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Curse of Dimensionality

• Many economic models are high dimensional
— Dynamic Optimization: Multiple kinds of capital stocks

— DSGE: Multiple consumers/firms/countries

— Games: Multiple players and states

— Bayesian analyses compute high-dimensional integrals

• Claim: “You can’t solve your model because of the curse of dimensionality.”
— Response I: Analyze silly models

∗ Reduce heterogeneity in tastes, abilities, age, etc.
∗ Assume no risk
∗ Assume common information, common beliefs, etc.

— Response II: Do bad math

— Response III: Do bad math while analyzing silly models
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• The message today: “The curse is not so bad”
— I will use our stochasic growth problem as an example, but these comments
apply to many other problems.

— “Theorems” about the curse are irrelevant for economics

— There are many underutilized tools from math that can help

— Sensible modelling choices can avoid curse

—Mathematicians are currently developing tools to tackle the curse

— Physicists are working to build computers that will avoid the curse

— If the Boston Red Sox can beat the “Curse of the Bambino” then economists
can beat the “Curse of Dimensionality”
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Specific Responses to the Challenges of Dimensionality
• Math Tools
— Compute derivatives efficiently
— Approximate functions efficiently
— Choose an efficient domain
— Approximate integrals efficiently
— Functional analysis

• Modelling Suggestions
— Use continuous time
— Get rid of kinks
— Specify finite-dimension models

• Look to the future
— Use “experimental mathematics” - Monte Carlo people do it all the time, why
not us?

— Learn parallel computing tools, and other high power computing architectures
— Study Griebel-Wozniakowski Theorem
— Quantum computing
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AVAILABLE MATH TOOLS

FOR MULTIDIMENSIONAL PROBLEMS

• Most economists use methods motivated by one-dimensional methods when they
solve multidimensional models; the result is inefficient

• There are many tools that are not critical for one-dimensional problems but are
powerful for multidimensional problems
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Math Tool I: Evaluate Derivatives Efficiently

• Derivatives are important in perturbation methods and in any method that uses
nonlinear equation solvers.

— Analytic derivatives are slow

Analytic Derivatives
+,- *,÷ Power Total Total

flops time
function u = (xσ + yσ + zσ)ρ 2 0 4 6 22

gradient ux = σρxσ−1 (xσ + yσ + zσ)ρ−1 4 3 5 32
uy = σρyσ−1 (xσ + yσ + zσ)ρ−1 4 3 5 32
uz = σρzσ−1 (xσ + yσ + zσ)ρ−1 4 3 5 32

grad. total: 12 9 15 36 114
Hessian ≥400
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— Finite differences are slow

Finite Difference Derivatives
+,- *,÷ Power Total Total

flops time
function u = (xσ + yσ + zσ)ρ 2 0 4 6 22

gradient ux = (u (x +∆, y, z)− u) /∆ 3 1 4 24
uy = (u (x, y +∆, z)− u) /∆ 3 1 4 24
uz = (u (x, y, z +∆)− u) /∆ 3 1 4 24

grad total: 9 3 12 24 72
Hessian ≥150
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• Automatic Differentiation to the rescue!
Appx.

+,- *,÷ ab Total clock
flops time

function x1 = xσ, y1 = yσ, z1 = zσ 0 3 3 15
A = x1 + y1 + z1 2 2 2
u = Aρ 1 1 5

2 0 4 6 22

gradient x2 = x1/x, y2 = y1/y, z2 = z1/z, 3 3 3
A1 = ρ σ u/A 3 3 3
ux = x2 A1 1 1 1
uy = y2 A1 1 1 1
uz = z2 A1 1 1 1

grad. cost 9 9
15 31
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• Two kinds of gains
— Fewer operations: Theorem: (Griewank) For an n-dimensional function f :

∗ Cost (Jacobian) < 5 Cost (f)
∗ Cost (Hessian) < 5 n Cost (f)

— Less use of expensive operations: power (~10 adds), exponential (~5 adds), log
(~10 adds), etc.
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• Current applications and implications
— Use Newton methods (and discard DFP, BFGS, and BHHH)

∗ AD is now incorporated into much software; AMPL and GAMS, but not
empirical packages!

