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1. Introduction 
This paper solves the multi-country RBC model described in "Problem A" of the JEDC 
Numerical Methods Comparison Project (den Haan, Judd and Juillard (2007) [DJJ]) using 
Chris Sims’ MATLAB program gensys2 which implements the Sims (2000) algorithm that is 
based on second-order Taylor expansions of the equilibrium conditions. Other solutions 
techniques for dynamic models based on expansions of second (or higher) order have been 
developed by Guu and Judd  (1993), Gaspar and Judd (1996), Judd (1998), Collard and 
Juillard (2001), Kim and Kim (2003), Schmitt-Grohé and Uribe (2004), Anderson and Levin 
(2002), Schaumburg (2002), Sutherland (2002), Kollmann (2003b) and Lombardo and 
Sutherland (2004).  

In contrast to the linear, certainty-equivalent approximations that are widely used in 
macroeconomics, second-order approximations allow to capture the effect of risk on the mean 
values of endogenous variables. Compared to other non-linear techniques (see Judd (1998)), 
second-order approximations have two key advantages: the ease with which they can be 
applied to models with a large number of state variables, and their high computational speed. 
This explains why a rapidly growing number of studies apply second-order accurate solution 
algorithms. Sims’ gensys2 program is often used in these studies; see, e.g., Bergin and 
Tchakarov (2003), Kim and Kim (2001), Kim (2003, 2004), Kollmann (2002, 2003a, 2004a,b; 
2007), Marzo (2003, 2004), Shin (2004a,b), Straub and Tchakarov (2005),  Teo (2003), and 
Tchakarov (2002), who all study the welfare effects of  alternative macroeconomic policy 
rules/regimes.     

So far, there has been little systematic evaluation of the accuracy of solution methods  
based on second-order approximations. Together with other studies in the JEDC Numerical 
Methods Comparison Project (Anderson (2004), Jin and Judd (2004), Juillard (2004), Kim et 
al. (2004)), this paper fills that gap. Its main finding is that (for DJJ Problem A), the Sims 
algorithm is markedly more accurate than linear approximations when exogenous shocks are 
big.  
 
2. Equilibrium  
In normalized form (see DJJ), the model is defined by the following equations, for countries 

1,...,n N= :  
                                                              , ,( ) /( ) 0n n n n

c t t c tu uτ λ τ− = ,                                             (1)  

                                                          , , ,( ) /( ) 0n n n n n n
t t l t l t l ta f u uλ τ τ+ = ,                                          (2)    

      1
1 1 , 1 1 1 1 12( / ) 1 [1 ( / )]( / )] /[1 ( / )] 1 0[{ }n n n n n n n n n n

t t t t k t t t t t t tE a f i k i k i kβ λ λ ϕ δ δ ϕ δ+ + + + + + ++ + + − − + − − = ,       (3) 

             2
1 1

( , ) ( /2) ( / ) 0) )( (/N Nn n n n n n n n n n n n n
t t t t t t t t t t t tn n

c i k a f k l k i k c i kδ ϕ δ δ
= =

+ − − + − + − =∑ ∑ .         (4) 

                                                      1( (1 ) ) / 0n n n n
t t t tk i k kδ+ − − − =                                               (5)                         

                                             1{ exp[ ln( ) ( )]}/ 0n n n n
t t t t ta a e e aρ σ−− + + = ,                                     (6) 

with 1 1, (0,1)n
t te e N+ + ∼ , , ( , )/ ,n n n n n

c t t t tu u c l c≡∂ ∂  , ( , )/ ,n n n n n
l t t t tu u c l l≡∂ ∂ , ( , )/ ,n n n n n

l t t t tf f k l l≡∂ ∂ , ( , )/ .n n n n n
k t t t tf f k l k≡∂ ∂   
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3. Solution method 1 
The Sims (2000) algorithm can be applied to models of the following form: 
                                 1 1

