SOLVING HETEROGENEOUS-AGENT MODELS WITH PARAMETERIZED CROSS-SECTIONAL DISTRIBUTIONS

Yann Algan¹ Olivier Allais² Wouter J. Den Haan³

¹Paris School of Economics, University of Marne La Vallée ²Institut National de la Recherche Agronomique-Corela ³University of Amsterdam, London Business School, and CEPR

1st September 2007

Key issue in dynamic heterogeneous agent models. How to approximate the law of motion of the wealth distribution?

- Key trick (Den Haan 1996,1997, Krusell and Smith 1997,1998, Rios-Rull 1997):
 - Summarize cross-sectional distribution with a set of moments
 - Express next period's moments as a function of current period ones and aggregate shocks

A: Traditional methods

Most popular one: Krusell and Smith 1998

Parameterize the law of motion for moments

$$m_{t+1} = P_n(a_{t+1}, a_t, m_t | \phi_{m,n})$$

Solve individual policy rules with your favorite algorithm

$$k_{t+1}^i = P_n(k_t^i, \varepsilon_t, a_t, m_t | \phi_{z,n})$$

Use simulations (Monte-Carlo) to do the numerical integration and up-date the law of motion

A: Traditional methods

Most popular one : Krusell and Smith 1998

Pro: simulation

- Tractability
- No restriction on functional form of cross-sectional distribution

Cons: simulation

- Cross-sectional moments calculated inefficiently (Monte-Carlo integration)
- Points at which aggregate law is fitted selected inefficiently. Recall that the standard error is equal to $\sigma^2 (X'X)^{-1}$

B: Algorithms with parameterized cross-sectional distribution (Den Haan (1997), Reiter (2003))

- Evaluates the aggregate law of motion on a grid of Chebyshev nodes (ensures uniform convergence of polynomial approximations)
- Uses quadrature procedures to calculate next period's moments
- \implies What do we need to do this?
 - Need to assume a functional form of cross-sectional distribution
 - This is unknown ⇒ parameterize with flexible functional form with *N*_M parameters

B: Algorithms with parameterized cross-sectional distribution (Den Haan (1997), Reiter (2003))

Den Haan (1997): distribution approximated with flexible functional form with N_M parameters. N_M moments used to pin down parameters

- Disavantage
 - High $N_M \Longrightarrow$ many state variables
 - Low $N_M \Longrightarrow$ inaccurate shape for cross-sectional distribution

This Algorithm

\implies Use Reiter (2003) to improve projections algorithm

- Use *N*_M moments as state variables (Reduction of the state space)
- Uses simulation to get information on the $N_{\overline{M}} N_M + 1$ higher-order moments to get the shape of the cross-sectional distribution right

Useful contributions for other applications

- we develop a simulation procedure that avoids cross-sectional sampling variation
- e we propose a particular class of parameterizing densities that makes the problem of finding the coefficients that correspond to a set of moments a convex optimization problem.
- we provide a set of accuracy tests (alternatives of the R2, see Den Haan 2007)

Algorithm: General Overview

 \implies Define a set of moments for which you calculate the transition law

$$m = \left[m^{u,c}, m^{e,1}, m^{u,1} \right]$$

 \implies Iterative procedure

Calculate individual policies given the aggregate law of motion

$$m^{e,1'} = \Gamma^e(m,a,a'), \ m^{u,1'} = \Gamma^u(m,a,a'), \ m^{u,c'} = \Gamma^{u,c}(m,a,a')$$

Given solutions for individual policy rules, up-date aggregate laws

Procedure to solve for the aggregate laws of motion

- Choose a grid of the aggregate state variable (Chebyshev nodes): "x values"
- Output: Using quadrature methods, calculate end-of-period moments, *m̃^{w,j}* for *j* ∈ {*c*, 1} at each grid point and then we deduce *m^{w,j}*: "y values"

$$\widetilde{m}^{e,1} = (1 - m^{e,c}) \int k^e(k,s) P(k,\rho^e) dk + m^{e,c} k^e(0,s)$$

 Perform a projection step to find the coefficients of Γ^w(m, a, a')

Yann Algan, Olivier Allais, Wouter J. Den Haan,

Procedure to solve for the aggregate laws of motion

 \implies Key issue at this stage:

Define the approximating densities (for positive asset holdings) and the number of moments characterizing these densities

- Exponential of polynomials $P(k, \rho^e)$ and $P(k, \rho^u)$
- Order $N_{\overline{M}}$ with $N_{\overline{M}} > N_M$

 \implies Simulation techniques to get information on higher-order moments and define accurately the functional form

Simulation overview: generate reference moments

Get rid of sampling variation !

