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Abstract

We describe Smolyak’s algorithm to compute recursive solutions of dy-
namic economies with a sizeable number of state variables. We show how
powerful this method may be in applications by computing the nonlin-
ear recursive solution of an international real business cycle model with a
substantial number of countries, complete insurance markets and frictions
that impede frictionless international capital flows. In this economy the
aggregate state vector includes the distribution of world capital across
different countries as well as the exogenous country-specific technology
shocks. Models with up to 6 countries, and thus up to 12 continuous
state variables, can be computed efficiently with the proposed algorithm.
The greatest challenge to successfully implementing the algorithm is find-
ing appropriate bounds for the state variables.

1 Introduction

The stochastic neoclassical growth model has arguably been the most important
workhorse in modern macroeconomic analysis. Its open economy counterpart,
the international real business cycle model, has been fruitfully applied to study
the co-movement of output, investment, and consumption across countries and

∗This paper was prepared for the JEDC project on solving models with heterogeneous
agents. We thank Ken Judd for clarifying discussions about the scope and focus of this
paper and gratefully acknowledge financial support under NSF grant SES-0004376. The views
expressed in this paper are solely our own and should not be interpreted as reflecting those of
the Board of Governors or the staff of the Federal Reserve System.
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international capital flows between countries. See Backus et al. (1992) as an
important example of this literature and Backus et al. (1995) for an overview.

Apart from highly stylistic examples, international real business cycles can-
not be solved analytically, and one has to resort to numerical techniques to
compute the equilibrium of these models. Even the simplest version of the
model with two countries and country-specific, serially correlated technology
shocks requires at least three state variables in its recursive formulation. This
explains why most of the literature resorts to (log-)linearization of the equi-
librium or optimality conditions of a world social planner problem to solve for
equilibrium allocations. Since the true equilibrium is unknown, it is hard to
assess how accurate numerical approximations of the equilibrium are that rely
on these (log-)linear approximations.

In this paper we propose a projection method based on Smolyak’s algorithm
to compute globally accurate solutions to models characterized by a sizeable
number of continuous state variables, such as international real business cycle
models with a substantial number of countries. Our objectives are threefold:
first, we provide an easily accessible general description of our algorithm; second,
we show how powerful this method is by numerically solving an international
real business cycle model with many countries and international capital market
frictions; and third, we assess the quality of our approximations.

We find that our projection method performs quite well for a wide variety of
model specifications including models with up to 6 countries (i.e., 12 continuous
state variables), specifications that introduce a great deal of curvature into util-
ity and production functions, and models with asymmetries between countries.
Our method is also substantially more accurate than a linear approximation of
the solution, especially when the exogenous shocks to the economy are large.
The greatest challenge to using this method is finding bounds for the state vari-
ables which are not violated by the solution of the model. For international real
business cycle models, this is most difficult for asymmetric specifications with
a large number of countries.

The rest of the paper is organized as follows. Section 2 provides a general
description of our projection method, while section 3 describes the international
real business cycle model that we solve in this paper. Section 4 presents results,
accuracy tests, and running times. Section 5 concludes.

2 Description of the General Method

[Under Revision.]

3 An International Real Business Cycle Model

In this section, we demonstrate how powerful the method developed in the pre-
vious section is in solving models with a significant number of continuous state
variables. We will solve for the nonlinear solution of an international real busi-
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ness cycle model with N countries. We will confine ourselves to economies in
which equilibria are Pareto optimal, so they can be solved by solving an appro-
priately defined social planner’s problem. In addition, we allow for frictions to
international capital flows due to adjustment costs but require that these costs
leave the optimal decision rules smooth.

3.1 Description of the Model

We consider a world composed of N countries that are subject to technology
shocks which contain a country-specific and a common component. Changes in
a country’s capital stock are subject to quadratic adjustment costs, which in-
hibit frictionless flows of capital across the N countries.1 As a consequence the
entire distribution of capital stocks, and not only aggregate output, becomes a
state variable in the recursive formulation of the social planner’s problem asso-
ciated with this economy. There are complete asset markets, so that the welfare
theorems apply. Thus one can solve for competitive equilibrium allocations by
solving a social planner’s problem for appropriate welfare weights of individual
countries.