1 1 1
( , , ) 0, (7)t t t t

mq q
E G ω ω ε+ +

× × ×
=  

where tω  is a vector of variables known at date t, 1tε +  is a vector of date t+1 exogenous 
disturbances with 1 0t tE ε + =  and 1 1't t tE ε ε+ + =Ω . As pointed out by Sims (2000), the solution of 
(7) has the form  
                                                  1 1( , )t t ty F y ε+ += , 1 1( )t tx M y+ += ,                                                (8) 
where ty  and tx  are linear functions of tω : ( ' ' ) 't t ty x Zω= , for some square, non-singular 
matrix Z. Note that the solution can be expressed as 

                                             1 11
1 1

1 1

( , )
( , )

( ( , ))
t t

t t t
t t

F Z
Z

M F Z
ω ε

ω ω ε
ω ε

+−
+ +

+

⎡ ⎤
=Ψ ≡ ⎢ ⎥

⎣ ⎦
,                                     (9) 

where 1Z  is the matrix (consisting of the first rows of Z) such that 1t ty Z ω= .  
 Sims (2000) presents an algorithm (and a MATLAB program, gensys2) that constructs 
2nd degree polynomials which approximate (8), in the neighborhood of the (deterministic) 
steady state given by ( , ,0) 0.G ω ω =  The coefficients of those polynomials are functions of Ω  
and of the first and second derivatives of 1 1( , , )t t tG ω ω ε+ +  (evaluated at the steady state). Let 

l m
1 1 1 1( , ), ( )t t t t ty F y x M yε+ + + += = denote the polynomials that approximate (8), and             

                                   l
l

m l
1 11

1 1

1 1

( , )
( , )

( ( , ))
t t

t t t

t t

F Z
Z

M F Z

ω ε
ω ω ε

ω ε
+−

+ +

+

⎡ ⎤
=Ψ ≡ ⎢ ⎥

⎢ ⎥⎣ ⎦
.                                    (10) 

 
Application to Problem A 
(1)-(6) can be written like (7), using 1 1 1 1

1 1)ln( ,ln( ),..,ln( );ln( ),., ln( );ln( ),.,ln( );ln( ),.,ln( );( t
N N n N

t t t t t t t t tc c l l i i k kλω + +=  
1ln( ),..,ln( ));N
t ta a  

1
1 1 1 1( ; ,.., );N

t t t te e eε + + + +≡  2
1 NIσ +Ω≡  1( :NI +  identity matrix with 1 N+  elements).  

 We use a two-point finite difference procedure (Fackler and Miranda (2002); pp.98, 
102) to compute the first and second derivatives of 1 1( , , )t t tG ω ω ε+ +  (at the steady state).  
 The accuracy checks discussed below require to formulate the solution as a "policy 
function" that expresses the date 1t+  decision variables as a function of the capital stocks at 
the beginning of 1,t+  and of productivity at 1t+  (in the N  countries). Let 1n( ) ln( )(l ,., )N

t t tK k k≡ , 
1(ln( ) n( )),,.,l N

t t ta aA≡ 1 1 1nln( ) ln( ) ln( ) l ( ) ln( ) ln( ) ln( )( , ,., ; ,., ; ,., )N N n
t t t t t t t tS c c L L J Jλ≡ . As 1( , , )t t t tS Kω += Α , the 

approximate solution (10) can be written as: l
1 1 1(( , , ), )t t t t tS Kω ε+ + +=Ψ Α . For the model here, we 

verified that (10) has these properties: (i) the "jump variables" tS  have zero influence on 1tω + ; 
(ii) the influence of tA  and 1tε +  on 1tω +  can be subsumed by 1tA + . Thus, the approximate 

solution can be written as the following policy function: l
1 1 1( , )t t tKω + + +=Ξ Α .  2 

 

                                                 
1 For a more detailed presentation of the Sims algorithm, see Kim et al. (2003).  
 
2From (i): � �

1 1 1 1((0, , ), ) (( , , ), ).t t t t t t tK S Kε ε+ + + +Ψ Α =Ψ Α From (6): 1 1,t t tA Aρ ε+ += +Λ where Λ  is a matrix. It appears that 

� � �
111 1 1 1((0, , ), ) ((0, , ), ) , , , ttt t t t t t ttK K A A εε ε ε +++ + + +Ψ Α =Ψ ∀Α � � �  with 1 1.t t t tA Aρ ε ρ ε+ ++Λ = +Λ� �  Thus 1 1 1( , )t t tKω + + +=Ξ Α ≡�   

