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Curse of Dimensionality
e Many economic models are high dimensional

— Dynamic Optimization: Multiple kinds of capital stocks
— DSGE: Multiple consumers/firms/countries
— Games: Multiple players and states

— Bayesian analyses compute high-dimensional integrals
e Claim: “You can’t solve your model because of the curse of dimensionality.”

— Response I: Analyze silly models

+x Reduce heterogeneity in tastes, abilities, age, etc.
x Assume no risk
x Assume common information, common beliefs, etc.

— Response 1II: Do bad math
— Response III: Do bad math while analyzing silly models



e The message today: “The curse is not so bad”

— I will use our stochasic growth problem as an example, but these comments
apply to many other problems.

— “Theorems” about the curse are irrelevant for economics

— There are many underutilized tools from math that can help

— Sensible modelling choices can avoid curse

— Mathematicians are currently developing tools to tackle the curse
— Physicists are working to build computers that will avoid the curse

— If the Boston Red Sox can beat the “Curse of the Bambino” then economists
can beat the “Curse of Dimensionality”



Specific Responses to the Challenges of Dimensionality
e Math Tools

— Compute derivatives efficiently

— Approximate functions efficiently
— Choose an efficient domain

— Approximate integrals efficiently

— Functional analysis
e Modelling Suggestions

— Use continuous time
— QGet rid of kinks

— Specify finite-dimension models
e Look to the future

— Use “experimental mathematics” - Monte Carlo people do it all the time, why
not us?

— Learn parallel computing tools, and other high power computing architectures
— Study Griebel-Wozniakowski Theorem

— Quantum computing



AVAILABLE MATH TOOLS

FOR MULTIDIMENSIONAL PROBLEMS

e Most economists use methods motivated by one-dimensional methods when they
solve multidimensional models; the result is inefficient

e There are many tools that are not critical for one-dimensional problems but are
powerful for multidimensional problems



Math Tool I: Evaluate Derivatives Efficiently

e Derivatives are important in perturbation methods and in any method that uses
nonlinear equation solvers.

— Analytic derivatives are slow

Analytic Derivatives
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— Finite differences are slow
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e Automatic Differentiation to the rescue!

Appx.

+,- * = g’ Total clock

flops time

function x1 =27, yl =9, 21 =2° 0 3 3 15
A=zxl+yl+ 21 2 2 2

u= A’ 1 1 5

2 0 4 6 22

gradient 22 =xl/x, y2 =yl/y, 22 =21/z, 3 3 3
Al=pou/A 3 3 3

u, = x2 Al 1 1 1

u, = y2 Al 1 1 1

u, = 22 Al 1 1 1

grad. cost 9 9

15 31



e T'wo kinds of gains

— Fewer operations: Theorem: (Griewank) For an n-dimensional function f:

x Cost (Jacobian) < 5 Cost (f)
* Cost (Hessian) < 5 n Cost (f)

— Less use of expensive operations: power (~10 adds), exponential (™5 adds), log
(710 adds), etc.



e Current applications and implications

— Use Newton methods (and discard DFP, BFGS, and BHHH)
x AD is now incorporated into much software; AMPL and GAMS, but not
empirical packages!
x L-B-J: already exploits sparseness, could exploit AD
x Solve stochastic dynamic games

- Pakes-Maguire and others use Gauss—Seidel methods - sssslooooooowwwwww

- Ferris-Judd-Schmedders: 40,000 states, 240,000 unknowns; done in 5 minutes
on a laptop

— Perturbation methods

x Judd, Guu, Gaspar, Anderson, Juillard, Collard, Kim-Kim, Jesus Fernandez-
Villaverde, Juan Rubio.
x Some have incorporated AD ideas into their code: Anderson-Levin-Swanson

x Laplace expansions in statistics.



Math Tool II: Efficient Function Approximation

e Linear polynomial methods:

m

flz,y,z,..) = Z a;9; (x,y, 2, ...), ¢, multivariate polynomials
i=1

— Choices for ¢ are tensor versus complete:

degree 1 in each variable degree 2 in each variable
one D 1,z 1, z,z°
2D tensor  {l,x} ® {1,y} {l,x,xz} ® {1,y,y2}
product = {1,z,y,zy} ={1,z,2% y,y% ay,
3D tensor {l,z}®{l,y} ® {1, z} 2y, zy?, wy*}

product ={1,z,y,z2, 2y, r2,yz, xyz}

2D complete 1,z,y 1, z, 2%y, 9%, xy
2

Y

3D complete 1,z,y, 2 1, z,y, 2,2y, T2, Y2, T2, y°, 2



— Proper notion of “degree” in multivariate context is sum of powers
degree (xlyjzk) =i1+7+k
— Complete polynomials like
Z aijpt'y’ 2 ¢
i+j+k<m
have far fewer terms than tensor products like

m m m
5 J‘ S J‘ S J‘ aiszyjzk

i=0 j=0 k=0

with ratio being about d! in d-dimensional case.

