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1 Introduction

This paper describes how to use perturbation methods to solve incom-
plete market models with exogenous borrowing constraints, as described
in "Problem C" of the JEDC Numerical Methods Comparison project (den
Haan, Judd, and Juillard, 2004). In particular, we solve an infinite agent
model with incomplete asset markets where agents trade risk-free one-period
bonds only. Agents face borrowing constraints that are exogenously given.
There are idiosyncratic shocks as well as aggregate shocks in the endowment
process, where both shocks have a continuous support.

Using a perturbation method to solve this model can be a challenge
because of the following three properties of the model. First, there is an
infinite number of agents in the model. Applying perturbation methods
to an infinite agent model demands a novel implementation of the solution
method. Second, the existence of exogenous borrowing constraints makes it
hard to use numerical methods associated with equality constraints. Third,
the incomplete market model is locally nonstationary by nature.

We overcome these problems as follows. First, in order to solve the
infinite-agent problem, we calculate the first order conditions of the repre-
sentative agent under exogenous asset price. We then derive the process of
asset price by using the market clearing condition (i.e., the sum of all asset
holdings is equal to zero). We use the linear approximation in the deriva-
tion of the analytic solution for asset price, since analytically tractable closed
form solution is not available for higher order approximations. Finally, we
complete the first order conditions of the representative agent in the infinite
agent model by using this linear asset price process.1 Since the analytic
solution is not available for this system, we numerically approximate the
model using the second-order perturbation method (quadratic approxima-
tion). For algorithms, we use Matlab code gensys2.m (Sims, 2001; Kim,
Kim, Schaumburg, and Sims, 2003).

In order to deal with hard borrowing constraints, we “soften” the bor-
rowing constraints by modifying utility function so that agents are penalized
when borrowing moves close to the “barrier” set by the exogenous bound.2

With this modified utility function, we can convert an optimization prob-
lem with inequality constraints (due to hard borrowing constraints) into an
optimization problem with only equality constraints, which allows us to use

1This is similar in spirit to the idea of bounded rationality, under which only some
moments of variables are considered as in Krusell and Smith (1998).

2This method is called "barrier method." We thank Ken Judd for suggesting this
modification.
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standard numerical solution methods.3 When applying perturbation method
to this model, we use a specific perturbation variable for bond holding so
that borrowing limit is never hit in the optimal solution.4 Utility modifica-
tion has an additional positive feature that it makes the model stationary,
which allows us to derive unconditional moments of variables.

The simulation results suggest the second moments and impulse re-
sponses of the model match the standard characteristics of the incomplete
market models in international macroeconomics.5 Accuracy tests based on
Euler equation errors suggest that approximation errors increase with tighter
borrowing constraint and that quadratic approximation generates smaller
errors than linear approximation.

The remaining sections consist of the following. In section 2, we intro-
duce the model and explain how we apply barrier methods to incorporate
the borrowing constraints. Section 3 discusses the linearized and quadratic
solutions. In section 4, we evaluate the performance of the perturbation so-
lution in three categories. First, we derive impulse responses when aggregate
and idiosyncratic shocks hit the economy. Then, we check the properties of
the model by deriving second moments of key variables including wealth dis-
tribution. Finally, for accuracy test, we compare Euler equation errors from
linear and quadratic solutions under difference parameter values. Section 5
concludes the paper.

2 Model

We first present the original model with inequality constraints and then
modify the utility function of the model to replace the inequality constraints
with equality constraints.

3Several papers have studied models with borrowing constraints. Some examples with
exogenous bound are Huggett (1993), Levine and Zame (2002), and Kubler and Schmed-
ders (2001). Alternatively, others solve the models with endogenously derived bounds on
asset holdings, e.g. endogenous solvency constraints as in Alvarez and Jermann (2000)
and enforcement constraints as in Kehoe and Perri (2002).

4This is analogous to the way that nonnegativity constraint of consumption is incor-
porated in macro models by approximating the model with respect to log consumption,
which guarantees that optimal solution for consumption never takes a negative value.

5For example, see Mendoza (1991), Baxter and Crucini (1995), Kollmann (1996, 1998),
and Kim, Kim and Levin (2003).
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2.1 The Original Model

Each agent i maximizes

max
∞X
t=0

βt
¡
cit
¢1−γ − 1
1− γ

(1)

subject to

cit + qtb
i
t = yitat + bit−1. (2)

bit ≥ −b̄ (3)

where yit is the idiosyncratic shock, at is the aggregate shock that is same
for each agent, and b̄ is the maximum amount that agent i can borrow.

The first-order conditions for each agent i can be described as the two-
part Kuhn-Tucker conditions;

qt
¡
cit
¢−γ ≥ βEt

¡
cit+1

¢−γ
, (4)¡

bit+1 + b̄
¢ ³

qt
¡
cit
¢−γ − βEt

¡
cit+1

¢−γ´
= 0, (5)

Equilibrium requires the world resource constraint that the sum of bond
holdings over all agents is equal to zero.

∞X
i=1

bit = 0. (6)

The driving processes for idiosyncratic and aggregate shocks are

log(yit) =
−0.5(1− ρy)σ

2
y

(1− ρ2y)
+ ρy log(y

i
t−1) + σyey,t, (7)

log(at) =
−0.5(1− ρa)σ

2
a

(1− ρ2a)
+ ρa log(at−1) + σaea,t, (8)

where ey,t and ea,t are i.i.d. random variables with a standard Normal
distribution.

