
Comments on “Parallelization of Matlab codes under
Windows platform for Bayesian estimation: a Dynare

application” (I. Azzin, R. Girardi and M. Ratto)

Sébastien Villemot

PSE-CEPREMAP

Third Dynare Conference
September 10, 2007

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 1 / 10



Summary

In the foreseeable future, technical improvement of CPUs will be
in terms of parallel computing units, not clock speed
⇒ Need to introduce parallelization in algorithms and software to
take advantage of it

Parallelization can be introduced in Dynare at a relatively low
programming cost (e.g. in Metropolis-Hastings)

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 2 / 10



Processes versus Threads (1/2)

Parallelization can be implemented by two means: processes or
threads
Processes have the following characteristics:

Each process is a completely independant execution unit
Each process has its own memory space and ressources (opened
files, network connexions, ...)
Processes communicate with each other via inter-process
communication mechanisms (IPC) (for example through network
connexions)
Example: one process for web browser, another for word
processing, yet another for music player...

Processes are the “heavy” way of doing parallelization

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 3 / 10



Processes versus Threads (2/2)

On the contrary, threads have the following characteristics:
Several threads can be spawned by a single process
The threads execute in parallel the same program code (that of the
parent process)
Threads share the same memory space, and the same ressources
Each thread maintains minimum state information: line of code
being run, register values, stack
Threads can communicate directly via memory space

Threads are also called “light-weight processes”
Threads have (almost) no memory cost, and consume less
ressources during their creation, but must run on the same host

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 4 / 10



The implementation of Azzin, Girardi & Ratto (1/2)

Metropolis-Hastings chains are completely independant from each
other⇒ easy to parallelize
Implementation uses processes rather than threads: an
independant Matlab session is run in parallel for each chain
Processes are launched with a batch command file and a
Microsoft command-line tool (psexec)
Inter-process communication implemented through files:

One input file shared by all processes (contains posterior kernel
function and some other shared data)
One output file per process
Time synchronization done through dummy files

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 5 / 10



The implementation of Azzin, Girardi & Ratto (1/2)

Advantages:
simple source code, only few modifications to official Dynare code
easy to adapt to a cluster of computers (through a network-shared
filesystem)

Inconvenients:
Windows only, uses third party (although free) software
suboptimal in memory consumption (and possibly speed), at least
in single-host environment

Easy improvement: create a standalone DLL module in C/C++
which directly creates the other Matlab sessions (through process
“forking”). Would be more portable accross platforms (notably
Linux)
But implementing everything in C/C++ would mean rewriting
Kalman filter and posterior kernel function in C/C++...

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 6 / 10



Alternative solution: using threads (1/2)

Thread support non-existent up to Matlab version 7.3
Since Matlab 7.4 (R2007a):

Some Matlab primitives are implemented with multi-threading (e.g.
matrix multiplication)
Needs to be activated in Preferences→General→Multithreading
Leads to a speed-up on machines with a multi-core CPU (or even a
Pentium 4 with Hyper-threading)

But custom multi-threading cannot be implemented at the level of
a Matlab M-file
⇒ need to create a DLL module in C/C++

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 7 / 10



Alternative solution: using threads (2/2)

Threads are easy to create from C/C++ code: native support
under Windows and Linux (POSIX threads)
Each thread in the DLL would call the posterior kernel function
(written in Matlab code)
Problem: current Dynare implementation of posterior kernel
function is not thread-safe: it modifies the value of global variables
⇒ would lead to write conflicts in multi-threading
⇒ we first have to remove global variables from Dynare code
Advantages over current implementation would be:

less memory consumption: no need to replicate input information
(since the memory space is shared), no creation of processes
possible (though limited) speed-up: creation of threads is very fast

Inconvenient: doesn’t work for a cluster of machines

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 8 / 10



What can be parallelized in Dynare ?

Besides Metropolis chains, authors mention the graphics
Straight-forward parallelizations could be added in Monte-Carlo
methods, as in:

IRFs in stoch simul,
forecast,
and also in BVAR and BVAR-DSGE routines.

More challenging: in the posterior mode computation (through
optimization)

The directions along which are computed the numerical derivatives
could be divided accross threads (derivation with respect to a given
direction is independant of other directions)
Same problem than before: current code is not thread-safe

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 9 / 10



A note on Hyper-Threading

Some Pentium 4 (P4) incoporate the Hyper-Threading (HT)
technology
These CPUs are single core, but are optimized to take advantage
of idle parts of the core
Two threads of execution are handled by the CPU in parallel:
when the first thread doesn’t use some resource of the core, this
resource is given to the second thread for parallel execution
The operating system treats a P4 with HT as two “logical”
processors (and some dual-processor machines appear having 4
processors)
Intel claims a 20% to 40% speed improvement over comparable
non-HT processor⇒ result replicated by the paper
This speed-up would not have been present with a non-HT P4

S. Villemot (PSE-CEPREMAP) Comments on “Parallelization of Matlab...” September 10, 2007 10 / 10