∗ L-B-J: already exploits sparseness, could exploit AD
∗ Solve stochastic dynamic games
· Pakes-Maguire and others useGauss—Seidel methods - sssslooooooowwwwww
· Ferris-Judd-Schmedders: 40,000 states, 240,000 unknowns; done in 5minutes
on a laptop

— Perturbation methods

∗ Judd, Guu, Gaspar, Anderson, Juillard, Collard, Kim-Kim, Jesus Fernandez-
Villaverde, Juan Rubio.

∗ Some have incorporated AD ideas into their code: Anderson-Levin-Swanson
∗ Laplace expansions in statistics.
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Math Tool II: Efficient Function Approximation

• Linear polynomial methods:

f (x, y, z, ...) =
mX
i=1

aiφi (x, y, z, ...) , φi multivariate polynomials

— Choices for φ are tensor versus complete:

degree 1 in each variable degree 2 in each variable
one D 1, x 1, x, x2

2D tensor {1, x}⊗ {1, y} ©
1, x, x2

ª⊗ ©1, y, y2ª
product = {1, x, y, xy} =

©
1, x, x2, y, y2, xy,

3D tensor {1, x}⊗ {1, y}⊗ {1, z} x2y, xy2, x2y2
ª

product = {1, x, y, z, xy, xz, yz, xyz}

2D complete 1, x, y 1, x, x2, y, y2, xy

3D complete 1, x, y, z 1, x, y, z, xy, xz, yz, x2, y2, z2,
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— Proper notion of “degree” in multivariate context is sum of powers

degree
¡
xiyjzk

¢
= i + j + k

— Complete polynomials like X
i+j+k≤m

aijkx
iyjzk

have far fewer terms than tensor products like
mX
i=0

mX
j=0

mX
k=0

aijx
iyjzk

with ratio being about d! in d-dimensional case.

— Complete polynomials are better in terms of approximation power per term

degree k Number terms in complete poly Number terms in tensor product
2 ≈ 1

2n
2 3n

3 ≈ 1
6n
3 4n

— See Gaspar-Judd (1997)
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• Smolyak points and sparse grids
— Efficient way to approximate smooth high dimensional functions

— Krueger-Kubler found them to be very effective in stochastic OLG

—Mertens used them to solve five-D option pricing problem

— Judd and Mertens are applying them to Bayesian econometrics
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Math Tool III: Define the Domain Efficiently

• Choosing the domain of our problem (e.g., states in a DP or dynamic GE model)
is important

—Want to include values for state that are part of the solution

— Choosing too large a domain will create unnecessary computational burdens.

• More choices with higher dimensions
— One dimension: Domain is interval; just need to know max and min

— Two dimensions: More choices - square/rectangle, sphere/ellipse, simplex, etc.

— Three dimensions: More choices - cube, sphere, ellipsoid, cylinder, simplex, etc.
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• Cube versus Sphere
— Spheres are much more compact:

∗ In cube of unit length at edge, length of longest diagonal is n1/2
∗ Ratio of sphere to cube volume is

πn/2

(n/2)! , n even
2n/2+1πn/2

1·3·5·...·n , n odd

∗ Smaller volume reduces costs of approximation; allows one to exploit peri-
odicity

∗ Smaller volume reduces cost of integration
— If solution has a central tendency, then it rarely visits vertices

—Mathematicians are developing methods for spheres: orthogonal polynomials
for hyperspherical coordinates, quadrature rules for spheres
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n Vn

1 2.00000
2 3.14159
3 4.18879
4 4.93480
5 5.26379
6 5.16771
7 4.72477
8 4.05871
9 3.29851
10 2.55016

Table 2: Volume of the unit cube for the dimensions 1 to 10.
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Figure 5: Ratio of the volumes of unit hypersphere and embedding hypercube of side-
length 2 up to the dimension 14.

As it was the case for the hypersimplex, the volume of a hypersphere goes to 0,
independent from the size of its radius. Table 2 gives the volumes of some unit cubes
for n= 1; : : : ;10. The hypersphere forn= 5 has the biggest volume, but this depends
on R. Especially, forR= 1=

p
2, the hypersphere attains its maximum in “our” 3-

dimensional world.

As an example consequence for search spaces, the ratio of volumes of unit hy-
persphere and embedding hypercube (with a sidelength of 2) will be considered (see
figure 5). Despite of the fact that the volume of the hypercube goes to infinity, and the
hypersphere touches all faces of the hypercube (i.e. at 2npoints), the volume of the em-
bedded hypersphere goes to 0! Moreover, forn> 10 we could neglect this volume part
within the hypercube for all practical computations. This is an important distinction
between search methods, which explores the hypercube, and search methods, which
explores the hypersphere. The last ones will not “see” very much from their world.