2.2 A Modified Model

We incorporate borrowing constraint into optimization problem with equal-
ity constraints by modifying utility function as follows: Agents are penal-
ized when they borrow or lend from others. The key assumption is that
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the penalty diverges to infinity as their borrowing approaches the borrowing
limit. In particular, we use the following utility function,

U(cit, b
i
t) =

¡
cit
¢1−γ − 1
1− γ

+ ζb̄
£
b̄ log

¡
bit + b̄

¢− bit
¤

(9)

The second term in the utility function represents the barrier function and
we choose a specific (and rather complicated) form in order to have its first
derivative implies the steady state being independent of ζ. Due to the term£
log
¡
bit + b̄

¢¤
in the utility function, disutility from borrowing significantly

increases when agents borrow too much and bit goes towards −b̄. Therefore,
optimal solution for the borrowing would not exceed this limit. By adjust-
ing the value of ζ, we can adjust how much weight the agents impose on
borrowing constraints.6 In actual simulations, we choose the value of ζ that
minimizes the approximation errors.7

Each agent maximizes the discounted sum of this modified utility func-
tion subject to the original budget constraint (2). That is, we convert an
optimization problem with inequality constraints into an optimization prob-
lem with equality constraints. Euler equation for each agent i becomes

qt
¡
cit
¢−γ

= βEt
¡
cit+1

¢−γ − ζ

µ
bitb̄

bit + b̄

¶
(10)

A by-product of the utility modification method is that the model be-
comes stationary and the steady state bond holdings can be uniquely de-
termined (zero in this model). Another popular way to make the model
stationary is to adopt bond holding costs.8 The process of achieving sta-
tionarity through modification of utility function works exactly the same
way as the bond holding cost does. The simulation results (which are not
reported in this paper) confirm that both methods produce similar results
for impulse responses and second moments.

6The solution of this modified model converges to that of the original model as ζ → 0.
This is an application of barrier methods, which are a practical way of solving constrained
optimization problems. Penalty methods–which attributes penalty outside the domain
of the problem–are also widely used. See Judd (1998) and Luenberger (1973) for more
on these two methods.

7Definition of approximation errors and their calculation methods are explained later
in this paper.

8See Kim and Kose (2003) and Schmitt-Grohe and Uribe (2003) for this and alternative
methods to make incomplete market models stationary.
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3 Solution

In order to solve the infinite agent model, we first solve the representative
agent model given exogenous asset price qt. Then, we derive the solution for
asset price by using the market clearing condition (6). Note that we use
linear approximation to derive asset price. Using this asset price process,
we can complete the first order conditions for the representative agent.

We derive approximate solutions of the modified model by using a per-
turbation method. To guarantee the variables stay within the sensible range,
we use the following variables for perturbation:

ĉit = log cit,

ât = log at,

ŷit = log yit,

q̂t = log

µ
qt
β

¶
,

b̂it = b̄ log

µ
bit + b̄

b̄

¶
.

The last transformation implies that bit cannot move below the exogenous
bound.9

3.1 Linear Asset Pricing Rule

In this section, we derive the closed-form first-order conditions of the model
using linear approximation. We solve the linearized model using eigenvalue
decomposition. The linearized version of the first order conditions (budget
constraint and Euler equation) for each agent i can be expressed in the
following linear system (assuming qt is exogenously given),·

1 β
γ 0

¸ ·
ĉit
b̂it

¸
=

·
0 1
γ −ζ

¸ ·
ĉit−1
b̂it−1

¸
+

·
ŷit + ât
−q̂t−1

¸
. (11)

9This transformation satisfies three satisfactory properties of the transformation b̂it =
f
¡
bit
¢
. They are f (0) = 0, f 0 (0) = 1, and f 00 (0) = − 1

b̄
.
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It is straightforward to show, as in the Appendix, that the solution for agent
i is

b̂it
λ

= b̂it−1 + ŷit + ât −
∞X
s=0

βsEt

·
(1− β)

¡
ŷit+s+1 + ât+s+1

¢
+

q̂t+s
γ

¸
,(12)

ĉit
λ

=

µ
1− λβ +

ζ

γ

¶³
b̂it−1 + ŷit + ât

´
+

∞X
s=0

βs+1Et

·
(1− β)

¡
ŷit+s+1 + ât+s+1

¢
+

q̂t+s
γ

¸
, (13)

where

λ =
1

2

·¡
1 + β−1 + β−1γ−1ζ

¢−q¡1 + β−1 + β−1γ−1ζ
¢2 − 4β−1¸ .

The next step is to derive the solution for asset price using the linearized
first order condition (12) and the market clearing condition (6).10 Then, we
have:

0 = 0 + ât −
∞X
s=0

βsEt

·
(1− β) ât+s+1 +

q̂t+s
γ

¸
(14)

whose solution is

q̂t = γ [ât − Et (ât+1)] = γ (1− ρa) ât. (15)

We use this linear asset price process to complete the representative
agent solution in the infinite agent model. Plugging (15) into (12) and (13),
we have the following equilibrium solutions:

b̂it
λ

= b̂it−1 + ŷit − (1− β)
∞X
s=0

βsEt
¡
ŷit+s+1

¢
, (16)

ĉit
λ

=

µ
1− λβ +

ζ

γ

¶³
b̂it−1 + ŷit + ât

´
+(1− β)

∞X
s=0

βs+1Et
¡
ŷit+s+1

¢
+ βât, (17)

10Second order approximation of q̂t involves double summation of quadratic and cross
product terms and therefore is not analytically tractable.

