MEETING THE CHALLENGES

OF SOLVING HIGH-DIMENSIONAL MODELS

O' Curse of Dimensionality, Where is Thy Sting?

Kenneth L. Judd

Hoover Institution, University of Chicago, and NBER

September 1, 2007

Curse of Dimensionality

- Many economic models are high dimensional
 - Dynamic Optimization: Multiple kinds of capital stocks
 - DSGE: Multiple consumers/firms/countries
 - Games: Multiple players and states
 - Bayesian analyses compute high-dimensional integrals
- Claim: "You can't solve your model because of the curse of dimensionality."
 - Response I: Analyze silly models
 - \ast Reduce heterogeneity in tastes, abilities, age, etc.
 - * Assume no risk
 - * Assume common information, common beliefs, etc.
 - Response II: Do bad math
 - Response III: Do bad math while analyzing silly models

- The message today: "The curse is not so bad"
 - $-\,\mathrm{I}$ will use our stochasic growth problem as an example, but these comments apply to many other problems.
 - "Theorems" about the curse are irrelevant for economics
 - There are many underutilized tools from math that can help
 - Sensible modelling choices can avoid curse
 - Mathematicians are currently developing tools to tackle the curse
 - Physicists are working to build computers that will avoid the curse
 - If the Boston Red Sox can beat the "Curse of the Bambino" then economists can beat the "Curse of Dimensionality"

Specific Responses to the Challenges of Dimensionality

- Math Tools
 - Compute derivatives efficiently
 - Approximate functions efficiently
 - Choose an efficient domain
 - Approximate integrals efficiently
 - Functional analysis
- Modelling Suggestions
 - Use continuous time
 - Get rid of kinks
 - Specify finite-dimension models
- Look to the future
 - Use "experimental mathematics" Monte Carlo people do it all the time, why not us?
 - Learn parallel computing tools, and other high power computing architectures
 - Study Griebel-Wozniakowski Theorem
 - Quantum computing

AVAILABLE MATH TOOLS

FOR MULTIDIMENSIONAL PROBLEMS

- Most economists use methods motivated by one-dimensional methods when they solve multidimensional models; the result is inefficient
- There are many tools that are not critical for one-dimensional problems but are powerful for multidimensional problems

Math Tool I: Evaluate Derivatives Efficiently

- Derivatives are important in perturbation methods and in any method that uses nonlinear equation solvers.
 - Analytic derivatives are slow

Analytic Derivatives

		+,-	*,••	Power	Total	Total
					flops	time
function	$u = (x^{\sigma} + y^{\sigma} + z^{\sigma})^{\rho}$	2	0	4	6	22
	1					
gradient	$u_x = \sigma \rho x^{\sigma - 1} \left(x^\sigma + y^\sigma + z^\sigma \right)^{\rho - 1}$	4	3	5		32
	$u_y = \sigma \rho y^{\sigma - 1} \left(x^\sigma + y^\sigma + z^\sigma \right)^{\rho - 1}$	4	3	5		32
	$u_z = \sigma \rho z^{\sigma-1} \left(x^{\sigma} + y^{\sigma} + z^{\sigma} \right)^{\rho-1}$	4	3	5		32
grad. total:		12	9	15	36	114
Hessian						≥ 400

– Finite differences are slow

	Finite Difference Derivatives					
		+,-	*,••	Power	Total	Total
					flops	time
function	$u = (x^{\sigma} + y^{\sigma} + z^{\sigma})^{\rho}$	2	0	4	6	22
gradient	$u_{x} = \left(u\left(x + \Delta, y, z\right) - u\right) / \Delta$	3	1	4		24
	$u_{y} = \left(u\left(x, y + \Delta, z\right) - u\right) / \Delta$	3	1	4		24
	$u_{z} = \left(u\left(x, y, z + \Delta\right) - u\right) / \Delta$	3	1	4		24
grad total:		9	3	12	24	72
Hessian						≥ 150

• Automatic Differentiation to the rescue!