Given:

- Individual policy functions $g(k^i, a^i, a)$
- Initial cross-sectional distribution for *continuum* of agents
- Stochastic process for ε
- A time series of aggregate productivity shocks, $\{a_t\}_{t=1}^T$

Simulation overview: generate reference moments

- Calculate the first $N_{\overline{M}}$ of next period's moments
- Fit an $N_{\overline{M}}$ th-order polynomial to approximate cross-sectional distribution

Simulation overview: generate reference moments

$$\int_{0}^{\infty} P(k;\rho^{w})dk = 1$$
$$\int_{0}^{\infty} k P(k;\rho^{w})dk = m^{w,1}$$
$$\int_{0}^{\infty} \left[(k-m^{w,1})^{j} \right] P(k;\rho^{w})dk = m^{w,j}, j = 2, ..., N_{\overline{M}}$$

Simulation overview: generate reference moments

Strength is in one detail: Good functional form

$$P(k, \rho^{w}) = \rho_{1}^{w} \left[k - m^{w,1}\right] + \rho_{2}^{w} \left[\left(k - m^{w,1}\right)^{2} - m^{w,2}\right] + \dots + \rho_{N_{\overline{M}}}^{w} \left[\left(k - m^{w,1}\right)^{N_{\overline{M}}} - m^{w,N_{\overline{M}}}\right]\right)$$

•

Simulation overview: generate reference moments

Coefficients are solution to convex optimization problem

$$\min_{\rho_1^w,\rho_2^w,\cdots,\rho_{N_{\overline{M}}}^w}\int_0^\infty P(k,\rho^w)dk.$$

Accuracy of the results Calibration and numerical details

Krusell and Smith (1998) benchmark economy

$$u^{g} = 4\%, u^{b} = 10\%, a^{g} = 1.01, a^{b} = 0.99$$

• Cross-sectional distribution defined by 6 moments

Here we only focus on the accuracy of the simulation procedure

Accuracy of the results I

Comparison between MC simulation and the new simulation procedure

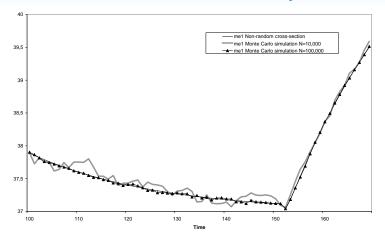


Figure: *m*^{*e*,1} generated using a finite and a continuum of agents when the economy goes from bad to good state

Yann Algan, Olivier Allais, Wouter J. Den Haan,

Accuracy of the results II

Comparison between MC simulation and the new simulation procedure

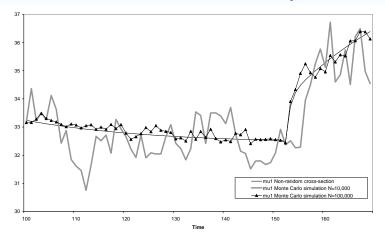


Figure: $m^{u,1}$ generated using a finite and a continuum of agents when the economy goes from bad to good state

Yann Algan, Olivier Allais, Wouter J. Den Haan,

Accuracy of the results III

Comparison between MC simulation and the new simulation procedure

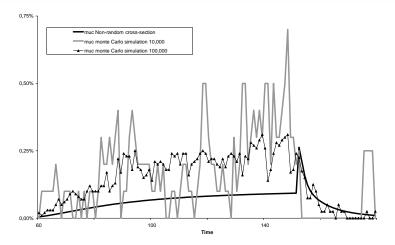


Figure: $m^{u,c}$ generated using a finite and a continuul of agents

Accuracy of the results IV

Accuracy of the densities: increasing the number of reference moments

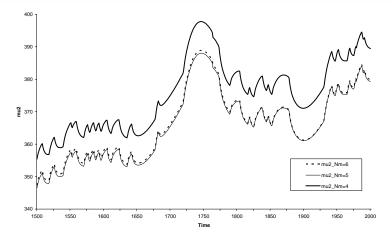


Figure: $m^{u,2}$ generated using a continuum of agents with different values of $N_{\overline{M}}$

Accuracy of the results IV Shape of the distribution

Table: Differences between implied and actual higher-order moments using sixth-order approximating density

$N_{\overline{M}} = 6$	Employed		Unemployed	
Error (%)	Average	Max	Average	Max
$\overbrace{\overset{\widetilde{\mathfrak{S}}^{w,7}}{}}^{\overleftarrow{w,7}} \xrightarrow{\overset{\widetilde{w,7}}{}}_{\overleftarrow{m}^{w,7}}$	2.8E-2%	7.3E-1%	1.0E-1%	2.2E-1%
$\underbrace{\begin{vmatrix} \overleftarrow{\Im^{w,8}} - \overrightarrow{m^{w,8}} \\ \overleftarrow{\Im^{w,8}} - \overrightarrow{m^{w,8}} \end{vmatrix}}_{\overleftarrow{m^{w,8}}}$	4.3E-2%	1.0E-1%	1.8E-1%	4.3E-1%
$\overbrace{\Im^{w,9} - m^{w,9}}^{\overleftarrow{\Im^{w,9}} - \overleftarrow{m^{w,9}}}$	9.3E-2%	2.3E-1%	3.8E-1%	8.8E-1%
$\underbrace{\begin{vmatrix} \overleftarrow{\Im^{w,10}} - \overleftarrow{m^{w,10}} \\ \hline \overleftarrow{m^{w,10}} \end{vmatrix}}_{m^{w,10}}$	1.3E-1%	3.1E-1%	5.6E-1%	1.3%