7



Using the AR(1) shock processes in (7) and (8), we can derive the linearized
closed-form solutions for b̂it and ĉit:

b̂it
λ

= b̂it−1 +
µ
1− ρy
1− βρy

¶
ŷit, (18)

ĉit
λ

=

µ
1− λβ +

ζ

γ

¶
b̂it−1 +

µ
1− β

1− βρy

¶
ŷit + ât. (19)

3.2 Quadratic Solution

Using the linear asset pricing rule derived in the previous section, we can
complete the equation system for the representative agent in the infinite
agent model using quadratic approximation;

0 = b̂it−1 + ŷit + âit −
¡
ĉit
¢2
2
− βq̂tb̂

i
t +¡

ŷit
¢2
2

+

¡
âit
¢2
2
− ĉit − βb̂it, (20)

0 = q̂t +
(q̂t)

2

2
− γĉit +

γ2
¡
ĉit
¢2

2
− γĉitq̂t

−Et
"
−γĉit+1 +

γ2
¡
ĉit+1

¢2
2

#
+ ζb̂it −

³
b̂it

´2
b̄

, (21)

ŷt =
−0.5(1− ρy)σ

2
y

(1− ρ2y)
+ ρyŷt−1 + σyey,t, (22)

ât =
−0.5(1− ρa)σ

2
a

(1− ρ2a)
+ ρaât−1 + σaea,t (23)

q̂t = γ (1− ρa) ât. (24)

Since this system of equations cannot be solved analytically, we use nu-
merical approximations for quadratic solutions. We solve the five equation
system above using Matlab algorithm gensys2.m. In actual simulations, we
use the "pruning" algorithm to avoid accumulation of high-order terms that
can make the model unstable (Kim, Kim, Schaumburg, and Sims 2003).
This pruning algorithm always produces stationary second-order accurate
dynamics whenever the first-order dynamics are stable.
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4 Model Performance

Parameter values that we use for simulation are summarized in the following
table. The size of the idiosyncratic shock is estimated from the PSID data
and quite large (σy = 0.21) compared to that is used in macro models
(normally around 0.01). Implication of shock volatility on accuracy of the
approximate solution is discussed later in this paper.

Parameter Values
β 0.965
γ 1, 5
b̄ 0.2, 1
ρy 0.49
ρa 0.91
σy 0.21
σa 0.01
ζ various values

4.1 Policy function

One advantage of the gensys2.m algorithm is that one does not have to
distinguish state and control variables in solving the model. In particu-
lar, this "state-free" approach becomes useful when one solves complicated
models with a large number of state variables. When one wants to have
decomposition into traditional state and control variables (for example, de-
riving so-called policy function), gensys2.m does not readily provide this
decomposition but one can achieve this decomposition using another Mat-
lab algorithm called gstate.m.11

In this section, we report policy functions in the case with b̄ = 1, γ = 1,
and ζ = 0.05. Note that we choose the value of ζ that minimizes average
approximation errors. In this case, the policy function for bond holdings

11See Kim, Kim, Schaumburg and Sims (2003) for details. All algorithms are publicly
available at http://sims.princeton.edu/yftp/gensys2.
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and consumption are

bt = 0.0032 + 0.8089bt−1 + 0.3274yt−1
+0.6681eyt + 0.4242 (eyteat) + 0.1832e

2
yt

+0.044y2t−1 + 0.1059b
2
t−1 − 0.2397 (yt−1bt−1)− 0.1983 (at−1bt−1)

+0.1891 (yt−1at−1) + 0.2079 (yt−1eat)− 0.2179 (bt−1eat)
+0.1795 (yt−1eyt)− 0.4892 (bt−1eyt) + 0.3860 (at−1eyt) , (25)

ct = −0.0004 + 0.2712bt + 0.0853yt−1 + 0.91at−1
+0.1741eyt + eat + 0.0791 (eyteat) + 0.0108e

2
yt

+0.0026y2t−1 + 0.0449b
2
t − 0.0262 (yt−1bt)− 0.0228 (at−1bt)

+0.0353 (yt−1at−1) + 0.0388 (yt−1eat)− 0.025 (bteat)
+0.0106 (yt−1eyt)− 0.0534 (bteyt) + 0.0720 (at−1eyt) . (26)

4.2 Impulse responses

In this section, we report impulse responses of key variables to various shocks
to the economy. We assume that the economy starts from the deterministic
steady state (bond holdings of the representative agent at the steady state
are set to zero).

4.2.1 Aggregate shock

In tables 1 and 2, we report impulse responses of consumption, bond holding
and bond price (qt) to one standard deviation shock (positive and negative)
to aggregate and idiosyncratic endowments. We compare solutions of linear
and quadratic approximations. We experiment with three values for ζ (0,
0.001 and 0.1), two values for γ (1 and 5), and two values of b̄ (0.2 and 1).

Table 1 presents the impulse responses to positive and negative aggregate
shocks (1 percent) to endowment at. Since all agents receive same shocks,
there is no bond trading and the economy simply behaves like autarky.
Impulse responses reflect this behavior and show that bond holdings stay
at zero all the time. Both linear and quadratic approximations produce
exactly the same results because asset pricing rule is linear (the quadratic
approximation of a linear function is still linear) and consumption is a linear
function of asset price. Since bond holdings stay at zero, consumption moves
exactly same as output (as in autarky). Asset price increases with positive
shocks because increased endowment creates excess supply that pushes in-
terest rate down (asset price up). Note that asset price is a positive function
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of aggregate endowment as shown in equation (15). The table also shows
that changes in γ affects bond prices only: qt becomes more sensitive to
endowment shocks when γ increases. Since bond holdings do not change,
the model produce the same impulse responses irrespective of the values of
parameters ζ and b̄.