�
1 1((0, / ), 0).,t tK ρ+ +Ψ Α    
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4.  Accuracy checks 
Let Ξ  be the exact policy function that is approximated by l.Ξ  Ψ and Ξ  satisfy the condition 

11 , 0( ( , ), ), ( , )( )t tt t t t tE G K A K A εε ++Ψ Ξ Ξ = . The accuracy tests evaluate how closely the 

approximate solution l l,Ψ Ξ   meets this criterion. Let  

                                   l l l l
11 ,( , ) ( ( , ), ), ( , )( )t tt t t t t t tt ER K A G K A K A εε ++≡ Ψ Ξ Ξ                              (12) 

be the "conditional error function" of l l, .Ψ Ξ  l ( , )t ttR K A  is a vector with 6N  elements (the model 

has 6N  equations); let l , ( , )t ti tR K A  denote the i-th element of l ( , )t ttR K A . We compute the 
expectation in (12) using the monomial integration formula of degree 3 in Judd (1998, p.275).  
 
Accuracy test 1: l ( , )t ttR K A  is computed for 100 independent random vectors ( , )t tK A  at radius 

r  from the steady state, for {0.01,0.10,0.30}.r∈  3  We report l ,,max | |i ti trT R≡ .  
 

Accuracy test 2: The model is simulated over 1000 periods (using (10)).4  We compute 
� l

,max | |tit iS R≡  for {1,10,20,30,..,1000}t∈ ≡T  and report the maximum and the mean of � tS  
(across ),T  denoted by maxS  and ,meanS  respectively.  
 

Accuracy test 3: 200 simulation runs of 1000  periods are generated. Let l l l
111 ( , , ),ttt tGg ω ω ε +++ ≡                         

where l{ }tω  is the simulated series. For each run, we use a statistic described by den Haan and 

Marcet (1994, p.5) [DM] to test whether the errors l , 1i tg +  in expectational equations (1),(5) are 
orthogonal to a constant, the elements of 1tK +  and tA , and to cross-products of those 
elements. Under the null hypothesis that the numerical solution is exact, the DM statistic has a 

2χ distribution. We compare the frequency distribution of the DM statistic (across the 
simulation runs) to the theoretical 2χ  distribution; DM argue that a close match between the 
two distributions indicates high solution accuracy. 0.05P   0.50[ ]P   0.95{ }P  denote fractions of the 
simulated DM statistics below the 5% [50%] {95%} critical values of the 2χ  distribution. 
 
5.  Results  
DJJ consider 84 different specifications of Problem A.  We solved the model for each case. 
Table 1 summarizes the results for the full set of specifications, as well as for subsets of 
specifications. For each (sub)set, we report the maximum of rT  and of maxS , and the average 
of meanS  across the individual specifications (included in that set). 5 Cols. 1-5 and Cols. 6-10 
of the Table show results for a linear model solution and for the quadratic (second-order 
accurate) solution, respectively (the linear solution is obtained by just using the first-order 
terms of (10)). It seems interesting to compare these two solutions, as linear solutions have 
widely been used in macroeconomics. Below, max m, ,L L L

r eanT S S , max m{ , , }Q Q Q
r eanT S S  refer  to the 

linear  {quadratic} approximation.  

                                                 
3We generate the random ,t tK A as follows: let h be a column vector with 2N  i.i.d. elements, and � .5/( ' )h rh h h≡ ⋅  

(NB � � .5( ' ) );h h r⋅ = we set �( , ) log(1 )t tK A h= +  (steady state logged capital and productivity are zero).  
4 All simulations use the Kim et al. (2003) "pruning" approach (that drops terms involving 3rd and higher-order 
powers of the state variables from the recursion). The steady state is used for initial values; the actual length of 
each run was 1200 periods--the first 200 periods were discarded to ensure independence from initial conditions.  
5Test 3  requires much longer computing times than tests 1-2, and was only computed for a few specifications (Table 3).  
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 Row "a" of Table 1 (labeled "All specifications") reports maxima [averages] of 
max, [ ]r meanT S S  across all 84 specifications. DJJ consider 6 combinations of different 

