MEETING THE CHALLENGES

OF SOLVING HIGH-DIMENSIONAL MODELS

O' Curse of Dimensionality, Where is Thy Sting?

Kenneth L. Judd
Hoover Institution, University of Chicago, and NBER
September 1, 2007

Curse of Dimensionality

- Many economic models are high dimensional
- Dynamic Optimization: Multiple kinds of capital stocks
- DSGE: Multiple consumers/firms/countries
- Games: Multiple players and states
- Bayesian analyses compute high-dimensional integrals
- Claim: "You can't solve your model because of the curse of dimensionality."
- Response I: Analyze silly models
* Reduce heterogeneity in tastes, abilities, age, etc.
* Assume no risk
* Assume common information, common beliefs, etc.
- Response II: Do bad math
- Response III: Do bad math while analyzing silly models
- The message today: "The curse is not so bad"
- I will use our stochasic growth problem as an example, but these comments apply to many other problems.
- "Theorems" about the curse are irrelevant for economics
- There are many underutilized tools from math that can help
- Sensible modelling choices can avoid curse
- Mathematicians are currently developing tools to tackle the curse
- Physicists are working to build computers that will avoid the curse
- If the Boston Red Sox can beat the "Curse of the Bambino" then economists can beat the "Curse of Dimensionality"

Specific Responses to the Challenges of Dimensionality

- Math Tools
- Compute derivatives efficiently
- Approximate functions efficiently
- Choose an efficient domain
- Approximate integrals efficiently
- Functional analysis
- Modelling Suggestions
- Use continuous time
- Get rid of kinks
- Specify finite-dimension models
- Look to the future
- Use "experimental mathematics" - Monte Carlo people do it all the time, why not us?
- Learn parallel computing tools, and other high power computing architectures
- Study Griebel-Wozniakowski Theorem
- Quantum computing

AVAILABLE MATH TOOLS

FOR MULTIDIMENSIONAL PROBLEMS

- Most economists use methods motivated by one-dimensional methods when they solve multidimensional models; the result is inefficient
- There are many tools that are not critical for one-dimensional problems but are powerful for multidimensional problems

Math Tool I: Evaluate Derivatives Efficiently

- Derivatives are important in perturbation methods and in any method that uses nonlinear equation solvers.
- Analytic derivatives are slow

> Analytic Derivatives
$+,-{ }^{*}, \div$ Power Total Total
flops time

function	$u=\left(x^{\sigma}+y^{\sigma}+z^{\sigma}\right)^{\rho}$	2	0	4	6	22
gradient	$u_{x}=\sigma \rho x^{\sigma-1}\left(x^{\sigma}+y^{\sigma}+z^{\sigma}\right)^{\rho-1}$	4	3	5		32
	$u_{y}=\sigma \rho y^{\sigma-1}\left(x^{\sigma}+y^{\sigma}+z^{\sigma}\right)^{\rho-1}$	4	3	5		32
	$u_{z}=\sigma \rho z^{\sigma-1}\left(x^{\sigma}+y^{\sigma}+z^{\sigma}\right)^{\rho-1}$	4	3	5		32
grad. total:	12	9	15	36	114	
Hessian						≥ 400

- Finite differences are slow

Finite Difference Derivatives

$$
\begin{array}{rll}
+,-*, \div \text { Power } & \text { Total Total } \\
& \text { flops time }
\end{array}
$$

function	$u=\left(x^{\sigma}+y^{\sigma}+z^{\sigma}\right)^{\rho}$	2	0	4	6	22
gradient	$u_{x}=(u(x+\Delta, y, z)-u) / \Delta$	3	1	4		24
	$u_{y}=(u(x, y+\Delta, z)-u) / \Delta$	3	1	4		24
	$u_{z}=(u(x, y, z+\Delta)-u) / \Delta$	3	1	4		24
grad total:		9	3	12	24	72
Hessian						≥ 150

- Automatic Differentiation to the rescue!