For a given set of Pareto weights (τ1, ..., τN ), the social planner solves the
problem

max
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where εt, ε

i
t are iid standard normal random variables (note: as long as we

know the joint distribution of (a1
t , . . . a

N
t ) given (a1

t−1, . . . a
N
t−1), we can solve

this model) and φ ≥ 0 is a scale parameter. In particular, the parameterization
nests the case of no adjustment costs, φ = 0. Denote the initial distribution
of capital across countries by (k1

0, . . . , k
N
0 ), which determines what point on the

Pareto frontier (i.e. what vector of Pareto weights) corresponds to a competitive
equilibrium. Our algorithm will solve for optimal policies for arbitrary Pareto
weights, and thus (indirectly, and if we do the additional step of mapping Pareto
weights into initial wealth distribution, directly) for the entire equilibrium man-
ifold.

In general, the state variables for the recursive formulation of the social plan-
ner’s problem consist of the vector of current exogenous shocks a = (a1, . . . , aN )
and the vector of endogenous current capital stocks k = (k1, . . . , kN ). Denote

1The quadratic form of the adjustment cost is not crucial for our algorithm to work. Any
strictly convex and continuously differentiable adjustment cost function will do.
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by s = (k, a) the current state, which is of dimension 2N. Below we discuss one
example where the number of state variables can be reduced to N + 1.

The planner’s problem in recursive formulation can be written as

V (k, a) = max
{ci,li,ki′}

N∑
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τ iui(ci, li) + β
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V (k′, a′)fa(a′)da′

ln(ai′) = ρ ln(ai) + σ(εi + ε)
N∑

i=1

ci +
N∑

i=1

ki′ +
N∑

i=1

φ(ki′ − ki)2

2ki
=

N∑
i=1

aif i
(
ki, li

)
+

N∑
i=1

ki

where again fa(a′) is the density function over a′, given a. We will now derive the
system of functional equations used to compute this model. We seek functions
Ci(s), Li(s), and Ki′(s) for i = 1, . . . , N, mapping the current state s = (k, a)
into consumption and labor supply of each country today and its capital stock
tomorrow. For future reference we define as

C(s) =
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aif i(ki, Li(s))
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K ′(s) = (K1′(s), . . . ,KN ′(s)).

Attaching Lagrange multiplier µ to the resource constraint, we find as first order
conditions
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where lower case letters attached to functions denote partial derivatives of the
function with respect to the corresponding argument. The envelope condition
reads as
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Combining the first order conditions and the envelope conditions gives (replacing
choices by policy functions and abusing notation by writing s′ = (K ′(s), a′))
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provides 3N functional equations to be jointly solved for the 3N functions
{Ci(s), Li(s),Ki′(s)}N

i=1. We seek approximations to the functions
{Ci(s), Li(s),Ki′(s)}N

i=1 of the form given by (??).

3.2 Special Cases

In general, these 3N functional equations have to be solved jointly, but there are
special cases where the problem becomes easier. If labor is supplied inelastically,
we can drop the N functional equations (3), leaving 2N functional equations to
be jointly solved for the 2N functions {Ci(s),Ki′(s)}N

i=1. There is a sense in
which production and consumption decisions are separable. The N−1 equations

β
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(5)

for a given total amount of capital to be carried forward to tomorrow determine
the allocation of capital across the countries. However, the decision of how much
total consumption and how much accumulation is optimal cannot in general be
solved for independent of the allocation of consumption across countries, which
is simply another way of saying that the 2N equations have to solved jointly.
Note that so far no assumptions about the functional form of ui, f i and the
equality of preference or technology parameters have been made.
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3.2.1 Exogenous Labor and CRRA Utility