Also, it has to be noted that the term “high dimension” may refer to values ofn as
small as 10 or so.
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Math Tool IV: Use Efficient Integration Methods

• New research direction I: Find rules that are good for many polynomials
— Choose points zi and weights ωi, i = 1, ..,m, to create a quadrature rule,

Q (f ; z,ω) =
nX
i=1

ωif (zi)

to minimize errors.

∗ The literature is for one-dimensional problems:

min
z,ω

∞X
i=0

µ
Q
¡
xi; z,ω

¢− Z xi dx

¶2
∗ A few mathematicians do this - Gismalla, Cohen, Minka
∗ This is not done often since “you can’t publish the results”.
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— I created one for a two-D sphere:

∗We need new formulas if we switch to spheres
∗ Choose 12 points (24 coordinates and 12 weights) to minimize sum of squared
errors of formula applied to xiyj, i, j ≤ 20.
∗ Use unconstrained optimization software; use many restarts to avoid local
solution

∗ Result was
0.2227 (f [−0.8871, 0] + f [0,−0.8871] + f [0, 0.8871] + f [0.8871, 0])

+ 0.2735 (f [−0.6149, 0.6149] + f [−0.6149,−0.6149]
+f [0.6149,−0.6149] + f [0.6149, 0.61496])

+ 1.0744f [−0.3628, 0] + 1.0744f [0, 0.3628]
+1.0744f [0,−0.3628] + 1.0744f [0.3628, 0]

with relativized errors of 10(-5) on average and 10(-4) at worst on degree 20
polynomials

∗ Result had interesting symmetry - 3 groups of 4 points lying on 3 circles -
which gives indication as to what symmetries I should try in higher dimen-
sions.
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— General strategy: Look for formulas with small numbers of points to find de-
sirable patterns for point sets, then assume those patterns when searching for
bigger formulas.

— General principal: Use your time to come up with ideas, and use the computer
to do the tedious work.

∗ Idea here: use formulas that integrate an important set of polynomials.
∗ Tedious work here: searching for optimal rule that satisfies the criterion.
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• New research direction II: Use more information
— Gauss-Turan methods use derivativesZ 1

−1
f (x) dx =

nX
i=1

ωi,0f (zi) +
nX
i=1

ωi,1f
0(zi) +

nX
i=1

ωi,2f
00(zi)

∗ n-point formula has 4n parameters, and uses 3n bits of information to inte-
grate first 4n polynomials

∗ In one dimension, the cost of f and first two derivatives is about same as
three f ’s, so no gain in one dimension.
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— However, Gauss-Turan has potential for high-dimensional integrals

∗ The formulaZ 1

−1

Z 1

−1
f(x, y) dx dy=

nX
i=1

ωi,0f(xi, yi)

+
nX
i=1

(ωi,xfx(xi, yi) + ωi,yfy(xi, yi))

+
nX
i=1

(ωi,xxfxx(xi, yi) + ωi,xyfxy(xi, yi) + ωi,yyfyy(xi, yi))

uses 6n bits of information at n points - one f evaluation and five derivatives
- has 7n parameters and can integrate first 7n polynomials

∗ Using automatic differentiation, multidimensional Gauss-Turanwill beat reg-
ular quadrature rules that use only f values
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• Quasi-Monte Carlo (qMC) Methods
— Sampling methods (including MC) use sequence xi and computes N -point ap-
proximation Z 1

0

f (x) dx ≡ 1

N

NX
i=1

f(xi) (1)

— Two simple qMC examples in Rd are

Weyl: xn =
³
n p

1/2
1 , · · · , n p1/2d

´
mod 1

Niederreiter: xn =
¡
n 21/(d+1), · · · , n 2d/(d+1)¢mod 1

— Practical facts
∗ Convergence for smooth integrals using Weyl or Neiderreiter is N−1. Others
are better.
∗ qMC is excellent for high-D (e.g., 360) problems in option pricing problems

— News:
∗ New sequences: randomized (t−m− s) sequences have N−3/2 convergence
- Owen
∗ qMC beats GHK by 10-100 for dimension < 10; beaths GHK by >2 for
dimensions 10-50.
∗ qMC beats MCMC by 10-100 on ordinary problems - Tribble and Owen.
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Math Tool V: Functional Analysis

• Economics problems often reduce to finding unknown functions defined by func-
tional equations

— Dynamic programming: contraction fixed point map on space of bounded func-
tions using L∞ norm.