functional forms for utility/production functions. Rows b.1-b.6 shows maxima [averages] of 
max, [ ]r meanT S S  across the specifications listed in DJJ’s Problems A1, A3, A4, A5, A7 and A8, 

respectively. Rows c.1 and c.2 report maxima [averages] of max, [ ]r meanT S S  across all 
specifications in which the standard deviation of productivity innovations is low ( 0.001)σ = , 
and across all variants with a high standard deviation ( 0.01)σ = , respectively.  
 For each of the 84 individual model specifications, rT  (for all values of r considered 
here),   maxS  and meanS  are lower under the quadratic approximation than under the linear 
approximation. The maxima of max

QS and max
LS  across all variants are  2.5010 0.31%− =   and 

1.6310 2.34%,− =  respectively, while the averages of  Q
meanS and L

meanS across all variants are 
4.0310 0.009%− =  and 2.8010 0.15%,− =  respectively.  

 Accuracy is highest when the system is close to the steady state: rT  is increasing in r  
(distance from steady state). Across all specifications, the maxima of 0.01

QT  and 0.01
LT  ( 0.01)=r  

are 4.4110 0.0038%− =  and 2.5710 0.27%− = , respectively; the maxima of 0.3
QT  and 0.3

LT  ( 0.3)=r  
are 1.1310 7.41%− =  and 0.5910 25.70%− = , respectively.  
 Approximation errors are increasing in the volatility of productivity, as can be seen by 
comparing Rows c.1 and c.2: e.g., across all specifications with 0.001σ = , the maxima of 

max
QS  and max

LS  are 6.9010 0.00001%− =  and 4.6510 0.002%,− = respectively; across all variants 
with 0.01σ = , the maxima of max

QS  and max
LS  are 2.5010 0.31%− =  and 1.6310 2.34%,− =  

respectively.  
 We sorted the 84 specifications into pairs such that the specifications in a given pair 
only differ regarding σ  and ρ  (other parameters are identical across the members of that 
pair); there are 48 pairs of this type. Within all pairs, the accuracy gains , ,L Q L Q

0.01 0.01 0.1 0.1T -T T -T  
L Q

0.3 0.3T -T , max max, ,L Q L Q
mean meanS S S S− −   produced by the quadratic approximation (compared to the 

linear approx.) are greater for the specification with ( 0.01, 0.95)σ ρ= = ,  than for that with 
( 0.001, 0.8).σ ρ= =  The maximum and the average of max max

L QS S− [ ]L Q
mean meanS S−  0.3 0.3{ }L QT T− across 

all individual specifications with ( 0.01, 0.95)σ ρ= =  are 1.98%  and 0.80% [0.73% and 
0.29%] {18.05% and 4.03%}, respectively; the corresponding maximum and average 
accuracy gains across all cases with ( 0.001, 0.8)σ ρ= =  are 0.002% and 0.001% [0.001% and 
0.0004%]  {5.96% and 1.57%}.  
 The preceding results show that the quadratic model solution can generate noticeably 
smaller approximation errors than the linear solution, especially when 0.01σ = . 
 It seems interesting to investigate whether accuracy depends on the number of 
countries (N) or the curvature of preferences/technology. To this end, we regressed the logs of 

max max, , ,L L Q Q
mean meanS S S S  and max max,

L Q L Q
mean meanS S S S− −  (for all 1128 variants) on: a constant; the 

number of countries ;N  the household’s intertemporal elasticity of substitution (inverse of the 
coefficient of relative risk aversion) ;γ  the capital adjustment cost parameter ϕ ;  the standard 
deviation of the productivity innovation .σ  The results are shown in Table 2.  Approximation 
errors are increasing in N, and in the coefficient of risk aversion, but decreasing inϕ .  By far, 
the main determinant of approximation errors and of the accuracy gains produced by the 
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quadratic approximation is the volatility of productivity: σ  is the most significant regressor; 
it captures between 92% and 94% of the variance of the regressands.6  
 