- Two kinds of gains
 - Fewer operations: Theorem: (Griewank) For an *n*-dimensional function f: * Cost (Jacobian) < 5 Cost (f) * Cost (Hessian) < 5 n Cost (f)
 - Less use of expensive operations: power (~10 adds), exponential (~5 adds), log (~10 adds), etc.

- Current applications and implications
 - Use Newton methods (and discard DFP, BFGS, and BHHH)
 - * AD is now incorporated into much software; AMPL and GAMS, but not empirical packages!
 - \ast L-B-J: already exploits sparseness, could exploit AD
 - * Solve stochastic dynamic games
 - \cdot Pakes-Maguire and others use Gauss–Seidel methods ssssloooooowwwww
 - \cdot Ferris-Judd-Schmedders: 40,000 states, 240,000 unknowns; done in 5 minutes on a laptop
 - Perturbation methods
 - * Judd, Guu, Gaspar, Anderson, Juillard, Collard, Kim-Kim, Jesus Fernandez-Villaverde, Juan Rubio.
 - \ast Some have incorporated AD ideas into their code: Anderson-Levin-Swanson
 - * Laplace expansions in statistics.

Math Tool II: Efficient Function Approximation

• Linear polynomial methods:

$$f\left(x,y,z,\ldots\right) = \sum_{i=1}^{m} a_i \phi_i\left(x,y,z,\ldots\right), \, \phi_i \text{ multivariate polynomials}$$

– Choices for ϕ are tensor versus complete:

	degree 1 in each variable	degree 2 in each variable
one D	1,x	$1,x,x^2$

2D tensor	$\{1,x\}\otimes\{1,y\}$	$\left\{1,x,x^2 ight\}\otimes\left\{1,y,y^2 ight\}$
product	$= \{1, x, y, xy\}$	$=ig\{1,x,x^2,y,y^2,xy,$
3D tensor	$\{1,x\}\otimes\{1,y\}\otimes\{1,z\}$	$x^2y,xy^2,x^2y^2ig\}$
product	$= \{1, x, y, z, xy, xz, yz, xyz\}$	

2D complete 1, x, y3D complete 1, x, y, z $1, x, x^2, y, y^2, xy$ $1, x, y, z, xy, xz, yz, x^2, y^2, z^2,$ - Proper notion of "degree" in multivariate context is sum of powers

degree
$$(x^i y^j z^k) = i + j + k$$

– Complete polynomials like

$$\sum_{i+j+k \le m} a_{ijk} x^i y^j z^k$$

have far fewer terms than tensor products like

$$\sum_{i=0}^m \sum_{j=0}^m \sum_{k=0}^m a_{ij} x^i y^j z^k$$

with ratio being about d! in d-dimensional case.

 $\begin{array}{c|c} - \text{ Complete polynomials are better in terms of approximation power per term} \\ \text{ degree } k \text{ Number terms in complete poly Number terms in tensor product} \\ 2 & \approx \frac{1}{2}n^2 & 3^n \\ 3 & \approx \frac{1}{6}n^3 & 4^n \end{array}$

- See Gaspar-Judd (1997)

- Smolyak points and sparse grids
 - Efficient way to approximate smooth high dimensional functions
 - Krueger-Kubler found them to be very effective in stochastic OLG
 - Mertens used them to solve five-D option pricing problem
 - Judd and Mertens are applying them to Bayesian econometrics

Math Tool III: Define the Domain Efficiently

- Choosing the domain of our problem (e.g., states in a DP or dynamic GE model) is important
 - Want to include values for state that are part of the solution
 - Choosing too large a domain will create unnecessary computational burdens.
- More choices with higher dimensions
 - One dimension: Domain is interval; just need to know max and min
 - Two dimensions: More choices square/rectangle, sphere/ellipse, simplex, etc.
 - Three dimensions: More choices cube, sphere, ellipsoid, cylinder, simplex, etc.