— Dynamic games

• Functional analysis tells us how to generalize calculus (e.g., Taylor series, IFT,
etc.) to spaces of functions
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• Can use IFT in Banach spaces (using C2 topology) to solve dynamic game
— Hyperbolic discounting

∗ Krusell-Kuruscu-Smith (2002) used high-order conjectural variation approach;
produced many solutions

∗ Judd (2005) used Banach space IFT to prove local existence and uniqueness,
and demonstrated nonlocal validity of expansion

— Stochastic growth model

∗ Start with deterministic model to get, e.g., C (k) for k ∈ [k0, k1]
∗ Adduncertainty - σ; compute the functionCσ (k) , Cσσ (k) , Cσσσ (k) , Cσσσσ (k) ,

etc., functions for k ∈ [k0, k1]
∗ Construct series expansion: Pn

i=0
σi

i!Cσi (k) .

— General idea:

∗ Differentiate in Banach spaces to derive equations satisfied by fε (k) , fεε (k),
fεεε (k), etc., then solve for fε (k) , fεε (k), fεεε (k)

∗ “Approximate the derivatives”; similar to, but generally better, than “dif-
ferentiating the approximations”
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MAKE MODELLING CHOICES

TO PRODUCE MANAGEABLE MATHEMATICAL PROBLEMS

• Many modelling choices are not essential for the economics.
• Economists should make otherwise inessential choices that reduce computational
problems
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Modelling Suggestion I: Use Continuous Time

•We pay a high price when we choose discrete-time formulations
• Dynamic programming: “next period’s value”
— Discrete-time: V (F (x, U (x))) - double composition

— Continuous-time: V 0 (x)F (x, U (x)) - single composition plus multiplication
and gradient

— Stochastic discrete time: E {V (F (xt, U (xt)) , θt+1) |θt} - double composition
plus multidimensional integral

— Stochastic continuous time: V 0 (x)F (x, U (x))+σ2V 00 (x) - single composition,
multiplication, gradient, and Hessian

— Composition of unknown functions (V and U) is far costlier than derivatives
for both perturbation and projection methods

• Stochastic games: Doraszelski-Judd show that continuous-time games are orders
of magnitude faster than discrete-time games.
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Modelling Suggestion II: Use Finite-Dimensional States

• Many economists have problems with infinite-dimensional states, such as the dis-
tribution of income

• Alternative approach: There is only a finite number of people
• Example: suppose you have dynamic programming problemwithN factories, each
with DRTS, with adjustment costs for investment.

— Bellman equation

V (k)=max
I
u (c) + βV (k + I)

c=Σif (ki)− Σig
i
¡
Ii (k)

¢
— Equations defining V (k) and I (k):

V (k)=u (c) + βV (k + I (k))

0=−u0 (c) (1 + αIi (k)) + Vi (k + I (k))

— Idea: Use perturbation method to compute Taylor series for V (k) and the
Ii (k)
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— Problems:

∗ Vi is a vector of length N ; Vij is a matrix with N2 elements;

∗ Ii (k) is a list ofN functions; Iij (k) is anN×N matrix; Iijm (k) isN×N×N
tensor, etc.

∗ If N = 109, that is a lot of unknowns

— Solution: Exploit symmetry at steady state

∗ Vi = Vj, ∀i, j
∗ Vii = V11, ∀i; Vij = V12, ∀i 6= j
∗ Viii = V111, ∀i; Viij = V112, Vijj = V122, ∀i 6= j; Vijm = V123, ∀i 6= j 6= m 6= i
∗ Similarly for Ii functions

— High-order Taylor series are feasible

∗ The number of unknowns when computing q’th derivative is 2q independent
∗ Solutions depend on N ; take N →∞ to find infinite population solution

∗ Risk - idiosyncratic and aggregate - can be added with little extra computa-
tional cost.

— Similar to Gaspar-Judd (1997) use of symmetry, but far more efficient
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Modelling Suggestion III: Get Rid of Kinks

• General observation: the more smoothness, the better for computation.
• Economists love to put in discontinuities. For example, Hubbard and Judd (1986)
—Wanted to examine tax policy implications of borrowing constraints.

