new technology from learning by doing: $x(t) = \int_0^t q^n(\tau) d\tau$ Greenhouse Gases Emissions: discount at environmental time preference rate:

$$\int_0^T e^{-at} \left(b_o q^o(t) + b_n q^n(t) \right) dt \le z_T$$
$$\begin{split} & \underset{\{q^{o},q^{n},x,z\}(t)}{\text{maximize}} & \int_{0}^{T} e^{-rt} \left[\tilde{S}(q^{o}(t) + q^{n}(t),t) - c_{o}q^{o}(t) - c_{n}(x(t))q^{n}(t) \right] dt \\ & \text{subject to} & \dot{x}(t) = q^{n}(t), \quad x(0) = x_{0} = 0 \\ & \dot{z}(t) = e^{-at} \left(b_{o}q^{o}(t) + b_{n}q^{n}(t) \right), \quad z(0) = z_{0} = 0 \\ & z(T) \leq z_{T} \\ & q^{o}(t) \geq 0, \quad q^{n}(t) \geq 0. \end{split}$$

Discretization:

- $t \in [0,T]$ replaced by N+1 equally spaced points $t_i = ih$
- h := T/N time integration step-length
- approximate $q_i^n \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + hq_i^n$$

... use h = 1 (or even h = 3) years

Discretization:

- $t \in [0,T]$ replaced by N+1 equally spaced points $t_i = ih$
- h := T/N time integration step-length
- approximate $q_i^n \simeq q^n(t_i)$ etc.

Replace differential equation

$$\dot{x}(t) = q^n(t)$$

by

$$x_{i+1} = x_i + hq_i^n$$

... use h = 1 (or even h = 3) years

Output of new technology between t = 24 and t = 35

Optimal Technology Penetration with Varying h

Output of new technology for different discretization schemes and step-sizes \Rightarrow sharp transition (does not make sense economically)

Leyffer and Munson (Argonne)

Computational Optimization

Add adjustment cost to model building of capacity: Capital and Investment:

- $K^{j}(t)$ amount of capital in technology j at t.
- $I^{j}(t)$ investment to increase $K^{j}(t)$.
- initial capital level as \bar{K}_0^j :

Notation:

•
$$Q(t) = q^o(t) + q^n(t)$$

- $C(t) = C^o(q^o(t), K^o(t)) + C^n(q^n(t), K^n(t))$
- $I(t) = I^{o}(t) + I^{n}(t)$
- $K(t) = K^{o}(t) + K^{n}(t)$

66 / 72

 $\underset{\{q^{j},K^{j},I^{j},x,z\}(t)}{\text{maximize}}$

subject to

$$\left\{ \int_{0}^{T} e^{-rt} \left[\tilde{S}(Q(t), t) - C(t) - K(t) \right] dt + e^{-rT} K(T) \right\}$$

$$\dot{x}(t) = q^{n}(t), \quad x(0) = x_{0} = 0$$

$$\dot{K}^{j}(t) = -\delta K^{j}(t) + I^{j}(t), \quad K^{j}(0) = \bar{K}_{0}^{j}, \quad j \in \{o, n\}$$

$$\dot{z}(t) = e^{-at} [b_{o}q^{o}(t) + b_{n}q^{n}(t)], \quad z(0) = z_{0} = 0$$

$$z(T) \leq z_{T}$$

$$q^{j}(t) \geq 0, \ j \in \{o, n\}$$

$$I^{j}(t) \geq 0, \ j \in \{o, n\}$$

Optimal output, investment, and capital for 50% CO2 reduction.

