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I tried preliminary computations for all the 1116 specifications suggested by the
description of Problem A, back in the July 2004 document. I report below on my
findings and make some suggestions about which cases to consider in the final versions
of the papers.

I’m using the following setup: a Python scripts to generate and run in Dynare++
all different specifications of problem A. I did a third order approximation and com-
puted the approximation error for each equation of the model for 100 points along an
ellipse in the state space. Then I looked at the maximum error accross all equations
described in section 1.1, to try to distinguish interesting cases. I haven’t yet computed
approximation errors as described in section 1.5, nor for the points described in the
July 2004.

The ellipse was calibrated with one standard deviations of the endogenous vari-
ables as computed by a first order approximation. On this ellipse, stochastic shocks
(innovations of autocorrelated shocks) are set to 0.

1 Specification of the models and error computation

1.1 Equilibrium conditions
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ln ant = ρ ln ant−1 + σ (et + ent )

1.2 Utility specifications
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1.3 Production function specifications
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1.4 Deterministic steady state
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1.5 Approximation errors

Rj =
τnuc(cnt , l

n
t )− λt

τnuc(cnt , lnt )
j = 1, . . . , n

Rj =
τnul(cnt , l

n
t ) + λta

n
t f

n
l (knt−1, lt)

τnul(cnt , lnt )
j = n+ 1, . . . , 2n

Rj =

[
λt

(
1 + φ

(
int
knt−1

− δ

))
− βEt

{
λt+1

(
1 + ant+1f

n
k

(
knt , l

n
t+1

)
+φ
(

1− δ +
int+1

knt
− 1

2

(
int+1

knt
− δ

))(
int+1

knt
− δ

))}]
/

(
λt

(
1 + φ

(
int
knt−1

− δ

)))−1

j = 2n+ 1, . . . , 3n

Rj =
knt − int − (1− δ)knt−1

knt
j = 3n+ 1, . . . , 4n

R4n+1 =

∑N
n=1 c

n
t + int − δknt−1 − ant f

n(knt−1, l
n
t ) + φ

2 k
n
t−1

(
int
kn
t−1

− δ
)2

∑N
n=1 c

n
t + int − δknt−1

3



Rj =
ant − eρ ln ant−1+σ(et+e

n
t )

ant
j = 4n+ 2, . . . , 5n+ 1

1.6 Remark
For specification A3, A4, A7 and A8, it isn’t possible to express the Euler equation in
consumption units. For this reason, I suggest that we report the error of approximation
that corresponds to the above equations.

2 Suggestions for diminishing the number of cases to
study

1. Specification A2 and A6 generate unit roots for almost all combinations of pa-
rameters. This is the only one. It makes it almost impossible to do long simula-
tions. I suggest to drop specifications A2 and A6.

2. As expected the size of approximation errors increases with the variance of the
exogenous variables. I suggest to limit ourselves to two polar cases: (σ =
0.001, ρ = 0.8) and (σ = 0.01, ρ = 0.95).

3. I couldn’t detect any clear pattern concerning the effect of the number of coun-
tries on the approximation error. I suggest to have only N = 2, 6, 10.

4. The shape and adjustment cost parameters
gamma, φ have an ambiguous effect for this experiment: increasing the curva-
ture of the problem increases the difficulty of approximation but at the same time
diminishes the variance of most endogenous variables and diminishes the size of
the ellipse on which the approximation errors are computed. Maybe we should
think of some other way of specifying those ellipses: compute them once for all
specification. In any case, I suggest to study only extreme cases: γ = 0.25, 1,
φ = 0.5, 10.

5. Problem A1 is too easy and will serve only as a benchmark, I would keep only
the logarithmic utility case.

6. In summary, number of cases:

Model Cases
A1 2× 2× 3 12
A3 2× 2× 2× 3 24
A4 2× 2× 3 12
A5 2× 2× 3 12
A7 2× 2× 3 12
A8 2× 2× 3 12
Total 84

There may still be too many combinations of variance, persistence and adjust-
ment cost.
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3 Remark on the accuracy tests
1. For accuracy test 1, we should concentrate on r ∈ {0.01, 0.1, 0.3}.

2. It may also be interesting to compute the error of approximation on ellipses com-
puted from the (first order approximated) variance of the variables. Then the
scale a could s ∈ {1, 2, 3} the standard deviation in the direction of each vari-
able.

3. For accuracy test 2, we should run sequences with T=1000 if feasible, otherwise
the maximum feasible.

4. For the DenHaan–Marcet statistic, we should compute it according to the spec-
ification in the July 2004 document and be prepared to compute a “surprise”
specification just after the August conference.
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