There are two interesting examples for which the problem with exogenous labor
supply becomes even easier. Suppose all households have identical CRRA period
utility function with risk aversion parameter γ. Then from

τ iui
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)
= τ juj
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)
,

it follows that
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(
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γ

and thus consumption follows the linear risk sharing rule
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i=1 (τ i)
1
γ

C(s). (6)

That is, each agents’ consumption is a constant fraction of aggregate consump-
tion. For this example one can first jointly solve for aggregate consumption,
aggregate investment and its allocation across countries, and then separately
solve for the distribution of consumption across countries, according to (6).
Using (6) in (5) yields the N − 1 equations

∫
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which, together with the resource constraint (4) and an equation similar to
(1) can be solved for the functions (C(s),K1′(s), . . . ,KN ′(s)). Now indeed a
complete separation between production and consumption allocations arises.

3.2.2 Exogenous Labor and No Capital Adjustment Cost

If there are no adjustment costs, that is, if φ = 0, then we can reduce the number
state variables from the 2N variables (k, a) to the N + 1 variables s = (y, a)
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where y is total output in the current period.

V (s) = max
{ci,ki′}
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the same as in the general case (with φ = 0 ), but the policy functions are
simply functions of the N + 1 state variables s = (y, a).

3.3 Implementation of the Algorithm
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Note that it in general cannot be established that the operator defined by
these equations is a contraction mapping. In contrast, in a previous paper,
Krueger and Kubler (2003), this problem did not arise since the finite horizon
of households living in a stochastic OLG economy made backward induction
feasible and no fixed point argument had to be made.

4 Numerical Results

We present results – including policy functions plots, approximation errors,
and running times – for a number of specifications of the model described in
the previous section. Throughout, we approximate the policy functions with a
polynomial of total degree 4 (i.e., q−d = 2). Higher-order approximations yield
smaller approximation errors (e.g. choosing q− d = 3 reduces errors by roughly
one decimal point) at the cost of longer running times (the running times are
roughly 20 times larger for q − d = 3 than for q − d = 2).

4.1 Model Specifications

The various model specifications we solve differ by the number of countries N ,
the forms of the utility and production functions, and the parameter values
chosen for the technology shock process, capital adjustment costs, and utility
and production functions. “Problem A” of the JEDC Numerical Methods Com-
parison Project (Den Haan, Judd, and Juillard (2004)) provides a thorough
description of the different specifications and their calibration. Rather than re-
peating all the details here, Table 1 only lists the parameters which vary across
specifications.

4.1.1 Challenges for Solving the Model

A few key issues arise in the application of Smolyak’s method, described gen-
erally in Section 2, to our specific economic model. The first issue is choosing
bounds for the state variables, a necessary step since Smolyak’s method is de-
fined over a closed interval, [−1, 1]2N .3 For the exogenous state variables, we
simply set [ln(an), ln(ān)] = [−tr σ

1−ρ , tr σ
1−ρ ], where tr is some positive scalar. For

the endogenous state variable, the bounds must be chosen with great care to
3Although the state variable generally does not lie in [−1, 1]2N , it lies in the box B =

[k1, k̄1]× ...× [kN , k̄N ]× [ln(a1), ln(ā1)]× ...× [ln(aN ), ln(āN )]. It is straightforward to use
a change of variables to map a state x ∈ B to [−1, 1]2N .
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Table 1: Model Specifications
Mod N Volatility φ γ η χ µ
A1 2,6 L, H 0.5,10 1 – – –
A2 2,6 L, H 0.5,10 0.25, 1 0.1, 1 – –
A3 2,6 L, H 0.5,10 0.25, 1 – – –
A4 2,6 L, H 0.5,10 0.25 – 0.83 -0.2
A5 2,6 L, H 0.5,10 (0.25,1) – – –
A6 2,6 L, H 0.5,10 (0.25,1) (0.1,1) – –
A7 2,4 L, H 0.5,10 (0.25,1) – – –
A8 2,4 L, H 0.5,10 (0.2,0.4) – (0.75,0.9) (-0.3,0.3)