 Table 3 shows detailed results for 24 individual specifications (among the total 84 
specifications described by DJJ): for each of six models (A1, A3,A4,A5,A7,A8), we pick four 
specifications. Cases with N=2 and N=6 are considered; in all cases, we set 0.5ϕ = . Panel (a) 
of Table 3 assumes 0.001, 0.8σ ρ= = , which corresponds to the smallest volatility (and 
persistence) of productivity shocks considered by DJJ; Panel (b) assumes bigger and more 
persistent shocks: 0.01, 0.95σ ρ= =  (the values of the remaining parameter values are listed in 
Cols. (2)-(6))   
 For the specifications in Table 3, the error measures max, ,r meanT S S  are not closely linked 
to the number of countries. As might be expected, approximation errors are larger with bigger 
shocks (Panel (b)). In several cases the accuracy gain produced by the quadratic approximation 
is substantial. The largest accuracy gain occurs for Problem A7, with 0.01σ = . There, 

0.59
.3 10 25.70%LT −= = , 1.80

max 10 1.58%LS −= = , 1.13
.3 10 7.41%LT −= = ,  2.74

max 10 0.18%QS −= = ; thus, in this 
case, .3T  and maxS  are lower by 18.2 and 1.4 percentage points, respectively, under the 
quadratic approximation (compared to the linear approximation).  
 The simulated DM frequencies ( )0.05 0.50 0.95P ,P ,P  are similar across the quadratic and 
linear approximations—however, when 0.01σ =  is assumed, the simulated frequencies favor 
very slightly the quadratic approximation.7  

Under both approximations (and for both 0.001σ =  and 0.01σ = ), the DM accuracy 
measures in Table 3 are much “worse” when the number of countries is large (N=6) than when 
N=2. E.g., for Problem A1 with 0.01σ = , the quadratic approximation gives 0.045,0.05P =  

0.495,0.50P =  0.9680.95P =  when N=2, compared to 0.9970.05P =  0.997,0.50P =  1.0000.95P =  when 
N=6. The DM accuracy measure is sensitive to the number of instruments and to the length of 
the simulated series. For a sufficiently large number of instruments (and sufficiently long 
series), any approximate model solution fails the DM test (see discussion in DM, p.7). In Table 
3, the number of instruments is 21 2N N+ + , i.e. there are 11 instruments when N=2, and 79 
instruments when N=6. Thus the number of instruments is much larger when  N=6 (the largest 
number of instruments used by DM (1994) was 7). In experiments with less instruments and/or 
shorter series we detected no dependence of the DM accuracy measure on the number of 
countries (results available on request).   
 
 Table 4 reports the time required to produce the accuracy measures shown in Panel (a) 
of Table 3, using MATLAB 6.1 on a Pentium 4 PC (2.5 GHz). 8  The Columns labeled 
"Deriv." and "Algor." respectively show the time it takes to compute the derivatives of the 
model, and the time it takes to compute the solution with gensys2 (using the derivatives). For 
the quadratic approximation, the former is about 0.2 seconds when there are 2N=  countries 
and about 35 seconds when 10;N=  gensys2 takes less than 0.1  second when 2N= , and about 
3 seconds when 10.N=  Even when the number of countries is large, gensys2 is thus very fast.  

                                                 
6Regressions on just a constant and σ   yield  2R s   between 0.92 and 0.95 (not reported in Table 2); with the full 
set of regressors, 2R is about 0.02 higher.  
7For 0.01σ = , 22 of the 36  simulated 0.05 0.50 0.95P ,P ,P frequencies are closer, up to the third decimal, to 0.05, 0.5 or 
0.95, respectively, under the quadratic approximation than under the linear approximation; only 8 of the simulated 
frequencies are less close under the quadratic approximation.  
8 The inversion of a 1000 1000×  matrix with i.i.d. random elements takes about 1.9 seconds on that machine. 
Computing times are random. The times shown in Table 4 were obtained by solving each model variant and 
computing each of the test statistics once.  
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Table 1.  Accuracy tests: results for sets of specifications 
                                                                                                        
                  Linear approximation                                   2nd order approximation 
 
                 Test 1                        Test 2                               Test 1                          Test 2 
      .01T        .1T          .3T            maxS      meanS               .01T        .1T          .3T            maxS      meanS  
       (1)           (2)           (3)                (4)            (5)                   (6)           (7)           (8)                (9)          (10) 
 