- Cube versus Sphere
 - Spheres are much more compact:

* In cube of unit length at edge, length of longest diagonal is $n^{1/2}$

 \ast Ratio of sphere to cube volume is

$$\frac{\pi^{n/2}}{(n/2)!}$$
, n even $\frac{2^{n/2+1}\pi^{n/2}}{1\cdot 3\cdot 5\cdot \ldots\cdot n},$ n odd

- \ast Smaller volume reduces costs of approximation; allows one to exploit periodicity
- \ast Smaller volume reduces cost of integration
- If solution has a central tendency, then it rarely visits vertices
- Mathematicians are developing methods for spheres: orthogonal polynomials for hyperspherical coordinates, quadrature rules for spheres

Math Tool IV: Use Efficient Integration Methods

• New research direction I: Find rules that are good for many polynomials

- Choose points z_i and weights ω_i , i = 1, ..., m, to create a quadrature rule,

$$Q(f; z, \omega) = \sum_{i=1}^{n} \omega_i f(z_i)$$

to minimize errors.

* The literature is for one-dimensional problems:

$$\min_{z,\omega} \sum_{i=0}^{\infty} \left(Q\left(x^{i}; z, \omega\right) - \int x^{i} dx \right)^{2}$$

* A few mathematicians do this - Gismalla, Cohen, Minka* This is not done often since "you can't publish the results".

- $-\operatorname{I}$ created one for a two-D sphere:
 - * We need new formulas if we switch to spheres
 - * Choose 12 points (24 coordinates and 12 weights) to minimize sum of squared errors of formula applied to $x^i y^j$, $i, j \leq 20$.
 - * Use unconstrained optimization software; use many restarts to avoid local solution
 - * Result was

 $\begin{array}{l} 0.2227 \; (f[-0.8871,0]+f[0,-0.8871]+f[0,0.8871]+f[0.8871,0]) \\ + \; 0.2735 \; (f[-0.6149,0.6149]+f[-0.6149,-0.6149] \\ \; + \; f[0.6149,-0.6149]+f[0.6149,0.61496]) \\ + \; 1.0744f[-0.3628,0]+1.0744f[0,0.3628] \\ \; \; + \; 1.0744f[0,-0.3628]+1.0744f[0.3628,0] \end{array}$

with relativized errors of 10(-5) on average and 10(-4) at worst on degree 20 polynomials

* Result had interesting symmetry - 3 groups of 4 points lying on 3 circles - which gives indication as to what symmetries I should try in higher dimensions.

- General strategy: Look for formulas with small numbers of points to find desirable patterns for point sets, then assume those patterns when searching for bigger formulas.
- General principal: Use your time to come up with ideas, and use the computer to do the tedious work.
 - * Idea here: use formulas that integrate an important set of polynomials.
 - * Tedious work here: searching for optimal rule that satisfies the criterion.

- New research direction II: Use more information
 - Gauss-Turan methods use derivatives

$$\int_{-1}^{1} f(x) \, dx = \sum_{i=1}^{n} \omega_{i,0} f(z_i) + \sum_{i=1}^{n} \omega_{i,1} f'(z_i) + \sum_{i=1}^{n} \omega_{i,2} f''(z_i)$$

- * *n*-point formula has 4n parameters, and uses 3n bits of information to integrate first 4n polynomials
- * In one dimension, the cost of f and first two derivatives is about same as three f's, so no gain in one dimension.