Notes: The functional forms for A1 - A8 are described in Den Haan, Judd,
and Juillard (2004). In A1-A4, the countries are symmetric, while in A5-A8,
the parameters of the utility and production functions differ across countries.
An entry (x, y) for a given parameter ζ indicates that country n = 1, ..., N has
parameter ζn = x + n−1

N−1 (y− x). Low (L) volatility corresponds to ρ = 0.8, σ =
0.001 and high (H) volatility to ρ = 0.95, σ = 0.01.

ensure the capital policy function, Kn′(k, a), stays in-bounds. All else equal,
the wider the capital bounds the more likely the capital policy function is to
stay in-bounds but the poorer the accuracy of the solution.

There is also an interaction between the capital and technological shock
bounds. As is known from a one-country stochastic growth model, capital ex-
hibits a positive, hump-shaped response to a technological shock, and thus, for
a fixed capital interval, larger technological shocks make it more likely for the
capital policy function to go out-of-bounds. For this reason, the high volatility
case tends to be more difficult to solve than the low volatility case, but both
can be solved with the proper choice of bounds. Unless noted otherwise, we
use tr = 1.25 and [k, k̄] = [0.5kss, 1.5kss] to generate all the results for the
symmetric cases (A1-A4) reported below.

For asymmetric cases with endogenous labor supply (A6-A8), finding ap-
propriate bounds for the capital interval provides an additional challenge be-
cause the true capital policy functions are asymmetric across countries. To
see this, consider specifications A6-A8 without any capital adjustment costs
(φ = 0) or uncertainty (ln(an

t+1) = 0). In equilibrium, the marginal utility
of consumption is equalized across countries at each date, and thus, one can
see from the intertemporal Euler equations that the distribution of t + 1 cap-
ital will be set to equate the marginal product of capital across countries in
t + 1, which requires equating countries’ capital/labor ratios. Because some
countries have more elastic labor supplies than others, the countries will sup-
ply different levels of labor if provided with the same non-steady-state capital
stock – Figure 3 (to be described later) illustrates this for specification A6 –
and consequently, the true equilibrium features asymmetric capital policy func-
tions. Solving for these policy functions thus requires specifying asymmetric
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bounds for the capital intervals.4 In practice, we let [k1, k̄1] = [0.45kss, 1.55kss],
[kN , k̄N ] = [0.55kss, 1.45kss], and choose intermediate values for the widths of
the other countries’ capital intervals.

A second issue that arises in using Smolyak’s method is finding a good initial
guess for the policy functions. As discussed in Section 3.3, it is not possible to
establish that the operator used for the time-iteration procedure is a contraction
mapping, and thus, convergence is not guaranteed for any initial guess. In fact,
it turns out that poor guesses for labor supply often lead to difficulties for our
method. To minimize these difficulties, we have at times found it useful to
slightly alter the policy function iteration algorithm described in Section 3.3.
Rather than using the previous iteration of the policy function for labor supply
Ln−1(s′) on the right-hand side of the intertemporal Euler equation, we solve
for tomorrow’s labor, denoted by L∗, using

ui
l(C

i
n−1(s

′), L∗)
ui

c(Ci
n−1(s′), L∗)

= −aif i
l (K

i′
n (s), L∗). (8)

This reduces the importance of the initial guess for labor supply, which turns
out to be especially helpful for finding a solution in cases A6-A8.

Finally, our procedure can solve specifications of the model with up to N = 6
countries (12 state variables). As currently written, our procedure does not
exploit any of the symmetries between the countries (for cases A1-A4) when
computing the solution of the model. But because the Smolyak points are
symmetric (see Figure ??), one could envision utilizing the symmetry of cases
A1-A4 by solving for the policy functions of only one country at each iteration
and then doing the proper transformation to generate the policy functions of
the other countries. Doing so may make solving for N = 10 countries feasible in
these cases. However, given the results reported below, in which increasing the
number of countries does not appear to lead to particularly interesting economic
insights, we choose not to pursue this direction of research at this point.