- Two kinds of gains
- Fewer operations: Theorem: (Griewank) For an n-dimensional function f :
* Cost (Jacobian) $<5 \operatorname{Cost}(f)$
* Cost (Hessian) < $5 n$ Cost (f)
- Less use of expensive operations: power (~ 10 adds), exponential (~ 5 adds), \log (${ }^{\sim} 10$ adds), etc.
- Current applications and implications
- Use Newton methods (and discard DFP, BFGS, and BHHH)
* AD is now incorporated into much software; AMPL and GAMS, but not empirical packages!
* L-B-J: already exploits sparseness, could exploit AD
* Solve stochastic dynamic games
- Pakes-Maguire and others use Gauss-Seidel methods - sssslooooooowwwwww
- Ferris-Judd-Schmedders: 40,000 states, 240,000 unknowns; done in 5 minutes on a laptop
- Perturbation methods
* Judd, Guu, Gaspar, Anderson, Juillard, Collard, Kim-Kim, Jesus FernandezVillaverde, Juan Rubio.
* Some have incorporated AD ideas into their code: Anderson-Levin-Swanson
* Laplace expansions in statistics.

Math Tool II: Efficient Function Approximation

- Linear polynomial methods:

$$
f(x, y, z, \ldots)=\sum_{i=1}^{m} a_{i} \phi_{i}(x, y, z, \ldots), \phi_{i} \text { multivariate polynomials }
$$

- Choices for ϕ are tensor versus complete:
degree 1 in each variable
one D

$$
1, x
$$

degree 2 in each variable $1, x, x^{2}$

2 D tensor $\quad\{1, x\} \otimes\{1, y\}$ product $=\{1, x, y, x y\}$
3D tensor $\quad\{1, x\} \otimes\{1, y\} \otimes\{1, z\}$ product $=\{1, x, y, z, x y, x z, y z, x y z\}$

2D complete $1, x, y$
3 D complete $1, x, y, z$
$1, x, x^{2}, y, y^{2}, x y$
$1, x, y, z, x y, x z, y z, x^{2}, y^{2}, z^{2}$,

- Proper notion of "degree" in multivariate context is sum of powers

$$
\text { degree }\left(x^{i} y^{j} z^{k}\right)=i+j+k
$$

- Complete polynomials like

$$
\sum_{i+j+k \leq m} a_{i j k} x^{i} y^{j} z^{k}
$$

have far fewer terms than tensor products like

$$
\sum_{i=0}^{m} \sum_{j=0}^{m} \sum_{k=0}^{m} a_{i j} x^{i} y^{j} z^{k}
$$

with ratio being about d ! in d-dimensional case.

- Complete polynomials are better in terms of approximation power per term degree k Number terms in complete poly Number terms in tensor product

2	$\approx \frac{1}{2} n^{2}$	3^{n}
3	$\approx \frac{1}{6} n^{3}$	4^{n}

- See Gaspar-Judd (1997)
- Smolyak points and sparse grids
- Efficient way to approximate smooth high dimensional functions
- Krueger-Kubler found them to be very effective in stochastic OLG
- Mertens used them to solve five-D option pricing problem
- Judd and Mertens are applying them to Bayesian econometrics

Math Tool III: Define the Domain Efficiently

- Choosing the domain of our problem (e.g., states in a DP or dynamic GE model) is important
- Want to include values for state that are part of the solution
- Choosing too large a domain will create unnecessary computational burdens.
- More choices with higher dimensions
- One dimension: Domain is interval; just need to know max and min
- Two dimensions: More choices - square/rectangle, sphere/ellipse, simplex, etc.
- Three dimensions: More choices - cube, sphere, ellipsoid, cylinder, simplex, etc.