– However, Gauss-Turan has potential for high-dimensional integrals

 \ast The formula

$$\begin{split} \int_{-1}^{1} \int_{-1}^{1} f(x, y) \, dx \, dy = & \sum_{i=1}^{n} \omega_{i,0} f(x_i, y_i) \\ &+ \sum_{i=1}^{n} \left(\omega_{i,x} f_x(x_i, y_i) + \omega_{i,y} f_y(x_i, y_i) \right) \\ &+ \sum_{i=1}^{n} \left(\omega_{i,xx} f_{xx}(x_i, y_i) + \omega_{i,xy} f_{xy}(x_i, y_i) + \omega_{i,yy} f_{yy}(x_i, y_i) \right) \end{split}$$

uses 6n bits of information at n points - one f evaluation and five derivatives - has 7n parameters and can integrate first 7n polynomials

 \ast Using automatic differentiation, multidimensional Gauss-Turan will be at regular quadrature rules that use only f values

- -

- Quasi-Monte Carlo (qMC) Methods
 - Sampling methods (including MC) use sequence x_i and computes N-point approximation

$$\int_{0}^{1} f(x) dx \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$
(1)

– Two simple qMC examples in \mathbb{R}^d are

Weyl:
$$x^n = (n p_1^{1/2}, \dots, n p_d^{1/2}) \mod 1$$

Niederreiter: $x^n = (n 2^{1/(d+1)}, \dots, n 2^{d/(d+1)}) \mod 1$

- Practical facts
 - * Convergence for smooth integrals using Weyl or Neiderreiter is N^{-1} . Others are better.
 - * qMC is excellent for high-D (e.g., 360) problems in option pricing problems
- News:
 - * New sequences: randomized (t-m-s) sequences have $N^{-3/2}$ convergence Owen
 - \ast qMC beats GHK by 10-100 for dimension < 10; beaths GHK by >2 for dimensions 10-50.
 - * qMC beats MCMC by 10-100 on ordinary problems Tribble and Owen.

Math Tool V: Functional Analysis

- Economics problems often reduce to finding unknown functions defined by functional equations
 - Dynamic programming: contraction fixed point map on space of bounded functions using L_{∞} norm.
 - Dynamic games
- Functional analysis tells us how to generalize calculus (e.g., Taylor series, IFT, etc.) to spaces of functions

- Can use IFT in Banach spaces (using C^2 topology) to solve dynamic game
 - Hyperbolic discounting
 - * Krusell-Kuruscu-Smith (2002) used high-order conjectural variation approach; produced many solutions
 - * Judd (2005) used Banach space IFT to prove local existence and uniqueness, and demonstrated nonlocal validity of expansion
 - Stochastic growth model
 - * Start with deterministic model to get, e.g., C(k) for $k \in [k0, k1]$
 - * Add uncertainty σ ; compute the function $C_{\sigma}(k)$, $C_{\sigma\sigma}(k)$, $C_{\sigma\sigma\sigma}(k)$, $C_{\sigma\sigma\sigma\sigma}(k)$, etc., functions for $k \in [k0, k1]$

* Construct series expansion: $\sum_{i=0}^{n} \frac{\sigma^{i}}{i!} C_{\sigma^{i}}(k)$.

- General idea:
 - * Differentiate in Banach spaces to derive equations satisfied by $f_{\varepsilon}(k)$, $f_{\varepsilon\varepsilon}(k)$, $f_{\varepsilon\varepsilon}(k)$, $f_{\varepsilon\varepsilon\varepsilon}(k)$, etc., then solve for $f_{\varepsilon}(k)$, $f_{\varepsilon\varepsilon}(k)$, $f_{\varepsilon\varepsilon\varepsilon}(k)$
 - * "Approximate the derivatives"; similar to, but generally better, than "differentiating the approximations"

MAKE MODELLING CHOICES

TO PRODUCE MANAGEABLE MATHEMATICAL PROBLEMS

- Many modelling choices are not essential for the economics.
- Economists should make otherwise inessential choices that reduce computational problems