4.1.2 Policy Functions

Figures 1 - 3 plot the country-specific capital, consumption, and labor policy
functions for specification A6 with N = 2, high volatility, and low adjustment
costs. There are four plots in each figure: the plots show the policy functions of
both countries (blue-solid = country 1, red-dashed = country 2) as a function
of own and other capital stock (top two plots) and own and other technology
shock (bottom two plots), holding the other state variables at their steady-state
values.5

4The program can converge when using symmetric capital intervals (for example, sym-
metric intervals were used to create Figures 1 - 3), but the accuracy is better in the case of
asymmetric capital intervals.

5In order to show all the interesting movements in the policy functions, we solved over
a capital interval of [0.1kss, 1.9kss] and set tr = 1.25 so the technological shock interval is
[-0.25, 0.25].
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These policy functions are representative, in a qualitative sense, of the policy
functions from other specifications. In particular, the capital policy functions
are fairly linear in all state variables, while consumption is slightly concave
with respect to capital and slightly convex with respect to technology shocks.
The labor supply functions clearly display the most significant non-linearities.
We take these non-linearities as evidence that non-linear solution methods do,
in fact, provide better approximations of the true solution of the model than
linear methods. Kim, Kim, and Kollmann (2007) (KKK) document this same
result quantitatively by showing that a quadratic approximation of the solution
outperforms a linear approximation. Our solution method is also significantly
more accurate than a linear approximation, as can be seen by comparing our
results reported below (in Table 2) to the linear approximation results in KKK.

It is also interesting to note the effect of asymmetric parameter values on the
policy functions. The labor supply functions again display the most interesting
results. The equilibrium condition for labor supply of country n can be written
as

lnt =

[
A1/γ1

an
t kn

t
α

c1
t
1/γ1

] ηn

1+ηnα

,

where we have substituted in the equilibrium condition equating the marginal
utility of consumption across countries.6 Thus, it is easy to see that country 2
(η2 = 1.0) will have a more elastic labor supply (with respect to a movement
in productivity) than country 1 (η1 = 0.1), as is confirmed by Figure 3. It is
also interesting to note that, except at very low capital levels, labor supply falls
with an increase in own-country capital because the income effect (i.e., increased
consumption) overwhelms the effect of a higher wage (top-left panel of Figure
3). Furthermore, consumption is also more elastic for country 2 (γ2 = 1.0)
than country 1 (γ1 = 0.25) because the equilibrium condition for consumption-

sharing implies that c2
t is proportional to c1

t
γ2/γ1

.

4.2 Approximation Errors and Running Times

We check the accuracy of the solution in three ways, the first two of which
require the computation of conditional error functions. These functions, denoted
by Ri(xt) = 0, for i = 1, .., 3N , are unit-free versions of the 3N equilibrium

6Note that the Pareto weights are τn = 1
un

c (cn
ss,lnss)

= A1/γn
.
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Figure 1: Capital Policy Functions for A6
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Notes: Capital stock tomorrow as a function of own and other capital stocks (top
two plots) and own and other technology shocks (bottom two plots), holding
other state variables at steady-state values. The blue lines are for country 1
(γ = 0.25, η = 0.1), and the red-dashed lines are for country 2 (γ = 1.0, η = 1.0).
Model specification: A6, N = 2, high volatility, φ = 0.5.
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Figure 2: Consumption Policy Functions for A6
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Notes: Consumption as a function of own and other capital stocks (top two
plots) and own and other technology shocks (bottom two plots), holding other
state variables at steady-state values. The blue lines are for country 1 (γ =
0.25, η = 0.1), and the red-dashed lines are for country 2 (γ = 1.0, η = 1.0).
Model specification: A6, N = 2, high volatility, φ = 0.5.
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Figure 3: Labor Policy Functions for A6
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Notes: Labor supply as a function of own and other capital stocks (top two
plots) and own and other technology shocks (bottom two plots), holding other
state variables at steady-state values. The blue lines are for country 1 (γ =
0.25, η = 0.1), and the red-dashed lines are for country 2 (γ = 1.0, η = 1.0).
Model specification: A6, N = 2, high volatility, φ = 0.5.
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conditions evaluated at the present state xt ≡ (kt, at):