- Cube versus Sphere
- Spheres are much more compact:
* In cube of unit length at edge, length of longest diagonal is $n^{1 / 2}$
* Ratio of sphere to cube volume is

$$
\begin{aligned}
& \frac{\pi^{n / 2}}{(n / 2)!}, \mathrm{n} \text { even } \\
& \frac{2^{n / 2+1} \pi^{n / 2}}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot n}, \mathrm{n} \text { odd }
\end{aligned}
$$

* Smaller volume reduces costs of approximation; allows one to exploit periodicity
* Smaller volume reduces cost of integration
- If solution has a central tendency, then it rarely visits vertices
- Mathematicians are developing methods for spheres: orthogonal polynomials for hyperspherical coordinates, quadrature rules for spheres

Math Tool IV: Use Efficient Integration Methods

- New research direction I: Find rules that are good for many polynomials
- Choose points z_{i} and weights $\omega_{i}, i=1, . ., m$, to create a quadrature rule,

$$
Q(f ; z, \omega)=\sum_{i=1}^{n} \omega_{i} f\left(z_{i}\right)
$$

to minimize errors.

* The literature is for one-dimensional problems:

$$
\min _{z, \omega} \sum_{i=0}^{\infty}\left(Q\left(x^{i} ; z, \omega\right)-\int x^{i} d x\right)^{2}
$$

* A few mathematicians do this - Gismalla, Cohen, Minka
* This is not done often since "you can't publish the results".
- I created one for a two-D sphere:
* We need new formulas if we switch to spheres
* Choose 12 points (24 coordinates and 12 weights) to minimize sum of squared errors of formula applied to $x^{i} y^{j}, i, j \leq 20$.
* Use unconstrained optimization software; use many restarts to avoid local solution
* Result was

$$
\begin{aligned}
& 0.2227(f[-0.8871,0]+f[0,-0.8871]+f[0,0.8871]+f[0.8871,0]) \\
+ & 0.2735(f[-0.6149,0.6149]+f[-0.6149,-0.6149] \\
& +f[0.6149,-0.6149]+f[0.6149,0.61496]) \\
+ & 1.0744 f[-0.3628,0]+1.0744 f[0,0.3628] \\
& +1.0744 f[0,-0.3628]+1.0744 f[0.3628,0]
\end{aligned}
$$

with relativized errors of $10(-5)$ on average and $10(-4)$ at worst on degree 20 polynomials

* Result had interesting symmetry - 3 groups of 4 points lying on 3 circles which gives indication as to what symmetries I should try in higher dimensions.
- General strategy: Look for formulas with small numbers of points to find desirable patterns for point sets, then assume those patterns when searching for bigger formulas.
- General principal: Use your time to come up with ideas, and use the computer to do the tedious work.
* Idea here: use formulas that integrate an important set of polynomials.
* Tedious work here: searching for optimal rule that satisfies the criterion.
- New research direction II: Use more information
- Gauss-Turan methods use derivatives

$$
\int_{-1}^{1} f(x) d x=\sum_{i=1}^{n} \omega_{i, 0} f\left(z_{i}\right)+\sum_{i=1}^{n} \omega_{i, 1} f^{\prime}\left(z_{i}\right)+\sum_{i=1}^{n} \omega_{i, 2} f^{\prime \prime}\left(z_{i}\right)
$$

* n-point formula has $4 n$ parameters, and uses $3 n$ bits of information to integrate first $4 n$ polynomials
* In one dimension, the cost of f and first two derivatives is about same as three f 's, so no gain in one dimension.
- However, Gauss-Turan has potential for high-dimensional integrals
* The formula

$$
\begin{aligned}
\int_{-1}^{1} \int_{-1}^{1} f(x, y) d x d y= & \sum_{i=1}^{n} \omega_{i, 0} f\left(x_{i}, y_{i}\right) \\
& +\sum_{i=1}^{n}\left(\omega_{i, x} f_{x}\left(x_{i}, y_{i}\right)+\omega_{i, y} f_{y}\left(x_{i}, y_{i}\right)\right) \\
& +\sum_{i=1}^{n}\left(\omega_{i, x x} f_{x x}\left(x_{i}, y_{i}\right)+\omega_{i, x y} f_{x y}\left(x_{i}, y_{i}\right)+\omega_{i, y y} f_{y y}\left(x_{i}, y_{i}\right)\right)
\end{aligned}
$$

uses $6 n$ bits of information at n points - one f evaluation and five derivatives - has $7 n$ parameters and can integrate first $7 n$ polynomials