— Complete polynomials are better in terms of approximation power per term

degree k& Number terms in complete poly Number terms in tensor product
2 R 50’ 3"
{5
~ n

— See Gaspar-Judd (1997)



e Smolyak points and sparse grids

— Efficient way to approximate smooth high dimensional functions
— Krueger-Kubler found them to be very effective in stochastic OLG
— Mertens used them to solve five-D option pricing problem

— Judd and Mertens are applying them to Bayesian econometrics



Math Tool III: Define the Domain Efficiently

e Choosing the domain of our problem (e.g., states in a DP or dynamic GE model)
1s iImportant

— Want to include values for state that are part of the solution

— Choosing too large a domain will create unnecessary computational burdens.
e More choices with higher dimensions

— One dimension: Domain is interval; just need to know max and min
— Two dimensions: More choices - square/rectangle, sphere/ellipse, simplex, etc.

— Three dimensions: More choices - cube, sphere, ellipsoid, cylinder, simplex, etc.
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e Cube versus Sphere

— Spheres are much more compact:

% In cube of unit length at edge, length of longest diagonal is n'/?
*x Ratio of sphere to cube volume is

/2
W , 11 evel

on/2+1.n/2
35> nodd

x Smaller volume reduces costs of approximation; allows one to exploit peri-
odicity
x Smaller volume reduces cost of integration

— If solution has a central tendency, then it rarely visits vertices

— Mathematicians are developing methods for spheres: orthogonal polynomials
for hyperspherical coordinates, quadrature rules for spheres
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Math Tool IV: Use Efficient Integration Methods

e New research direction I: Find rules that are good for many polynomials

— Choose points z; and weights w;, ¢ = 1, .., m, to create a quadrature rule,

Q(f;2zw)= Zw@fzz

to minimize errors.

x The literature is for one-dimensional problems:
00 2
minz (Q (azi; z,w) — /x’ dx)
* =0
x A few mathematicians do this - Gismalla, Cohen, Minka

+ This is not done often since “you can’t publish the results”.



— I created one for a two-D sphere:

*x We need new formulas if we switch to spheres

+ Choose 12 points (24 coordinates and 12 weights) to minimize sum of squared
errors of formula applied to z'y’, i, § < 20.

x Use unconstrained optimization software; use many restarts to avoid local
solution

* Result was

0.2227 (f[—0.8871,0] + f[0, —0.8871] + f]0,0.8871] + £[0.8871,0])
+0.2735 (f[—0.6149, 0.6149] + f[—0.6149, —0.6149]

+£[0.6149, —0.6149] + f[0.6149, 0.61496))
+ 10744 £[—0.3628, 0] + 1.0744£[0, 0.3628]

+1.0744 £]0, —0.3628] + 1.0744 £[0.3628, 0]

with relativized errors of 10(-5) on average and 10(-4) at worst on degree 20
polynomials

x Result had interesting symmetry - 3 groups of 4 points lying on 3 circles -
which gives indication as to what symmetries I should try in higher dimen-
sions.



— General strategy: Look for formulas with small numbers of points to find de-
sirable patterns for point sets, then assume those patterns when searching for
bigger formulas.

— General principal: Use your time to come up with ideas, and use the computer
to do the tedious work.

x Idea here: use formulas that integrate an important set of polynomials.

x Tedious work here: searching for optimal rule that satisfies the criterion.



e New research direction II: Use more information

— Gauss-Turan methods use derivatives

1 n n n
/1 f(z)dz = Z wiof(zi) + Z wi,lf/(zz’) + Z wi,ZfH(Zz')
- i=1 i=1 i=1

x n-point formula has 4n parameters, and uses 3n bits of information to inte-
grate first 4n polynomials

x In one dimension, the cost of f and first two derivatives is about same as
three f’s, so no gain in one dimension.