βEt

un
c,t+1

un
c,t

[
1 + an

t+1f
n
k,t+1 + φn

2,t+1

]
[
1 + φn

1,t

]
− 1 = 0, for n = 1, ..., N

τnun
c,t

τ1u1
c,t

− 1 = 0, for n = 2, ..., N

un
c,ta

n
t fn

l,t

un
l,t

+ 1 = 0, for n = 1, ..., N

Yt + Kt

Ct + Kt+1 + φt
− 1 = 0.

Letting R(xt) denote the 3N -dimensional vector of conditional errors evaluated
at state, xt, Accuracy Tests 1 and 2 are implemented as follows:

Accuracy Test 1: R(xt) is computed for 100 independent random
vectors xt = {ki

t, a
i
t}N

i=1 at radius r from the deterministic steady-state, for
r = {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.30}.7 We report Tr ≡ maxi,t|Ri,t|.

Accuracy Test 2: The model is simulated for 1000 periods.8 Let
Si,max ≡ maxt|Ri,t| and Si,mean ≡ mean(|Ri,t|) for t = 1, ..., 1000. We re-
port the maximum (across i) Si,max and Si,mean, denoted by Smax and Smean,
respectively.

The third accuracy test is the so-called Den Haan - Marcet statistic (Den
Haan and Marcet (1994)) and focuses solely on the N intertemporal equilibrium
conditions. This statistic tests whether the realized errors in the intertemporal
conditions are orthogonal to a constant and first- and second-order monomials
of the state variables. This holds for the true solution since the intertemporal
equilibrium conditions are conditional expectations. Accuracy Test 3 is imple-
mented as follows:

Accuracy Test 3: We run 200 simulations of the model, each last-
ing 1000 periods. For each run, the Den Haan - Marcet statistic (1994, p.5) is
constructed, and we compare the frequency distribution of this statistic (across
the 200 simulations) to the theoretical χ2

N(2N2+3N+1) distribution, where the
degrees of freedom for the χ2 distribution are determined by the number of
intertemporal equilibrium conditions (N) multiplied by the number of instru-
ments (2N2 + 3N + 1). We report the percentage of the simulations with a

7Recall that our solution method requires us to place bounds on the state variables. The
bounds for the capital stocks are roughly 0.5 units from the steady state, while those for the
technology shocks are 0.25 units away (tr = 1.25, ρ = 0.95, σ = 0.01). Thus, it is possible that
a sampled point r = 0.30 units from the steady state could lie outside the technology shock
bound for one country. In this case, we reduce the deviation from the steady state in that
dimension and increase the deviations equally in all other dimensions. In effect, we choose a
different sample point that is still r = 0.30 units from the steady-state and also in-bounds.

8The state variables are initially set at their steady state values. The actual length of the
simulation was 1200 periods, and the first 200 periods were discarded to ensure independence
from initial conditions. We use this same ‘burn-off’ period for Accuracy Test 3.
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statistic in the lower [P.05] and upper [P.95] critical 5% of the χ2 distribution.
Fairly similar distributions are taken as evidence for an accurate solution.

Table 2 reports results of the accuracy tests for 20 individual specifications:
for each of A1-A8, we set N at its smallest and largest value given in Table 1;
for A2 and A3 (each N), we consider the specification of the utility function
with the greatest and least curvature; and in all cases, we choose high volatility,
ρ = 0.95 and σ = 0.01, and low adjustment costs φ = 0.5. The reason we
report results only for the high volatility and low adjustment cost cases is that
these cases usually9 have the largest conditional error functions. Increasing
the adjustment costs to φ = 10 typically reduces the errors only slightly, while
lowering the volatility has a much larger effect. In fact, of all parameters, those
with the biggest impact on the solution accuracy are the volatility parameters.