Modelling Suggestion I: Use Continuous Time

- We pay a high price when we choose discrete-time formulations
- Dynamic programming: "next period's value"
 - Discrete-time: $V\left(F\left(x,U\left(x
 ight)
 ight)
 ight)$ double composition
 - Continuous-time: $V'\left(x\right)F\left(x,U\left(x\right)\right)$ single composition plus multiplication and gradient
 - Stochastic discrete time: $E\{V(F(x_t, U(x_t)), \theta_{t+1}) | \theta_t\}$ double composition plus multidimensional integral
 - Stochastic continuous time: $V'(x) F(x, U(x)) + \sigma^2 V''(x)$ single composition, multiplication, gradient, and Hessian
 - Composition of unknown functions (V and U) is far costlier than derivatives for both perturbation and projection methods
- Stochastic games: Doraszelski-Judd show that continuous-time games are orders of magnitude faster than discrete-time games.

Modelling Suggestion II: Use Finite-Dimensional States

- Many economists have problems with infinite-dimensional states, such as the distribution of income
- Alternative approach: There is only a finite number of people
- Example: suppose you have dynamic programming problem with N factories, each with DRTS, with adjustment costs for investment.

– Bellman equation

$$V(k) = \max_{I} u(c) + \beta V(k+I)$$

$$c = \sum_{i} f(k_{i}) - \sum_{i} g^{i} \left(I^{i}(k) \right)$$

– Equations defining V(k) and I(k):

$$V(k) = u(c) + \beta V(k + I(k)) 0 = -u'(c)(1 + \alpha I^{i}(k)) + V_{i}(k + I(k))$$

– Idea: Use perturbation method to compute Taylor series for $V\left(k\right)$ and the $I^{i}\left(k\right)$

– Problems:

- * V_i is a vector of length N; V_{ij} is a matrix with N^2 elements;
- * $I^{i}(k)$ is a list of N functions; $I^{i}_{j}(k)$ is an $N \times N$ matrix; $I^{i}_{jm}(k)$ is $N \times N \times N$ tensor, etc.
- * If $N = 10^9$, that is a lot of unknowns
- Solution: Exploit symmetry at steady state

$$* V_i = V_j, \, orall i, j$$

- * $V_{ii} = V_{11}, \forall i; V_{ij} = V_{12}, \forall i \neq j$
- * $V_{iii} = V_{111}, \forall i; V_{iij} = V_{112}, V_{ijj} = V_{122}, \forall i \neq j; V_{ijm} = V_{123}, \forall i \neq j \neq m \neq i$ * Similarly for I^i functions
- High-order Taylor series are feasible
 - * The number of unknowns when computing q'th derivative is 2q independent
 - * Solutions depend on N; take $N \to \infty$ to find infinite population solution
 - * Risk idiosyncratic and aggregate can be added with little extra computational cost.
- Similar to Gaspar-Judd (1997) use of symmetry, but far more efficient

Modelling Suggestion III: Get Rid of Kinks

- General observation: the more smoothness, the better for computation.
- Economists love to put in discontinuities. For example, Hubbard and Judd (1986)
 - Wanted to examine tax policy implications of borrowing constraints.
 - Assumed one could not borrow against future wages; equivalent to

$$r\left(W\right) = \begin{cases} r, W > 0\\ \infty W < 0 \end{cases}$$

or, equivalently,

$$u\left(c,W\right) = \begin{cases} u\left(c\right), W > 0\\ -\infty \ W < 0 \end{cases}$$

- Results were interesting, but hampered by computational inefficiencies

- Is this economically reasonable? Borrowing is not infinitely painful
 - First, go to parents.
 - Second, run up credit card debt.
 - In general, there is a set of sources of credit, with rising interest rates
 - Empirical fact: people do have debt!
- General point: kinks and discontinuities create problems but there are few problems where nonsmooth functions are necessary

FUTURE TOOLS

- Economists should not just think in terms of the hardware and software available today.
- Some new tools will be particularly valuable for solving high dimensional models.