                                  a. All specifications 
 -2.57 -1.40 -0.59 -1.63 -2.80 -4.41 -2.53 -1.13 -2.50 -4.03  
 
                                 b.1. Problem A1  
 -3.12 -1.84 -0.99 -2.30 -3.32 -5.37 -3.08 -1.71 -3.46 -4.84 
                  b.2. Problem A3 
 -2.57 -1.44 -0.64 -1.63 -2.66 -4.41 -2.53 -1.16 -2.50 -3.86 
                   b.3. Problems A4 
 -2.75 -1.60 -0.77 -1.89 -2.74 -4.77 -2.73 -1.36 -2.82 -4.00 
                                b.4. Problems A5 
 -3.12 -1.83 -0.98 -2.30 -3.29 -5.35 -3.05 -1.68 -3.45 -4.78 
                             b.5. Problems A7 
 -2.63 -1.40 -0.59 -1.70 -2.66 -4.45 -2.60 -1.13 -2.53 -3.87 
                             b.6. Problems A8 
 -2.74 -1.57 -0.75 -1.82 -2.72 -4.70 -2.67 -1.31 -2.71 -3.96 
 
                             c.1. Small shocks (σ = 0.001)  
 -3.95 -1.98 -1.10 -4.65 -5.31 -6.01 -3.06 -1.70 -6.90 -7.85 
                  c.2. Big shocks (σ = 0.01)  
 -2.57 -1.40 -0.59 -1.63 -2.50 -4.41 -2.53 -1.13 -2.50 -3.73 
 
 
Note: This Table summarizes the results for full set of 1128 model specifications (see Row a, 
labeled “All specifications”), and for subsets of specifications (remaining Rows). For each 
(sub)set, the Columns labeled " "rT  ( {.01,.02,.05,.1,.2,.3})∈r  and max" "S  (i.e. Cols. (1)-(7) and 
(9)-15))  report the maximum of the error measures max,rT S  across the individual model 
specifications (included in that set); the Cols. labeled " "meanS  (i.e. Cols. (8) and (16))  show 
averages of meanS  across the individual model specifications (included in the different sets of 
specifications). The Figures in the Table are logarithms to the base 10  10(log )  of the maxima/ 
averages of max, ,r meanT S S  (across individual specifications).  
 
Cols. 1-8 and Cols. 9-16 of the Table pertain to a linear model solution and to the quadratic 
solution, respectively.  
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Table 2.  Relating accuracy to model parameters: regression results 
 
      ,

10 max( )L ilog S        =    -4.93     0.005 iN     -0.46 iγ  +315.8 iσ     -0.02 iϕ    2=R .96;   
                                           (51.25)      (0.60)                (4.94)         (49.16)             (4.52) 
 
      ,

10 max( )Q ilog S        =   -7.94     0.002 iN      -0.67 iγ   +455.7 iσ     -0.06 iϕ        2=R .96; 
                                           (49.54)      (0.15)               (4.66)           (46.74)            (6.96) 
 
      ,

10( )L i
meanlog S       =   -5.48     0.030 iN      -0.49 iγ   +309.3 iσ    -0.02 iϕ         2=R .96; 

                                           (56.05)       (3.38)              (5.08)          (47.28)           (4.40) 
 
 
      ,

10( )Q i
meanlog S       =   -7.89    0.030 iN      -0.74 iγ   +443.9 iσ     -0.06 iϕ           2=R .96; 

                                           (53.69)       (2.19)              (5.14)          (45.13)            (6.76)      
 
 

, ,
10 max max( )−L i Q ilog S S     =   -4.94    0.005 iN      -0.46 iγ   +312.5 iσ     -0.02 iϕ           2=R .96; 

                                           (52.32)       (0.57)              (4.96)           (49.61)            (4.41) 
 

, ,
10( )−L i Q i

mean meanlog S S   =   -5.48    0.030 iN     -0.48 iγ   +307.2 iσ     -0.02 iϕ           2=R .96. 
                                          (56.81)       (3.40)               (5.10)          (47.55)             (4.33) 
 