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize
$$\frac{1}{2}\int_0^1 u^2(t) + 2y^2(t)dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2+e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2+e^3)}.$$

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize
$$\frac{1}{2}\int_0^1 u^2(t) + 2y^2(t)dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

Discretize with 2nd order RK

minimize
$$\frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2$$

subject to
$$(k = 0, ..., K)$$
:
 $y_{k+1/2} = y_k + \frac{h}{2}(\frac{1}{2}y_k + u_k),$
 $y_{k+1} = y_k + h(\frac{1}{2}y_{k+1/2} + u_{k+1/2})$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2+e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2+e^3)}.$$

69 / 72

Pitfalls of Discretizations [Hager, 2000]

Optimal Control Problem

minimize
$$\frac{1}{2}\int_0^1 u^2(t) + 2y^2(t)dt$$

subject to

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \ t \in [0, 1],$$

 $y(0) = 1.$

$$\Rightarrow y^*(t) = \frac{2e^{3t} + e^3}{e^{3t/2}(2+e^3)},$$
$$u^*(t) = \frac{2(e^{3t} - e^3)}{e^{3t/2}(2+e^3)}.$$

Discretize with 2nd order RK

$$\text{minimize } \frac{h}{2} \sum_{k=0}^{K-1} u_{k+1/2}^2 + 2y_{k+1/2}^2$$

subject to
$$(k = 0, ..., K)$$
:
 $y_{k+1/2} = y_k + \frac{h}{2}(\frac{1}{2}y_k + u_k),$
 $y_{k+1} = y_k + h(\frac{1}{2}y_{k+1/2} + u_{k+1/2})$

Discrete solution ($k = 0, \dots, K$):

$$y_k = 1, \quad y_{k+1/2} = 0,$$

 $u_k = -\frac{4+h}{2h}, \quad u_{k+1/2} = 0,$

DOES NOT CONVERGE!

Leyffer and Munson (Argonne)

Discretize-Then-Optimize

Discretization state equation implies discretization of adjoint ... may have different convergence properties. Example problem (independent of solution of discretized problem!)

$$\dot{y}(t) = \frac{1}{2}y(t) + u(t), \qquad y_{k+1/2} = y_k + \frac{\Delta t}{2}(\frac{1}{2}y_k + u_k), y(0) = 1, \qquad y_{k+1} = y_k + \Delta t(\frac{1}{2}y_{k+1/2} + u_{k+1/2}),$$

.

$$\begin{aligned} \dot{\lambda}(t) &= -\frac{1}{2}\lambda(t) + 2y(t), \\ \lambda(1) &= 0, \end{aligned} \qquad \lambda_{k+1/2} &= \Delta t (\frac{1}{2}\lambda_{k+1} - 2y_{k+1/2}), \\ \lambda_k &= \lambda_{k+1} + (1 + \Delta t/4)\lambda_{k+1/2}, \end{aligned}$$

$$u(t) - \lambda(t) = 0.$$
 $-\lambda_{k+1/2} = 0,$
 $u_{k+1/2} - \lambda_{k+1} = 0.$

Tips to Solve Continuous-Time Problems

Alternative: Optimize-Then-Discretize

- consistent adjoint/dual discretization
- discretized gradients can be wrong!
- OK for equality constraints; harder for inequality constraints

Tips for handling continuous-time models

- 1. use discretize-then-optimize (easier)
- 2. refine discretization: h = 1 year discretization is nonsense
- 3. use different discretization schemes ... refine answers
- 4. check implied discretization of adjoints
- ... always be wary of fixed step-lengths

Optimization Conclusions

Optimization is General Modeling Paradigm

- linear, nonlinear, equations, inequalities
- integer variables, equilibrium, control
- AMPL (GAMS) Modeling and Programming Languages
 - express optimization problems
 - use automatic differentiation
 - easy access to state-of-the-art solvers

Optimization Software

- open-source: COIN-OR, IPOPT, SOPLEX, & ASTROS (soon)
- current solver limitations on laptop:
 - 1,000,000 variables/constraints for LPs
 - 100,000 variables/constraints for NLPs/NCPs
 - 100 variables/constraints for global optimization
 - 500,000,000 variable LP on BlueGene/L