— However, Gauss-Turan has potential for high-dimensional integrals

* The formula
1,1 n
/1/1f<x7y) dx dyzzwz’,Of(xiayi)
—LJ= i=1

+ Z (Wi,wfw<xi7 yz) —+ wz’,yfy<xi7 yz))

=1
Zn
T Z (Wizw fae(Tis Yi) + Wiy oy (@i, Yi) + Wiy fyy (@i, yi))
i=1
uses 6n bits of information at n points - one f evaluation and five derivatives
- has 7n parameters and can integrate first 7n polynomials

x Using automatic differentiation, multidimensional Gauss-Turan will beat reg-
ular quadrature rules that use only f values



e Quasi-Monte Carlo (qQMC) Methods

— Sampling methods (including MC) use sequence x; and computes N-point ap-
proximation

| tarde= 53 1) (1)

— Two simple gMC examples in R? are

Weyl: x" = ('n,p%ﬂ, e ,npilﬂ) mod 1

Niederreiter: z" = (n QU+ ... p Zd/(d“)) mod 1
— Practical facts

+ Convergence for smooth integrals using Weyl or Neiderreiter is N ~!. Others
are better.
x qMC is excellent for high-D (e.g., 360) problems in option pricing problems
— News:

+ New sequences: randomized (¢t — m — s) sequences have N /2 convergence
- Owen

x gMC beats GHK by 10-100 for dimension < 10; beaths GHK by >2 for
dimensions 10-50.

x qMC beats MCMC by 10-100 on ordinary problems - Tribble and Owen.



Math Tool V: Functional Analysis

e Eiconomics problems often reduce to finding unknown functions defined by func-
tional equations

— Dynamic programming: contraction fixed point map on space of bounded func-
tions using L., norm.

— Dynamic games

e Functional analysis tells us how to generalize calculus (e.g., Taylor series, IFT,
etc.) to spaces of functions



e Can use IFT in Banach spaces (using C? topology) to solve dynamic game

— Hyperbolic discounting
+ Krusell-Kuruscu-Smith (2002) used high-order conjectural variation approach;
produced many solutions
+ Judd (2005) used Banach space IFT to prove local existence and uniqueness,
and demonstrated nonlocal validity of expansion

— Stochastic growth model

* Start with deterministic model to get, e.g., C (k) for k € [k0, k1]

* Add uncertainty - o; compute the function C, (k) , Cyo (k) , Cooo (k) ; Covoo (k) ,
etc., functions for k € [k0, k1]

+ Construct series expansion: » " %Ci (k).
— General idea:

+ Differentiate in Banach spaces to derive equations satisfied by f. (k) , f-. (k),

feee (k), etc., then solve for f. (k), fo (k), foee (K)
x “Approximate the derivatives”; similar to, but generally better, than “dif-

ferentiating the approximations”



MAKE MODELLING CHOICES

TO PRODUCE MANAGEABLE MATHEMATICAL PROBLEMS

e Many modelling choices are not essential for the economics.

e Economists should make otherwise inessential choices that reduce computational
problems



Modelling Suggestion I: Use Continuous Time

e We pay a high price when we choose discrete-time formulations
e Dynamic programming: “next period’s value”

— Discrete-time: V (F (z,U (z))) - double composition
— Continuous-time: V' (z) F'(z,U (x)) - single composition plus multiplication
and gradient

— Stochastic discrete time: E{V (F (z:, U (x¢)),0:11) |0:} - double composition
plus multidimensional integral

— Stochastic continuous time: V' (z) F (z, U (x)) +0*V" (z) - single composition,
multiplication, gradient, and Hessian

— Composition of unknown functions (V' and U) is far costlier than derivatives
for both perturbation and projection methods

e Stochastic games: Doraszelski-Judd show that continuous-time games are orders
of magnitude faster than discrete-time games.



Modelling Suggestion II: Use Finite-Dimensional States

e Many economists have problems with infinite-dimensional states, such as the dis-
tribution of income

e Alternative approach: There is only a finite number of people

e Exxample: suppose you have dynamic programming problem with IV factories, each
with DRTS, with adjustment costs for investment.

— Bellman equation
% (k):mlaxu (c)+ BV (k+1)
c=%f (ki) — Zig" (I' (k))
— Equations defining V' (k) and I (k):

V (k) <>+6V(k+l<k>)
0=—u'(c) (1 +al’ (k) + Vi (k + I (k)

— Idea: Use perturbation method to compute Taylor series for V (k) and the
I' (k)



— Problemns:

+ Vj is a vector of length N; Vj; is a matrix with N* elements;
+ I' (k) is a list of N functions; I} (k) is an N x N matrix; I}, (k) is N x N x N

9 jm
tensor, etc.

« If N = 10°, that is a lot of unknowns
— Solution: Exploit symmetry at steady state
* Vi =V;, Vi, j
* Vi = Vi1, Vi3 Viy = Vg, Vi #£
* Vi = Vi, Vi Vig = Vine, Vi = Viao, Vi # 35 Vigm = Vigg, Vi # J # m # 4
x Similarly for I* functions

— High-order Taylor series are feasible

x The number of unknowns when computing ¢’th derivative is 2¢ independent

x Solutions depend on N; take N — oo to find infinite population solution

x Risk - idiosyncratic and aggregate - can be added with little extra computa-
tional cost.