Note: The Table shows  regressions of the logged accuracy measures for the 1128 model 
variants on a constant and on parameters used in these variants. ,

max ,L iS ,
max ,Q iS , ,L i

meanS ,Q i
meanS  and 

,iN  ,iγ  ,iϕ  iσ  and iρ   are accuracy measures and parameters for variant i. (For model 
variants in which γ  differs across countries, the regression uses the mean of γ  across 
countries.) ,

max
L iS  and ,L i

meanS  pertain to the linear approximation, while ,
max
Q iS and ,Q i

meanS pertain to 
the quadratic approximation.  
 
The figures in parentheses below the regression coefficients are absolute values of t-statistics.  
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Table 3.   Accuracy tests: results for selected specifications  
                                                      Linear approximation                           2nd order approximation 
                                                                                        
Mo=                                     Test 1           Test 2           Test 3              Test 1          Test 2             Test 3 
del  N   γ    η   χ    μ        .01T    .3T        maxS   meanS   .05P  .5P   .95P      .01T     .3T      maxS   meanS    .05P  .5P   .95P
(1)     (2)    (3)     (4)    (5)    (6)         (7)       (8)           (9)      (10)        (11)   (12)   (13)          (14)     (15)         (16)     (17)        (19)    (20)    (21) 
                                                      (a) Small shocks: σ = 0.001  
A1 2 1 -- -- -- -4.18 -1.33 -5.36 -6.01 .04 .49 .96 -6.33 -2.01 -7.61 -8.32 .04 .49 .96 
A1 6 1 -- -- -- -4.70 -1.85 -5.49 -5.84 .99 .99 1.00 -7.01 -2.66 -7.65 -8.22 .99 .99 1.00 
 
 

A3 2 .25 -- -- -- -4.13 -1.28 -4.78 -5.27 .04 .46 .95 -6.15 -1.85 -7.22 -7.75 .04 .45 .95 
A3 6 .25 -- -- -- -4.69 -1.83 -4.65 -5.04 .00 .23 .89 -6.83 -2.52 -7.17 -7.56 .00 .23 .88 
 

A4  2 .25 -- .83 -.20 -4.09 -1.24 -4.88 -5.34 .04 .46 .95 -6.11 -1.81 -7.22 -7.80 .04 .45 .95 
A4 6 .25 -- .83 -.20 -4.63 -1.78 -4.73 -5.12 .00 .24 .89 -6.81 -2.49 -7.26 -7.63 .00 .24 .89 
 

A5 2 .25
1  -- -- -- -4.17 -1.31 -5.27 -5.90 .04 .47 .95 -6.28 -1.96 -7.51 -8.26 .04 .47 .95 

A5 6 .25
1  -- -- -- -4.69 -1.81 -5.43 -5.82 .99 .99 1.00 -6.95 -2.61 -7.65 -8.18 .99 .99 1.00 

 

A7 2 .25
1  -- -- -- -3.95 -1.10 -4.89 -5.28 .03 .47 .96 -6.07 -1.71 -6.93 -7.75 .03 .48 .95 

A7 6 .25
1  -- -- -- -4.63 -1.76 -4.73 -5.10 .00 .23 .88 -6.70 -2.35 -7.07 -7.61 .00 .23 .88 

 

A8 2 .2
.4  -- .75

.9  .3
.3

−  -3.98 -1.13 -4.87 -5.31 .04 .46 .95 -6.00 -1.70 -7.07 -7.75 .04 .45 .95 
A8 6 .2

.4     -- .75
.9

.3
.3

−  -4.63 -1.76 -4.73 -5.12 .00 .22 .88 -6.85 -2.55 -7.18 -7.60 .00 .23 .88 
 

                                                   (b) Big shocks: σ = 0.01  
A1    2  1 -- ----         -3.26 -0.99  -2.34 -3.02    .03  .43  .94      -5.40 -1.71   -3.66 -4.44    .04  .45  .94  
A1 6 1 -- -- -- -3.15 -1.51 -2.35 -2.80 .00 .06 .63 -5.41 -2.19 -3.69 -4.23 .00 .06 .63 
 