4.2.2 Idiosyncratic shock

Table 2 presents the impulse responses to positive and negative shocks to
idiosyncratic components of endowment yt. The first panel in table 2 reports
the case of a positive shock; individual endowment increases by 21 percent
in the first period and eventually dies out in 30 periods with persistence
parameter of 0.49. Since asset price qt is a function of aggregate shock only,
qt does not respond to the idiosyncratic shock.

Results show that impulse responses present the standard characteristics
of typical incomplete markets models as shown in Kollmann (1996, 1998)
and Kim,Kim and Levin (2003). With a positive shock, agents save a part of
increased income by accumulating bonds over time. When ζ = 0 (no utility
modification), there is a permanent effect of temporary shock on consump-
tion (nonstationary property of the incomplete market model). However,
with positive ζ, both consumption and bond holding processes are station-
ary by reacting more to shocks at the initial period and eventually moving
back to the original steady state. Changing the value of γ affects the impulse
responses when ζ is positive but there is no effect when when ζ = 0. We ob-
serve more consumption smoothing with higher γ. Comparison of the linear
and quadratic solutions shows that linear approximation underestimates the
responses of consumption compared to the quadratic approximation. As ζ
increases, differences between linear and quadratic solutions increase.

The second panel in table 2 presents the case with a negative shock.
With a negative shock, agents borrow (minus bt) to smooth out consump-
tion over time. In the case of a linear solution, the response of consumption
is exactly the opposite to that of the positive shock case. However, the ex-
istence of borrowing limits affects optimal behavior of bond holdings. The
absolute amount of borrowing when agents face negative shock is less than
the absolute amount of bond accumulation when agents face the same mag-
nitude of positive shock. For example, with positive shock (γ = 1, ζ = 0),
bond holdings increase by 22% at impact, while with the same magnitude
of negative shock, agents’ borrowings increase only by 18%. This phenom-
enon becomes more significant when borrowing limit (b̄) is decreased to 0.2.
Panel 3 of table 2 shows how bond holdings react when b̄ = 0.2 compared
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to the case when b̄ = 1. With the same size of negative shock, agents do
not borrow as much as in the case when b̄ = 1. For example, borrowing in
the first period becomes only 13% instead of 18% when b̄ decreases from 1
to 0.2 (with γ = 1, ζ = 0). Consumption process remains unchanged with
changes in b̄.

4.3 Moments

In this section, we report main properties of simulated time series of variables
when both aggregate and idiosyncratic shocks hit the economy. All the
statistics are based on 500 simulations where each simulation lasts for 100
periods. Since the moments are sensitive to some parameter values, we
experiment with three values for ζ (0.1, 0.001 and 10−10), two values of γ
(1 and 5), and two values of b̄ (1 and 0.2).12 Actual shocks are generated
by random number generator in Matlab with the characteristics reported in
the model parameter table. We report correlation between consumption and
endowment shocks (aggregate and idiosyncratic), and between consumption
and bond holdings. We also report standard deviation and autocorrelation
parameters (up to three lags) of consumption, bond holdings and asset price.
We report statistics generated by linear and quadratic solutions.

As in the previous section, the statistics are consistent with standard
properties of incomplete market models. Consumption is procyclical and
less volatile than output (standard deviations of aggregate and idiosyncratic
shocks are 0.01 and 0.21, respectively). Standard deviation of consumption
is around 5% ∼ 15% depending mostly on the value of ζ. When ζ increases,
consumption volatility increases because consumption moves more similarly
to the changes in output (less degree of consumption smoothing). Correla-
tion between consumption and output shocks are positive around 0.2 ∼ 0.8,
depending on the parameter values of γ and ζ. Consumption and bond hold-
ings are also positively correlated. As ζ increases, consumption correlation
with idiosyncratic shock and bond holdings increase because of less amount
of consumption smoothing. When ζ is low, consumption process becomes
near nonstationary while output process remains stationary, which lowers
correlation between consumption and idiosyncratic shock. On the other
hand, correlation between consumption and aggregate shock decreases as ζ
increases. Both consumption and bond holding processes are quite persistent
with autocorrelation parameter with lag 1 are around 0.7 ∼ 0.9. Changes in
b̄ does not affect consumption process but they affect bond holdings. Bond

12We so not use zero for ζ because when ζ is zero, second moments are not well defined
due to nonstationarity.
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holdings become less persistent and less correlated with consumption with
tighter borrowing constraint (low b̄).

Bond price qt is quite persistent with autocorrelation parameter is above
0.85 with lag 1. Process of qt does not depend on any parameters (ζ nor b̄)
except that the volatility of bond price is affected by γ; when γ increases
from 1 to 5, standard deviation of qt decreases to a half. Comparing linear
and quadratic solutions reveal that both solutions produce similar statistics
except that linear solution slightly underestimates consumption volatility.
Since bond price qt is a linear process, both linear and quadratic solutions
produce same statistics for qt.

4.4 Wealth distribution

In this section, we analyze wealth distribution predicted by the model using
simulated series of bond holdings. We simulate the economy 1000 times with
100 periods in each simulation. We experiment with two values of b̄ (0.2 and
1) while γ = 1 and ζ = 0.001.13 We report the results from quadratic solution
for this exercise. All simulations start from the deterministic steady state
with zero bond holdings.