— Assumed one could not borrow against future wages; equivalent to

r (W ) =

(
r, W > 0

∞W < 0

or, equivalently,

u (c,W ) =

(
u (c) ,W > 0

−∞ W < 0

— Results were interesting, but hampered by computational inefficiencies
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• Is this economically reasonable? Borrowing is not infinitely painful
— First, go to parents.

— Second, run up credit card debt.

— In general, there is a set of sources of credit, with rising interest rates

— Empirical fact: people do have debt!

• General point: kinks and discontinuities create problems but there are few prob-
lems where nonsmooth functions are necessary
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FUTURE TOOLS

• Economists should not just think in terms of the hardware and software available
today.

• Some new tools will be particularly valuable for solving high dimensional models.
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Experimental Mathematics

• MC methods as practiced is very useful and sound but not supported by usual
mathematical theorems. Real proof is

— Suppose f (x) =
P∞

i=0 aix
i on [0, 1] and

P∞
i=K aix

i is negligible for some K

— Suppose computations show that a sequence Xi properly computes
R
xidx at

rate N−1/2 for each i < K.

— Then, MC will compute
R
f (x) at rate N−1/2

• This is experimental mathematics NOT probability theory!
• Experimental math:
— Test out conjecture on many cases to explore validity

— Combine computational results with pure math to arrive at conclusions with
known range of validity

— Computational results may inspire theorems, such as Neiderreiter analysis of
LCM.
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• Problem is not with using MC, but with understanding logical underpinnings.
—MC in practice is not based on probability theory

— It is inspired by probability theory, but theorems do not apply

— This inspiration led to search for pMC sequences which, by testing, were found
to do a good job on some problems

•Why are these logical points important?
— All agree that Monte Carlo is a very important and useful tool.

— Recognition of the true foundation for MC will encourage us to develop other
methods based on a similarly disciplined combination of analysis and compu-
tational experimentation.

35



Computing Speed

•We need more speed to do the necessary heavy lifting - searches for good methods,
symbolic manipulation, experimental mathematics - implicit in the ideas men-
tioned above.

• More speed is coming
—Massively parallel architectures - 105 processors in next BlueGene

— Network computing

—Multicore processors on desktops.
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Griebel-Wozniakowski Theorem

• Question: Are there good rules out there to defeat the curse of dimensionality?
• Answer: Yes, if we formulate problem in reasonable spaces.
• “On the Optimal Convergence Rate of Universal and Non-Universal Algorithms
for Multivariate Integrationand Approximation” by Griebel and Wozniakowski

— Consider functions in reproducing kernel Hilbert spaces.

∗ If the kernel is a product of univariate kernels, i.e.,Z
[0,1]n

g (x) dF (x) =

Z
[0,1]

...

Z
[0,1]

Z
[0,1]

g (x) dF1 (x1) dF2 (x2) ...dFn (xn)

then optimal algorithm is as fast as slowest optimal algorithm of univariate
kernels

∗ Hence, the optimal rate of convergence of universal algorithms for product
kernels does not depend in dimension!

— Proof is nonconstructive, but tells us that computer searches are not necessarily
futile.

• Economics problems generally fit this description
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Quantum Computing

• New technology may break curse of dimensionality
• Quantum computer example
— Load quantum computer with a function f and a number n.

— ZAP it and it becomes n computers (more precisely, the quantum state of the
computer will be a superposition of the n possible states) where computer i
computes f (i), i = 1, .., n

— ZAP it n−1/2 times

— Take a random draw among the n computers before they collapse back to one,
but sample is now biased so that you get max f (i) with probability 1− n−1!
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• Quantum complexity theory
— Examines possible efficiency of quantum computer algorithms.

— There are examples of where quantum computing breaks curse of dimensionlity.

— “Path Integration on a QuantumComputer,” Traub andWozniakowski (2001).

∗ Path integration on a quantum computer is tractable - i.e., no curse of di-
mensionality.

∗ Path integration on a quantum computer can be solved roughly ε−1/2 times
faster than on a classical computer using randomization

∗ The number of quantum queries is the square root of the number of function
values needed on a classical computer using randomization.

— In general, integration is faster on a quantum computer than a classical com-
puter - Brassard-Hoya-Mosca-Tapp.
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CONCLUSION

• If you formulate models in the right way, and If you use best available math, then
you can avoid the curse of dimensionality

• New developments are making that easier to do.
• The path is clear, but there is a lot of work to do to build the road.
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