 

A3 2 .25 -- -- -- -2.88 -0.74 -1.88 -2.45 .03 .39 .93 -4.95 -1.32 -2.93 -3.64 .03 .42 .96 
A3 6 .25 -- -- -- -2.73 -1.14 -1.81 -2.18 .00 .04 .55 -4.82 -1.79 -2.85 -3.35 .00 .05 .57 
 

A4  2 .25 -- .83 -.20 -2.92 -0.77 -1.94 -2.52 .03 .39 .94 -4.99 -1.36 -3.06 -3.71 .03 .41 .96 
A4 6 .25 -- .83 -.20 -2.72 -1.19 -1.89 -2.25 .00 .05 .60 -4.87 -1.81 -2.91 -3.45 .00 .06 .61 
 

A5 2 .25
1  -- -- -- -3.26 -0.98 -2.32 -2.92 .04 .41 .94 -5.43 -1.68 -3.71 -4.36 .04 .42 .95 

A5 6 .25
1  -- -- -- -3.15 -1.50 -2.32 -2.79 .00 .06 .64 -5.40 -2.17 -3.57 -4.18 .00 .06 .65 

 

A7 2 .25
1  -- -- -- -2.80 -0.59 -1.80 -2.37 .03 .39 .91 -4.45 -1.13 -2.74 -3.55 .02 .43 .94 

A7 6 .25
1  -- -- -- -2.66 -1.07 -1.81 -2.15 .00 .04 .54 -4.55 -1.70 -2.71 -3.30 .00 .04 .55 

 

A8 2 .2
.4  -- .75

.9  .3
.3

−  -2.91 -0.75 -1.95 -2.47 .03 .41 .92 -4.79 -1.31 -3.01 -3.72 .03 .41 .95 
A8 6 .2

.4     -- .75
.9

.3
.3

−  -2.76 -1.16 -1.83 -2.23 .00 .04 .56 -4.79 -1.82 -2.82 -3.41 .00 .05 .58 
 
 
 
Note: Cols. 1-6 list the model,    N, and the preference and technology parameters γ,η, χ, μ.  When a single 
number is reported in Cols. (3)-(6), this indicates a parameter value that is common to all countries; an entry 
x/ y  for a given parameter ξ  indicates that country 1,..,=j N  has parameter (( 1)/( 1)) ( )x y xξ = + − − ⋅ −j j N . The 

figures shown for Tests 1 and 2 are logs of the error measures 10 10 max 10(log ( ), log ( ), log ( ))r meanT S S . 
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Table 4.  Computing times  for selected models   
                                                                                          Time (seconds) 
 
Mo=                                              Linear approximation                             2nd order approximation 
del  N   γ    η   χ    μ        Deriv.  Algor.  Test 1  Test 2  Test 3       Deriv.   Algor. Test 1  Test 2  Test 3       
(1)     (2)    (3)     (4)    (5)    (6)            (7)           (8)             (9)            (10)         (11)                  (12)          (13)          (14)           (15)         (16)      
 
A1 2 .25 -- -- -- 0.01 0.06 12 12 161 0.09 0.09 13 15 364 
A1 10 .25 -- -- -- 0.03 0.39 56 50 1838 34.95 3.36 89 96 3586      

A3 2 .25 -- -- -- 0.02 0.03 15 12 83 0.14 0.04 14 15 334 
A3 6 .25 -- -- -- 0.03 0.09 31 31 304 3.67 0.29 38 40 745 
  

A4  2 .25 -- .83 -.20 0.02 0.04 13 13 102 0.26 0.05 14 15 358 
A4 6 .25 -- .83 -.20 0.05 0.10 32 32 351 6.87 0.30 39 41 838 
 
 
 
 

 
Note: Columns labeled "Deriv.", "Algor.": computing time of derivatives of model, and computing 
time of the solution, respectively. Cols. Labeled "Test 1": computing time for accuracy statistic rT  
(for 0.01r= ). Cols. Labeled "Test 2" ["Test 3"]: computing time for accuracy statistics ,max meanS S   
[ ]..05 .5 .95P ,P ,P    
 
 