Since we incorporate borrowing constraint in the way that the constraints
never bind, bond holdings never hit the limit. However, bond holdings can
get very close to the limit. We derive the fraction of times that agents
are constrained by borrowing limits by approximating how often bt moves
close to the borrowing limit. Table 4 reports the results. When b̄ is 1, bond
holdings move within 10−5 of borrowing limit (it is -0.99999) only less than
1% of times. About 44% of times, agents end up in a borrowing situation.
In 0.02% of times, agents accumulate bond holdings over 10, which means
that agents’ net assets become ten times more than the steady state level of
consumption..

However, with a tighter borrowing constraint b̄ = 0.2, agents hit the
borrowing constraint around 50% of times (when using the same definition
of 10−5 range). Wealth distribution has a thicker right tail when b̄ = 0.2 as
agents accumulate bonds over 10 in about 8% of times.

13Wealth distribution is quite sensitive to the value of ζ. With a higher value of ζ,the
model becomes more stationary. Therefore, wealth distribution would be more concen-
trated around the steady state and agents would hit the borrowing limit less frequently.
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4.5 Accuracy Tests

We evaluate the accuracy of linear and quadratic solutions using Euler equa-
tion errors. In order to deal with the possible accumulation of Euler equa-
tion errors, we proceed as follows. First, we simulate the model economy
for 50 times with 500 period for each simulation and calculate the consump-
tion process using numerical solution. Second, with the same realization
of shocks, we derive another consumption series calculated explicitly from
the Euler equation. In particular, we take conditional expectation of ct+1
in Euler equation at time t using two-dimensional Gauss-Hermite quadra-
ture with ten nodes.14 Finally, we calculate approximation errors defined as
percentage differences of this consumption series from the actual consump-
tion series from our numerical solution. Since the original utility function
does not contain penalty terms, it would be appropriate to use the original
Euler equation without utility modification when calculating approximation
errors.

Table 5 reports mean and maximum absolute approximation errors. Er-
rors are expressed as percentage of steady state consumption. We report
errors in selected periods [10, 20, 50, 100, 200, 500] in order to detect pos-
sible accumulation of errors. We experiment with two values for borrowing
limit b̄ (0.2 and 1). The value of ζ is set to minimize approximation errors
for each solution method and each set of parameter values.

The first panel is the case when b̄ = 1. Average approximation errors are
minimized when ζ = 0.05. Euler equation errors are between 1.3% and 1.8%
of steady state consumption in both linear and quadratic approximations.
The quadratic solution generates noticeably smaller average approximation
errors than the linear solution. With b̄ = 0.2, approximation errors increase
to 4 ∼ 5.5 percent of steady state consumption. With tighter borrowing
constraints (that is, smaller b̄), the relative performance of quadratic ap-
proximation over linear approximation improves. The average approxima-
tion errors of quadratic solution are as much as one percentage point smaller
than those of linear solution, while the difference was between 0.2 ∼ 0.5%
with b̄ = 1. The superiority of quadratic solution over linear solution be-
comes more apparent in maximum approximation errors; maximum errors
in quadratic solution is less than the half of maximum errors of the linear
solution at 200th and 500th periods.

Accuracy of perturbation method is directly related to the volatility of
underlying shocks of the economy. The current specification of the model

14See Judd (1998) for details. Note that numerical solution is still used to calculate the
outcome of the variables (bond holdings) inside the conditional expectation.
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uses highly volatile idiosyncratic shocks (standard deviation of 21%). If we
lower the shock variance, then the approximation errors would significantly
go down. In fact, we experimented with a smaller idiosyncratic shock with
σy = 0.021 (one tenth of the original σ). Approximation errors decrease to
around 0.1% which is a more-than-proportional improvement compared to
the original case (errors were round 1.3 ∼ 1.8% when σy = 0.21).

5 Conclusion

This paper explains how to use a perturbation method to solve an incom-
plete market model. Traditionally, perturbation method has not been used
to solve this type of model because perturbation method is a local approx-
imation and deals mostly with equality constraints. We adopt the barrier
method to convert the maximization problem with inequality constraints
into an equality constraint problem. Simulation results show that the per-
turbation solution generates quite reasonable results in terms of second
moments and impulse responses. Accuracy of the solution is in a reason-
able range. Considering the computation time and the easiness of applying
the solution, perturbation methods deserve some consideration compared to
other computationally intensive projection solution methods.
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A Derivation of the Linear Solution

The linearized version of the first order conditions (budget constraint and
Euler equation) for each agent (country) i can be expressed in the following
linear system (expectation operator is omitted for convenience),·

1 β
γ 0

¸ ·
ĉit
b̂it

¸
=

·
0 1
γ −ζ

¸ ·
ĉit−1
b̂it−1

¸
+

·
ŷit + ât
−q̂t−1

¸
.

Since ·
1 β
γ 0

¸−1
=

"
0 1

γ
1
β − 1

βγ

#
the system becomes·

ĉit
b̂it

¸
=

"
0 1

γ
1
β − 1

βγ

#·
0 1
γ −ζ

¸ ·
ĉit−1
b̂it−1

¸
+

"
0 1

γ
1
β − 1

βγ

#·
ŷit + ât
−q̂t−1

¸

=

"
1 − ζ

γ

− 1β 1
β

³
1 + ζ

γ

´ #· ĉit−1
b̂it−1

¸
+

" − q̂t−1
γ

1
β

³
ŷit + ât +

q̂t−1
γ

´ #

Based on the Jordan decomposition"
1 − ζ

γ

− 1β 1
β

³
1 + ζ

γ

´ #

=

" ³
∆+ ζ

γ

´
− β
1−β

ζ
γ

1 ∆
(1−β)λ

#·
λ 0
0 1

λβ

¸
∆

∆2+ ζ
γ

βλ ζ
γ

∆2+ ζ
γ

− (1−β)λ
∆2+ ζ

γ

³
∆+ ζ

γ

´
(1−β)λ

∆2+ ζ
γ


where

λ =
1

2

·¡
1 + β−1 + β−1γ−1ζ

¢−q¡1 + β−1 + β−1γ−1ζ
¢2 − 4β−1¸ ,

∆ = 1− λβ
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we convert the system·
ĉit
b̂it