Experimental Mathematics

- MC methods as practiced is very useful and sound but not supported by usual mathematical theorems. Real proof is
 - Suppose $f(x) = \sum_{i=0}^{\infty} a_i x^i$ on [0, 1] and $\sum_{i=K}^{\infty} a_i x^i$ is negligible for some K
 - Suppose computations show that a sequence X_i properly computes $\int x^i dx$ at rate $N^{-1/2}$ for each i < K.
 - Then, MC will compute $\int f(x)$ at rate $N^{-1/2}$
- This is experimental mathematics *NOT* probability theory!
- Experimental math:
 - Test out conjecture on many cases to explore validity
 - Combine computational results with pure math to arrive at conclusions with known range of validity
 - Computational results may inspire theorems, such as Neiderreiter analysis of LCM.

- Problem is not with using MC, but with understanding logical underpinnings.
 - $-\operatorname{MC}$ in practice is not based on probability theory
 - It is *inspired* by probability theory, but theorems do not apply
 - This inspiration led to search for pMC sequences which, by *testing*, were found to do a good job on some problems
- Why are these logical points important?
 - All agree that Monte Carlo is a very important and useful tool.
 - Recognition of the true foundation for MC will encourage us to develop other methods based on a similarly disciplined combination of analysis and computational experimentation.

Computing Speed

- We need more speed to do the necessary heavy lifting searches for good methods, symbolic manipulation, experimental mathematics implicit in the ideas mentioned above.
- More speed is coming
 - Massively parallel architectures $10^5~{\rm processors}$ in next BlueGene
 - Network computing
 - Multicore processors on desktops.

Griebel-Wozniakowski Theorem

- Question: Are there good rules out there to defeat the curse of dimensionality?
- Answer: Yes, if we formulate problem in reasonable spaces.
- "On the Optimal Convergence Rate of Universal and Non-Universal Algorithms for Multivariate Integrationand Approximation" by Griebel and Wozniakowski
 - Consider functions in reproducing kernel Hilbert spaces.
 - * If the kernel is a product of univariate kernels, i.e.,

$$\int_{[0,1]^{n}} g(x) \, dF(x) = \int_{[0,1]} \dots \int_{[0,1]} \int_{[0,1]} g(x) \, dF_{1}(x_{1}) \, dF_{2}(x_{2}) \dots dF_{n}(x_{n})$$

then optimal algorithm is as fast as slowest optimal algorithm of univariate kernels

- * Hence, the optimal rate of convergence of universal algorithms for product kernels does not depend in dimension!
- Proof is nonconstructive, but tells us that computer searches are not necessarily futile.
- Economics problems generally fit this description

Quantum Computing

- New technology may break curse of dimensionality
- Quantum computer example
 - Load quantum computer with a function f and a number n.
 - ZAP it and it becomes n computers (more precisely, the quantum state of the computer will be a superposition of the n possible states) where computer i computes f(i), i = 1, ..., n
 - ZAP it $n^{-1/2}$ times
 - Take a random draw among the n computers before they collapse back to one, but sample is now biased so that you get $\max f(i)$ with probability $1 n^{-1}!$

- Quantum complexity theory
 - Examines possible efficiency of quantum computer algorithms.
 - There are examples of where quantum computing breaks curse of dimensionlity.
 - "Path Integration on a Quantum Computer," Traub and Wozniakowski (2001).
 - * Path integration on a quantum computer is tractable i.e., no curse of dimensionality.
 - * Path integration on a quantum computer can be solved roughly $\varepsilon^{-1/2}$ times faster than on a classical computer using randomization
 - * The number of quantum queries is the square root of the number of function values needed on a classical computer using randomization.
 - In general, integration is faster on a quantum computer than a classical computer - Brassard-Hoya-Mosca-Tapp.

CONCLUSION

- If you formulate models in the right way, and If you use best available math, then you can avoid the curse of dimensionality
- New developments are making that easier to do.
- The path is clear, but there is a lot of work to do to build the road.