From Table 2, it is clear that the accuracy is highest when the economy is
close to the steady state, as Tr is increasing in r. This fact also helps explain
why the errors reported for Accuracy Test 2 lie between the errors for T.01 and
T.3: in the particular simulation we ran for Accuracy Test 2, the state variables
[k, ln(a)] always lie within 0.1 of their steady-state values.

One can also see from Table 2 that the number of countries N does not
have a large impact on the error measures Tr, Smax, and Smean. The curvature
parameters have slightly more of an impact as specifications with more curvature
(low η and/or low γ for A2-A3) have larger approximation errors close to the
deterministic steady-state (T.01) but smaller approximation errors further away
(T.30). Finally, functional forms A3/A7 and A4/A8 appear to have slightly
larger approximation errors than A1/A5 and A2/A6, although this may have
as much to do with differences in curvature (parameter values) as it does with
the particular functional forms.

It turns out that the largest errors of the conditional error functions almost
always correspond to the intertemporal Euler equations. This deserves some
comment. In our solution procedure, the static conditions that determine la-
bor supply and the sharing of consumption across countries hold quite exactly.
This is because we solve these equations as functions of the state variables and
consumption of country 1, without imposing any functional form on the labor
supply of any country or the consumption of countries 2−N . Thus, even though
the policy functions for labor supply may be highly nonlinear (see top-left panel
of Figure 3), they do not present a problem for our solution method. Rather,
any approximation errors will occur mainly in the intertemporal Euler equations
and aggregate resource constraint.

The Den Haan - Marcet accuracy measures in Table 2 are much worse when
the number of countries is large (N = 4, 6) than when N = 2: the percentage of
observations of the test statistic in the upper critical 5% of the χ2 distribution

9The high volatility case of a particular specification always has larger errors than the low
volatility case, while the low adjustment cost case usually does. In the instances when high
adjustment costs produce larger errors, the difference is never greater than 0.25 (in log10).
None of our qualitative conclusions hinge importantly on reporting results for φ = 0.5 rather
than φ = 10.
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Table 2: Accuracy tests: results for selected specifications
Test 1 Test 2 Test 3

γ η T.01 T.1 T.3 Smax Smean P.05 P.95

N = 2
A1 1.0 – -6.0 -5.1 -4.2 -5.2 -5.8 .04 .06
A2 0.25 0.1 -5.4 -4.7 -4.1 -4.7 -5.3 .03 .09
A2 1.0 1.0 -6.0 -4.8 -3.7 -4.6 -5.5 .03 .08
A3 0.25 – -5.3 -4.3 -3.7 -4.2 -5.0 .03 .07
A3 1.0 – -5.9 -4.6 -3.7 -4.4 -5.3 .03 .06
A4 0.25 – -5.2 -4.3 -3.7 -4.3 -4.9 .03 .07
A5 (.25,1) – -5.8 -4.9 -4.0 -5.1 -5.6 .04 .06
A6 (.25,1) (.1,1) -5.8 -4.7 -3.9 -4.9 -5.6 .04 .06
A7 (.25,1) – -5.3 -4.3 -3.6 -4.2 -4.8 .02 .07
A8 (.2,.4) – -4.9 -3.9 -3.1 -3.8 -4.5 .02 .07