¸

=

" ³
∆+ ζ

γ

´
− β
1−β

ζ
γ

1 ∆
(1−β)λ

#·
λ 0
0 1

λβ

¸
∆

∆2+ ζ
γ

βλ ζ
γ

∆2+ ζ
γ

− (1−β)λ
∆2+ ζ

γ

³
∆+ ζ

γ

´
(1−β)λ

∆2+ ζ
γ

 · ĉit−1
b̂it−1

¸

+

" − q̂t−1
γ

1
β

³
ŷit + ât +

q̂t−1
γ

´ #
that is 

∆

∆2+ ζ
γ

βλ ζ
γ

∆2+ ζ
γ

− (1−β)λ
∆2+ ζ

γ

³
∆+ ζ

γ

´
(1−β)λ

∆2+ ζ
γ

 · ĉit
b̂it

¸

=

·
1 0
0 1

β

¸
∆

∆2+ ζ
γ

βλ ζ
γ

∆2+ ζ
γ

− (1−β)λ
∆2+ ζ

γ

³
∆+ ζ

γ

´
(1−β)λ

∆2+ ζ
γ

 · ĉit−1
b̂it−1

¸

+


∆

∆2+ ζ
γ

βλ ζ
γ

∆2+ ζ
γ

− (1−β)λ
∆2+ ζ

γ

³
∆+ ζ

γ

´
(1−β)λ

∆2+ ζ
γ


" − q̂t−1

γ
1
β

³
ŷit + ât +

q̂t−1
γ

´ #

To suppress the diverging eigenvalue, we should have

−ĉit+
µ
1− λβ +

ζ

γ

¶
b̂it = −

∞X
s=0

βsEt

·
q̂t+s
γ
+

µ
1− λβ +

ζ

γ

¶¡
ŷit+s+1 + ât+s+1

¢¸
.

Therefore, the solution for agent i given exogenous interest rate becomes

b̂it
λ

= b̂it−1 + ŷit + ât −
∞X
s=0

βsEt

·
(1− β)

¡
ŷit+s+1 + ât+s+1

¢
+

q̂t+s
γ

¸
ĉit
λ

=

µ
1− λβ +

ζ

γ

¶³
b̂it−1 + ŷit + ât

´
+

∞X
s=0

βs+1Et

·
(1− β)

¡
ŷit+s+1 + ât+s+1

¢
+

q̂t+s
γ

¸
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    Table 1. Impulse responses to aggregate shock

    γ=1 (ζ=0, 0.001, 0.1 and bbar=0.2, 1)
positive shock (1%) negative shock (-1%)

period c_{t} b_{t} q_{t} c_{t} b_{t} q_{t}
1 0.01 0 0.0009 -0.01 0 -0.0009
2 0.0091 0 0.0008 -0.0091 0 -0.0008
3 0.0083 0 0.0007 -0.0083 0 -0.0007
10 0.0043 0 0.0004 -0.0043 0 -0.0004
30 0.0007 0 0.0001 -0.0007 0 -0.0001
    

    γ=5 (ζ=0, 0.001, 0.1 and bbar=0.2, 1)
positive shock (1%) negative shock (-1%)

period c_{t} b_{t} q_{t} c_{t} b_{t} q_{t}
1 0.01 0 0.0045 -0.01 0 -0.0045
2 0.0091 0 0.0041 -0.0091 0 -0.0041
3 0.0083 0 0.0037 -0.0083 0 -0.0037
10 0.0043 0 0.0019 -0.0043 0 -0.0019
30 0.0007 0 0.0003 -0.0007 0 -0.0003



    Table 2. Impulse responses to idiosyncratic shock (one standard deviation)

    Positive shock (21%) with bbar=1 
y_{t} c_{t} b_{t} q_{t}

linear quad linear quad
(γ=1,ζ=0)

1 0.21 0.0139 0.0149 0.2253 0.2267 0
2 0.1029 0.0139 0.0149 0.3535 0.3284 0
3 0.0504 0.0139 0.0149 0.4212 0.3744 0
10 0.0003 0.0139 0.0149 0.4889 0.4156 0
30 0 0.0139 0.0149 0.4894 0.4158 0

(γ=1,ζ=0.001)
1 0.21 0.0209 0.0209 0.2165 0.2206 0
2 0.1029 0.0207 0.0207 0.3341 0.317 0
3 0.0504 0.0204 0.0205 0.3907 0.3582 0
10 0.0003 0.0179 0.0186 0.3896 0.3637 0
30 0 0.0124 0.0138 0.2567 0.27 0

(γ=1,ζ=0.1)
1 0.21 0.0932 0.0968 0.1286 0.137 0
2 0.1029 0.0807 0.0832 0.1599 0.1644 0
3 0.0504 0.0653 0.0674 0.1483 0.1515 0
10 0.0003 0.009 0.0096 0.0229 0.0245 0
30 0 0 0 0.0001 0.0001 0