— Similar to Gaspar-Judd (1997) use of symmetry, but far more efficient



Modelling Suggestion III: Get Rid of Kinks

e General observation: the more smoothness, the better for computation.
e Economists love to put in discontinuities. For example, Hubbard and Judd (1986)

— Wanted to examine tax policy implications of borrowing constraints.

— Assumed one could not borrow against future wages; equivalent to

r, W >0
T(W){OOW<O

or, equivalently,

o= {8

— Results were interesting, but hampered by computational inefficiencies



e s this economically reasonable? Borrowing is not infinitely painful

— First, go to parents.
— Second, run up credit card debt.
— In general, there is a set of sources of credit, with rising interest rates

— Empirical fact: people do have debt!

e General point: kinks and discontinuities create problems but there are few prob-
lems where nonsmooth functions are necessary



FUTURE TOOLS

e Ficonomists should not just think in terms of the hardware and software available
today.

e Some new tools will be particularly valuable for solving high dimensional models.



Experimental Mathematics

e MC methods as practiced is very useful and sound but not supported by usual
mathematical theorems. Real proof is

— Suppose f (z) = > 7 a;z" on [0,1] and > 7 - a;x" is negligible for some K

— Suppose computations show that a sequence X; properly computes [ r'dx at
rate N~Y2 for each i < K.

— Then, MC will compute [ f (x) at rate N~1/2

e This is experimental mathematics NOT probability theory!

e Experimental math:

— Test out conjecture on many cases to explore validity

— Combine computational results with pure math to arrive at conclusions with
known range of validity

— Computational results may inspire theorems, such as Neiderreiter analysis of
LCM.



e Problem is not with using MC, but with understanding logical underpinnings.

— MC in practice is not based on probability theory
— It is inspired by probability theory, but theorems do not apply

— This inspiration led to search for pMC sequences which, by testing, were found
to do a good job on some problems

e Why are these logical points important?

— All agree that Monte Carlo is a very important and useful tool.

— Recognition of the true foundation for MC will encourage us to develop other
methods based on a similarly disciplined combination of analysis and compu-
tational experimentation.



Computing Speed

e We need more speed to do the necessary heavy lifting - searches for good methods,
symbolic manipulation, experimental mathematics - implicit in the ideas men-
tioned above.

e More speed is coming
— Massively parallel architectures - 10° processors in next BlueGene

— Network computing

— Multicore processors on desktops.



Griebel-Wozniakowski Theorem

e Question: Are there good rules out there to defeat the curse of dimensionality?
e Answer: Yes, if we formulate problem in reasonable spaces.

e “On the Optimal Convergence Rate of Universal and Non-Universal Algorithms
for Multivariate Integrationand Approximation” by Griebel and Wozniakowski

— Consider functions in reproducing kernel Hilbert spaces.

x If the kernel is a product of univariate kernels, i.e.,

[0,1]” [0,1] [0,1] 01

then optimal algorithm is as fast as slowest optimal algorithm of univariate
kernels

+x Hence, the optimal rate of convergence of universal algorithms for product
kernels does not depend in dimension!

— Proof is nonconstructive, but tells us that computer searches are not necessarily
futile.

e Ficonomics problems generally fit this description



Quantum Computing

e New technology may break curse of dimensionality

e Quantum computer example

— Load quantum computer with a function f and a number n.

— ZAP it and it becomes n computers (more precisely, the quantum state of the
computer will be a superposition of the n possible states) where computer 7
computes f (i),i=1,..,n

— ZAP it n™1/2 times

— Take a random draw among the n computers before they collapse back to one,
but sample is now biased so that you get max f (i) with probability 1 — n~!!



e (Quantum complexity theory

— Examines possible efficiency of quantum computer algorithms.
— There are examples of where quantum computing breaks curse of dimensionlity.
— “Path Integration on a Quantum Computer,” Traub and Wozniakowski (2001).

x Path integration on a quantum computer is tractable - i.e., no curse of di-
mensionality.

+ Path integration on a quantum computer can be solved roughly ¢ ~'/? times
faster than on a classical computer using randomization

x The number of quantum queries is the square root of the number of function

values needed on a classical computer using randomization.

— In general, integration is faster on a quantum computer than a classical com-
puter - Brassard-Hoya-Mosca-Tapp.



CONCLUSION

e If you formulate models in the right way, and If you use best available math, then
you can avoid the curse of dimensionality

e New developments are making that easier to do.

e The path is clear, but there is a lot of work to do to build the road.