N = 6 for A1-A6 , N = 4 for A7-A8
A1 1.0 – -5.9 -5.2 -4.6 -5.1 -5.8 0 .47
A2 0.25 0.1 -5.3 -4.8 -4.5 -4.7 -5.3 0 .51
A2 1.0 1.0 -6.2 -4.9 -4.0 -4.4 -5.3 0 .58
A3 0.25 – -5.4 -4.6 -4.0 -4.1 -4.8 0 .55
A3 1.0 – -5.9 -4.7 -3.7 -4.0 -5.0 0 .64
A4 0.25 – -5.3 -4.2 -3.1 -3.4 -4.0 0 .55
A5 (.25,1) – -5.5 -5.1 -4.6 -5.0 -5.6 0 .48
A6 (.25,1) (.1,1) -4.4 -4.2 -3.8 -4.3 -4.4 0 .53
A7 (.25,1) – – – – – – – –
A8 (.2,.4) – -4.9 -4.0 -3.6 -4.1 -4.6 0 .38

Notes: The first three columns specify the model and some parameters
that vary across alternative specifications. All reported statistics are for
high volatility, ρ = 0.95 and σ = 0.01, and low adjustment costs φ =
0.5. The figures shown for Tests 1 and 2 are logs of the error measures
(log10(Tr), log10(Smax), log10(Smean)).
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is much greater than 5% for large N . At this point, it is not clear whether these
measures reflect poor accuracy of our solution method or sensitivity of the DM
statistic to a large number of instruments. In Table 2, there are 15 instruments
when N = 2, 45 when N = 4, and 91 when N = 6, whereas the largest number
of instruments used by Den Haan - Marcet (1994) was 7. Further experiments
will be done to assess whether Accuracy Test 3 is, in fact, a good accuracy
measure for this class of problems.

Table 3 reports the time required to compute and run accuracy tests on
the solutions of different specifications of the model. In particular, the column
labelled “Sol” shows the time it takes to compute the solution. For N = 2
countries, this is on the order of seconds; for N = 4 (not reported), it takes
minutes; and for N = 6, the program takes a few hours.

Some specifications, namely A7 and A8, take significantly longer to run than
others. For these specifications, our solution procedure, as described earlier,
solves a nonlinear equation for the labor supply on the right-hand side of the
intertemporal Euler equation rather than simply using the labor supply policy
function from the previous iteration. Because this must be done quite often,
the program takes much more time to converge, and we choose to only solve up
to N = 4 for these specifications. We also solve a nonlinear equation for labor
in specification A6, but because it is possible to solve the equation analytically
in this case, the program runs relatively quickly.

5 Conclusion

[To be Added]
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Table 3: Computing Times for selected models
Time(seconds)

γ η Sol. Test 1 Test 2 Test 3
N = 2
A1 1.0 – 1.0 0.01 0.07 1.9
A2 0.25 0.1 1.7 0.02 0.08 2.2
A2 1.0 1.0 1.5 0.02 0.08 2.2
A3 0.25 – 8.3 0.7 1.0 14.6
A3 1.0 – 6.2 0.7 1.0 14.0
A4 0.25 – 5.1 0.8 1.2 16.9
A5 (.25,1) – 1.3 0.01 0.06 1.9
A6 (.25,1) (.1,1) 2.7 0.02 0.08 2.2
A7 (.25,1) – 116 0.7 1.0 14.4
A8 (.2,.4) – 79 0.8 1.2 17.2

N = 6 for A1-A6 , N = 4 for A7-A8
A1 1.0 – 1398 1.6 2.4 1016
A2 0.25 0.1 2068 1.7 2.6 990
A2 1.0 1.0 1999 1.7 2.6 1187
A3 0.25 – 5430 16.7 24.8 1210
A3 1.0 – 4263 16.4 24.4 1025
A4 0.25 – 3326 19.9 28.9 1227
A5 (.25,1) – 1718 1.6 2.4 1148
A6 (.25,1) (.1,1) 2061 1.8 2.7 1174
A7 (.25,1) – – – – –
A8 (.2,.4) – 2917 5.6 8.2 70

Notes: Column labelled “Sol.” is the computing time for the solution of the
model, while the columns labelled “Test 1”, “Test 2”, and “Test 3” record
the computing time for the various accuracy tests. All reported statistics are
for high volatility, ρ = 0.95 and σ = 0.01, and low adjustment costs φ = 0.5.
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