* Using automatic differentiation, multidimensional Gauss-Turan will beat regular quadrature rules that use only f values
- Quasi-Monte Carlo (qMC) Methods
- Sampling methods (including MC) use sequence x_{i} and computes N-point approximation

$$
\begin{equation*}
\int_{0}^{1} f(x) d x \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

- Two simple qMC examples in R^{d} are

$$
\begin{array}{ll}
\text { Weyl: } & x^{n}=\left(n p_{1}^{1 / 2}, \cdots, n p_{d}^{1 / 2}\right) \bmod 1 \\
\text { Niederreiter: } & x^{n}=\left(n 2^{1 /(d+1)}, \cdots, n 2^{d /(d+1)}\right) \bmod 1
\end{array}
$$

- Practical facts
* Convergence for smooth integrals using Weyl or Neiderreiter is N^{-1}. Others are better.
* qMC is excellent for high-D (e.g., 360) problems in option pricing problems - News:
* New sequences: randomized $(t-m-s)$ sequences have $N^{-3 / 2}$ convergence - Owen
* qMC beats GHK by 10-100 for dimension <10; beaths GHK by >2 for dimensions 10-50.
* qMC beats MCMC by 10-100 on ordinary problems - Tribble and Owen.

Math Tool V: Functional Analysis

- Economics problems often reduce to finding unknown functions defined by functional equations
- Dynamic programming: contraction fixed point map on space of bounded functions using L_{∞} norm.
- Dynamic games
- Functional analysis tells us how to generalize calculus (e.g., Taylor series, IFT, etc.) to spaces of functions
- Can use IFT in Banach spaces (using C^{2} topology) to solve dynamic game
- Hyperbolic discounting
* Krusell-Kuruscu-Smith (2002) used high-order conjectural variation approach; produced many solutions
* Judd (2005) used Banach space IFT to prove local existence and uniqueness, and demonstrated nonlocal validity of expansion
- Stochastic growth model
* Start with deterministic model to get, e.g., $C(k)$ for $k \in[k 0, k 1]$
* Add uncertainty - σ; compute the function $C_{\sigma}(k), C_{\sigma \sigma}(k), C_{\sigma \sigma \sigma}(k), C_{\sigma \sigma \sigma \sigma}(k)$, etc., functions for $k \in[k 0, k 1]$
* Construct series expansion: $\sum_{i=0}^{n} \frac{\sigma^{i}}{i!} C_{\sigma^{i}}(k)$.
- General idea:
* Differentiate in Banach spaces to derive equations satisfied by $f_{\varepsilon}(k), f_{\varepsilon \varepsilon}(k)$, $f_{\varepsilon \varepsilon \varepsilon}(k)$, etc., then solve for $f_{\varepsilon}(k), f_{\varepsilon \varepsilon}(k), f_{\varepsilon \varepsilon \varepsilon}(k)$
* "Approximate the derivatives"; similar to, but generally better, than "differentiating the approximations"

MAKE MODELLING CHOICES

TO PRODUCE MANAGEABLE MATHEMATICAL PROBLEMS

- Many modelling choices are not essential for the economics.
- Economists should make otherwise inessential choices that reduce computational problems