Accuracy of the transition laws

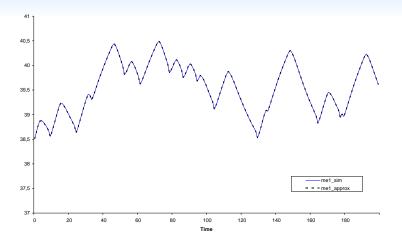


Figure: $m^{e,1}$ generated using the approximation $\Gamma^e(s)$ or the simulation on a continuum of agents

Conclusion

- Improvement upon traditional projection techniques
- New simulation techniques and approximating densities which could also be worthwhile if you use simulation to calculate the transition laws of the moments.
 - Economies where the unemployed become entrepreneurs
 - Policy evaluation: need to be really accurate to gauge the persistence of policy shocks

Example

Algan et al. (2007): Monetary shocks with incomplete markets and heterogeneous agents

- Monetary shocks in a Bewley style model where money is the only asset used for self-insurance
- Non-neutrality and persistence of monetary shocks only due to incomplete markets: alternative to sticky prices

Example

Algan et al. (2007): Monetary shocks with incomplete markets and heterogeneous agents

The recursive program of the household expressed by in real terms is

 $v(m_{t-1}, s_t; \gamma_t, \bar{M}_{t-1}) = \max_{m_t, c_t} u(c_t, 1 - l_t) + \beta E_t [v(m_t, s_{t+1}; \gamma_{t+1}, \bar{M}_t) | s_t,$

subject to the budget constraints

$$c_t + m_t = \frac{m_{t-1}}{\Pi_t} + w_t l_t \varepsilon_t + b_t (1 - \varepsilon_t) + \gamma_t \frac{M_{t-1}}{\Pi_t}$$

$$m_t \ge 0$$

and

$$\ln\left(\bar{M}_{t}\right) = a_{0}^{i} + a_{1}^{i}\ln\left(\bar{M}_{t-1}\right)$$

Tricky thing here:

- Need to iterate at each period on the inflation rate to find the equilibrium inflation rate
- Get rid of sampling variation to gauge the persistence of Yann Algan, Olivier Allais, Wouter J. Den Haan,

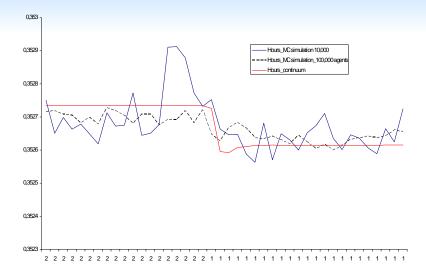


Figure: Impulse response of hours under different simulation procedures

Yann Algan, Olivier Allais, Wouter J. Den Haan,

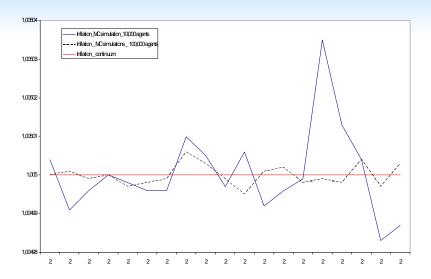


Figure: Inflation Rate

- Algorithm uses classic elements of numericals solutions literature but rectangular grid is problematic
- Perturbation techniques may be the way to go (Reiter (2006) and Preston and Roca(2007))
- How to test accuracy: Den Haan (2007)

How to access accuracy?

- Standard procedure: R-square
- Problems:
 - In sample fit ("truth" is used to generate explanatory variable mt)
 - An average (may hide large errors)
 - Scales errors by variance of dependent variable

Den Haan (2007)

- Truth: $m_{t+1} = \alpha_0 + \alpha_{1mt} + \alpha_2 a_t + \alpha_3 m_{t-1}$
- Approximation: $m_{t+1} = \gamma_0 + \gamma_{1mt} + \gamma_2 a_t$

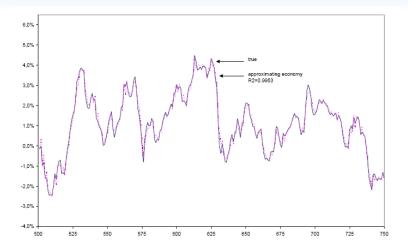


Figure: In sample fit

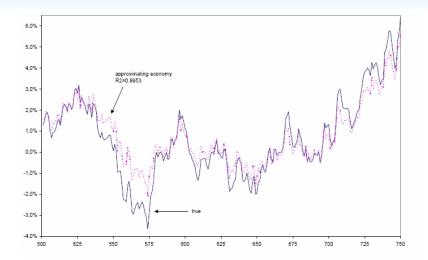


Figure: Independently generated

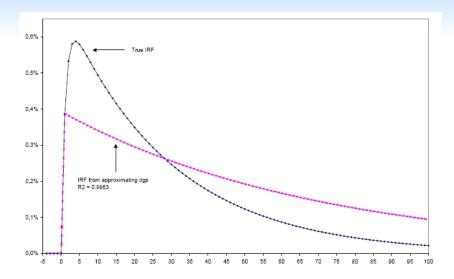


Figure: Impulse Response Functions