(γ=5,ζ=0.001)
1 0.21 0.0159 0.0164 0.2229 0.2252 0
2 0.1029 0.0158 0.0164 0.3482 0.3255 0
3 0.0504 0.0157 0.0163 0.4127 0.3703 0
10 0.0003 0.0152 0.0159 0.4595 0.4027 0
30 0 0.0138 0.0148 0.4092 0.3776 0

(γ=5,ζ=0.1)
1 0.21 0.0544 0.0579 0.175 0.1805 0
2 0.1029 0.051 0.0538 0.2471 0.2411 0
3 0.0504 0.0465 0.0487 0.2623 0.251 0
10 0.0003 0.0197 0.0208 0.1211 0.1224 0
30 0 0.0017 0.0018 0.01 0.0107 0

    



    Negative shock (-21%) with bbar=1 
y_{t} c_{t} b_{t} q_{t}

linear quad linear quad
(γ=1,ζ=0)

1 -0.21 -0.0139 -0.013 -0.1839 -0.1829 0
2 -0.1029 -0.0139 -0.013 -0.2612 -0.2749 0
3 -0.0504 -0.0139 -0.013 -0.2964 -0.3195 0
10 -0.0003 -0.0139 -0.013 -0.3284 -0.3615 0
30 0 -0.0139 -0.013 -0.3286 -0.3617 0

(γ=1,ζ=0.001)
1 -0.21 -0.0209 -0.0209 -0.1779 -0.1751 0
2 -0.1029 -0.0207 -0.0207 -0.2504 -0.26 0
3 -0.0504 -0.0204 -0.0203 -0.2809 -0.2977 0
10 -0.0003 -0.0179 -0.0173 -0.2803 -0.2937 0
30 0 -0.0124 -0.0111 -0.2043 -0.1959 0

(γ=1,ζ=0.1)
1 -0.21 -0.0932 -0.0897 -0.114 -0.1074 0
2 -0.1029 -0.0807 -0.0783 -0.1379 -0.1346 0
3 -0.0504 -0.0653 -0.0633 -0.1292 -0.1268 0
10 -0.0003 -0.009 -0.0083 -0.0224 -0.0208 0
30 0 0 0 -0.0001 -0.0001 0

(γ=5,ζ=0.001)
1 -0.21 -0.0159 -0.0153 -0.1822 -0.1807 0
2 -0.1029 -0.0158 -0.0152 -0.2582 -0.2707 0
3 -0.0504 -0.0157 -0.0152 -0.2921 -0.3134 0
10 -0.0003 -0.0152 -0.0145 -0.3149 -0.3415 0
30 0 -0.0138 -0.0128 -0.2904 -0.3063 0

(γ=5,ζ=0.1)
1 -0.21 -0.0544 -0.0509 -0.1489 -0.1449 0
2 -0.1029 -0.051 -0.0483 -0.1982 -0.202 0
3 -0.0504 -0.0465 -0.0442 -0.2078 -0.2149 0
10 -0.0003 -0.0197 -0.0186 -0.108 -0.107 0
30 0 -0.0017 -0.0016 -0.0099 -0.0093 0



    Changes in b_{t} when bbar=0.2
    (only b_{t} changes when bbar changes)

b_{t} (positive shock) b_{t} (negative shock)
linear quad linear quad

(γ=1,ζ=0)
1 0.3523 0.1677 -0.1276 -0.1518
2 0.7086 0.1308 -0.156 -0.184
3 0.9596 0.0851 -0.1655 -0.1915
10 1.2635 0.0331 -0.1727 -0.1956
30 1.2658 0.0327 -0.1727 -0.1957

(γ=1,ζ=0.001)
1 0.3328 0.1805 -0.1249 -0.1464
2 0.6451 0.1669 -0.1527 -0.1795
3 0.8403 0.1411 -0.1616 -0.1874
10 0.8361 0.2153 -0.1614 -0.1845
30 0.427 0.4163 -0.1362 -0.1373

(γ=1,ζ=0.1)
1 0.1662 0.1534 -0.0908 -0.0946
2 0.22 0.19 -0.1048 -0.1115
3 0.1994 0.188 -0.0998 -0.1027
10 0.024 0.0338 -0.0214 -0.0136
30 0.0001 0.0001 -0.0001 0

(γ=5,ζ=0.001)
1 0.3469 0.1727 -0.1269 -0.1502
2 0.6907 0.1435 -0.1551 -0.1827
3 0.9253 0.1038 -0.1645 -0.1904
10 1.1247 0.0929 -0.1698 -0.1933
30 0.9115 0.2138 -0.164 -0.1866

(γ=5,ζ=0.1)
1 0.2479 0.1809 -0.1107 -0.1241
2 0.4034 0.217 -0.1337 -0.1542
3 0.441 0.2327 -0.1376 -0.1579
10 0.1542 0.1901 -0.0871 -0.0756
30 0.0103 0.0166 -0.0098 -0.004

    



Table 3. Moments

bbar 1 0.2
γ 1 5 1 5
ζ 10^(-10) 0.001 0.1 10^(-10) 0.001 0.1 10^(-10) 0.001 0.1 10^(-10) 0.001 0.1

linear
corr(C,A) 0.3437 0.2951 0.1421 0.3437 0.3302 0.1867 0.3437 0.2951 0.1421 0.3437 0.3302 0.1867
corr(C,Y) 0.2241 0.373 0.8531 0.2241 0.2707 0.69 0.2241 0.373 0.8531 0.2241 0.2707 0.69
corr(C,B) 0.7588 0.8214 0.9578 0.7588 0.781 0.9251 0.4156 0.4637 0.7861 0.4156 0.4327 0.6148

s.d.(C) 0.0579 0.0665 0.1558 0.0579 0.0595 0.1141 0.0579 0.0665 0.1558 0.0579 0.0595 0.1141
autocorr(C)-1 0.9184 0.9076 0.7712 0.9184 0.9152 0.8518 0.9184 0.9076 0.7712 0.9184 0.9152 0.8518