Modelling Suggestion I: Use Continuous Time

- We pay a high price when we choose discrete-time formulations
- Dynamic programming: "next period's value"
- Discrete-time: $V(F(x, U(x)))$ - double composition
- Continuous-time: $V^{\prime}(x) F(x, U(x))$ - single composition plus multiplication and gradient
- Stochastic discrete time: $E\left\{V\left(F\left(x_{t}, U\left(x_{t}\right)\right), \theta_{t+1}\right) \mid \theta_{t}\right\}$ - double composition plus multidimensional integral
- Stochastic continuous time: $V^{\prime}(x) F(x, U(x))+\sigma^{2} V^{\prime \prime}(x)$ - single composition, multiplication, gradient, and Hessian
- Composition of unknown functions (V and U) is far costlier than derivatives for both perturbation and projection methods
- Stochastic games: Doraszelski-Judd show that continuous-time games are orders of magnitude faster than discrete-time games.

Modelling Suggestion II: Use Finite-Dimensional States

- Many economists have problems with infinite-dimensional states, such as the distribution of income
- Alternative approach: There is only a finite number of people
- Example: suppose you have dynamic programming problem with N factories, each with DRTS, with adjustment costs for investment.
- Bellman equation

$$
\begin{aligned}
V(k) & =\max _{I} u(c)+\beta V(k+I) \\
c & =\Sigma_{i} f\left(k_{i}\right)-\Sigma_{i} g^{i}\left(I^{i}(k)\right)
\end{aligned}
$$

- Equations defining $V(k)$ and $I(k)$:

$$
\begin{aligned}
V(k) & =u(c)+\beta V(k+I(k)) \\
0 & =-u^{\prime}(c)\left(1+\alpha I^{i}(k)\right)+V_{i}(k+I(k))
\end{aligned}
$$

- Idea: Use perturbation method to compute Taylor series for $V(k)$ and the $I^{i}(k)$
- Problems:
* V_{i} is a vector of length $N ; V_{i j}$ is a matrix with N^{2} elements;
* $I^{i}(k)$ is a list of N functions; $I_{j}^{i}(k)$ is an $N \times N$ matrix; $I_{j m}^{i}(k)$ is $N \times N \times N$ tensor, etc.
* If $N=10^{9}$, that is a lot of unknowns
- Solution: Exploit symmetry at steady state
* $V_{i}=V_{j}, \forall i, j$
* $V_{i i}=V_{11}, \forall i ; V_{i j}=V_{12}, \forall i \neq j$
* $V_{i i i}=V_{111}, \forall i ; V_{i i j}=V_{112}, V_{i j j}=V_{122}, \forall i \neq j ; V_{i j m}=V_{123}, \forall i \neq j \neq m \neq i$
* Similarly for I^{i} functions
- High-order Taylor series are feasible
* The number of unknowns when computing q 'th derivative is $2 q$ independent
* Solutions depend on N; take $N \rightarrow \infty$ to find infinite population solution
* Risk - idiosyncratic and aggregate - can be added with little extra computational cost.
- Similar to Gaspar-Judd (1997) use of symmetry, but far more efficient

Modelling Suggestion III: Get Rid of Kinks

- General observation: the more smoothness, the better for computation.
- Economists love to put in discontinuities. For example, Hubbard and Judd (1986)
- Wanted to examine tax policy implications of borrowing constraints.
- Assumed one could not borrow against future wages; equivalent to

$$
r(W)=\left\{\begin{array}{l}
r, W>0 \\
\infty W<0
\end{array}\right.
$$

or, equivalently,

$$
u(c, W)=\left\{\begin{array}{c}
u(c), W>0 \\
-\infty W<0
\end{array}\right.
$$

- Results were interesting, but hampered by computational inefficiencies
- Is this economically reasonable? Borrowing is not infinitely painful
- First, go to parents.
- Second, run up credit card debt.
- In general, there is a set of sources of credit, with rising interest rates
- Empirical fact: people do have debt!
- General point: kinks and discontinuities create problems but there are few problems where nonsmooth functions are necessary

FUTURE TOOLS

- Economists should not just think in terms of the hardware and software available today.
- Some new tools will be particularly valuable for solving high dimensional models.

Experimental Mathematics

- MC methods as practiced is very useful and sound but not supported by usual mathematical theorems. Real proof is
- Suppose $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ on $[0,1]$ and $\sum_{i=K}^{\infty} a_{i} x^{i}$ is negligible for some K
- Suppose computations show that a sequence X_{i} properly computes $\int x^{i} d x$ at rate $N^{-1 / 2}$ for each $i<K$.
- Then, MC will compute $\int f(x)$ at rate $N^{-1 / 2}$
- This is experimental mathematics NOT probability theory!
- Experimental math:
- Test out conjecture on many cases to explore validity
- Combine computational results with pure math to arrive at conclusions with known range of validity
- Computational results may inspire theorems, such as Neiderreiter analysis of LCM.
- Problem is not with using MC , but with understanding logical underpinnings.
- MC in practice is not based on probability theory
- It is inspired by probability theory, but theorems do not apply
- This inspiration led to search for pMC sequences which, by testing, were found to do a good job on some problems
- Why are these logical points important?
- All agree that Monte Carlo is a very important and useful tool.
- Recognition of the true foundation for MC will encourage us to develop other methods based on a similarly disciplined combination of analysis and computational experimentation.

Computing Speed

- We need more speed to do the necessary heavy lifting - searches for good methods, symbolic manipulation, experimental mathematics - implicit in the ideas mentioned above.
- More speed is coming
- Massively parallel architectures - 10^{5} processors in next BlueGene
- Network computing
- Multicore processors on desktops.

Griebel-Wozniakowski Theorem

- Question: Are there good rules out there to defeat the curse of dimensionality?
- Answer: Yes, if we formulate problem in reasonable spaces.
- "On the Optimal Convergence Rate of Universal and Non-Universal Algorithms for Multivariate Integrationand Approximation" by Griebel and Wozniakowski
- Consider functions in reproducing kernel Hilbert spaces.
* If the kernel is a product of univariate kernels, i.e.,

$$
\int_{[0,1]^{n}} g(x) d F(x)=\int_{[0,1]} \ldots \int_{[0,1]} \int_{[0,1]} g(x) d F_{1}\left(x_{1}\right) d F_{2}\left(x_{2}\right) \ldots d F_{n}\left(x_{n}\right)
$$

then optimal algorithm is as fast as slowest optimal algorithm of univariate kernels

* Hence, the optimal rate of convergence of universal algorithms for product kernels does not depend in dimension!
- Proof is nonconstructive, but tells us that computer searches are not necessarily futile.
- Economics problems generally fit this description

Quantum Computing

- New technology may break curse of dimensionality
- Quantum computer example
- Load quantum computer with a function f and a number n.
- ZAP it and it becomes n computers (more precisely, the quantum state of the computer will be a superposition of the n possible states) where computer i computes $f(i), i=1, . ., n$
- ZAP it $n^{-1 / 2}$ times
- Take a random draw among the n computers before they collapse back to one, but sample is now biased so that you get max $f(i)$ with probability $1-n^{-1}$!
- Quantum complexity theory
- Examines possible efficiency of quantum computer algorithms.
- There are examples of where quantum computing breaks curse of dimensionlity.
- "Path Integration on a Quantum Computer," Traub and Wozniakowski (2001).
* Path integration on a quantum computer is tractable - i.e., no curse of dimensionality.
* Path integration on a quantum computer can be solved roughly $\varepsilon^{-1 / 2}$ times faster than on a classical computer using randomization
* The number of quantum queries is the square root of the number of function values needed on a classical computer using randomization.
- In general, integration is faster on a quantum computer than a classical computer - Brassard-Hoya-Mosca-Tapp.

CONCLUSION

- If you formulate models in the right way, and If you use best available math, then you can avoid the curse of dimensionality
- New developments are making that easier to do.
- The path is clear, but there is a lot of work to do to build the road.