-2 0.8434 0.8217 0.5661 0.8434 0.8371 0.7126 0.8434 0.8217 0.5661 0.8434 0.8371 0.7126
-3 0.7735 0.742 0.4013 0.7735 0.7643 0.5889 0.7735 0.742 0.4013 0.7735 0.7643 0.5889

autocorr(B)-1 0.9261 0.9323 0.8681 0.9261 0.9294 0.9164 0.6543 0.6807 0.7561 0.6543 0.6666 0.728
-2 0.8279 0.8322 0.6726 0.8279 0.8313 0.7829 0.3843 0.4063 0.4865 0.3843 0.3935 0.4505
-3 0.7287 0.728 0.4876 0.7287 0.7308 0.6447 0.2296 0.2418 0.2948 0.2296 0.2358 0.2716

mean(q) 0.9651 0.9651 0.9651 0.9654 0.9654 0.9654 0.9651 0.9651 0.9651 0.9654 0.9654 0.9654
s.d.(q) 0.0018 0.0018 0.0018 0.009 0.009 0.009 0.0018 0.0018 0.0018 0.009 0.009 0.009

autocorr(q)-1 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567
-2 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327
-3 0.6231 0.6231 0.6231 0.623 0.623 0.623 0.6231 0.6231 0.6231 0.623 0.623 0.623

quad
corr(C,A) 0.3215 0.2876 0.1417 0.3329 0.3169 0.1858 0.3215 0.2876 0.1417 0.3329 0.3169 0.1858
corr(C,Y) 0.2149 0.3702 0.8592 0.2104 0.2577 0.6958 0.2149 0.3702 0.8592 0.2104 0.2577 0.6958
corr(C,B) 0.3555 0.5039 0.961 0.3395 0.3843 0.9287 0.0834 0.1022 0.5935 0.073 0.0802 0.2812

s.d.(C) 0.0676 0.0717 0.1586 0.069 0.0677 0.1128 0.0676 0.0717 0.1586 0.069 0.0677 0.1128
autocorr(C)-1 0.9217 0.9083 0.7681 0.922 0.9186 0.8509 0.9217 0.9083 0.7681 0.922 0.9186 0.8509

-2 0.8498 0.8237 0.561 0.8503 0.8437 0.7105 0.8498 0.8237 0.561 0.8503 0.8437 0.7105
-3 0.7838 0.7455 0.3957 0.7844 0.7747 0.5857 0.7838 0.7455 0.3957 0.7844 0.7747 0.5857

autocorr(B)-1 0.9275 0.9357 0.8682 0.9275 0.9306 0.9196 0.5781 0.6376 0.7264 0.5786 0.6039 0.6895
-2 0.8312 0.8398 0.6734 0.831 0.8355 0.7898 0.3188 0.3822 0.4405 0.3172 0.3398 0.4119
-3 0.7368 0.7398 0.4892 0.7366 0.7413 0.6537 0.2073 0.254 0.2588 0.2058 0.2246 0.256

mean(q) 0.9651 0.9651 0.9651 0.9654 0.9654 0.9654 0.9651 0.9651 0.9651 0.9654 0.9654 0.9654
s.d.(q) 0.0018 0.0018 0.0018 0.009 0.009 0.009 0.0018 0.0018 0.0018 0.009 0.009 0.009

autocorr(q)-1 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567 0.8567
-2 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327 0.7327
-3 0.6231 0.6231 0.6231 0.623 0.623 0.623 0.6231 0.6231 0.6231 0.623 0.623 0.623



Table 4. Wealth Distribution

bbar=1 bbar=0.2
fraction fraction

within 10^(-6) 0.41% 46.52%
within 10^(-5) 0.83% 49.57%
within 10^(-4) 1.75% 53.20%
within 10^(-3) 3.60% 57.45%
within 10^(-2) 7.35% 62.65%
within 0.1 16.07% 69.71%
b<0 43.39% 72.72%
b<5 98.47% 89.36%
b<10 99.98% 91.94%

percentile b b
5% -0.997 -0.2
10% -0.9747 -0.2
90% 2.8933 5.9014
95% 2.8994 5.9749



Table 5. Accuracy tests (Euler equation errors)
(50 agents with 500 period each)

bbar=1 ζ=0.05
Linear Quad

period mean max mean max
10 1.66% 6.40% 1.70% 5.64%
20 1.64% 4.08% 1.63% 5.59%
30 1.81% 10.90% 1.66% 7.66%
50 1.28% 4.28% 1.38% 5.22%
100 1.87% 8.08% 1.29% 5.09%
200 1.64% 8.45% 1.35% 5.25%
500 1.82% 10.11% 1.57% 6.46%

bbar=0.2 ζ=0.5
Linear Quad

period mean max mean max
10 4.66% 20.42% 4.17% 13.55%
20 4.53% 15.00% 4.10% 11.36%
30 5.00% 19.62% 4.66% 16.21%
50 3.83% 11.18% 3.42% 7.35%
100 5.03% 18.41% 4.09% 12.03%
200 5.21% 28.38% 4.37% 14.73%
500 5.59% 40.98% 4.77% 19.15%




