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Curse of Dimensionality

• Many economic models are high dimensional
— Dynamic Optimization: Multiple kinds of capital stocks

— DSGE: Multiple consumers/firms/countries

— Games: Multiple players and states

— Bayesian analyses compute high-dimensional integrals

— Bootstrapping: analyze many n-dimensional samples from n data points

— Simulation of large Markov processes - MCMC, Gibbs sampling, ACE

— Parameter space searches to find robust conclusions

• Claim: “You can’t solve your model because of the curse of dimensionality.”
• Response I: Analyze silly models
— Reduce heterogeneity in tastes, abilities, age, etc.

— Assume no risk

— Assume common information, beliefs, and learning rules

• Response II: Do bad math
• Response III: Do bad math when analyzing silly models
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• The message today: “The curse is not so bad”
— “Theorems” about the curse are irrelevant for economics

— There are many underutilized tools from math that can help

— Sensible modelling choices can avoid curse

—Mathematicians are currently developing tools to tackle the curse

— Physicists are working to build computers that can avoid the curse

— If the Boston Red Sox can beat the “Curse of the Bambino” then economists
can beat the “Curse of Dimensionality”
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Dynamic Example - Dynamic Programming

• Basic Bellman equation:
V (x) = max

u∈D(x)
π(u, x) + β E{V (x+)|x, u)} ≡ (TV )(x). (12.7.1)

• Computational task:
— Choose a finite-dimensional parameterization (e.g., polynomials, splines, etc.)

V (x)
.
= V̂ (x; a), a ∈ Rm (12.7.2)

and a finite number of states

X = {x1, x2, · · · , xn}, (12.7.3)

— Objective: find coefficients a ∈ Rm such that V̂ (x; a) “approximately” satisfies
the Bellman equation.
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• Value function iteration: For each xj, (TV )(xj) is defined by

vj = (TV )(xj) = max
u∈D(xj)

π(u, xj) + β

Z
V̂ (x+; a)dF (x+|xj, u) (12.7.5)

• In practice, we compute the approximation T̂
vj = (T̂ V )(xj)

.
= (TV )(xj)

— Integration step: for ωj and xj for some numerical quadrature formula

E{V (x+; a)|xj, u)} =
Z

V̂ (g(xj, u, ε); a)dF (ε)
.
=
X

ω V̂ (g(xj, u, ε ); a)

—Maximization step: for xi ∈ X, evaluate

vi = (T V̂ )(xi)

— After finding the new vj, we execute a fitting step:

∗ Data: (vi, xi), i = 1, · · · , n
∗ Objective: find an a ∈ Rm such that V̂ (x; a) best fits the data

— Value function iteration iterates on the coefficient vector a.
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• Dimension is important at many stages
— Solving the multidimensional optimization problem: u ∈ Rm implies m2 ele-
ments in Hessian

— Approximating the n - dimensional value function V (x) and choosing the points
xj: cost of simple methods is proportional to en - curse of dimensionality!

— Integrating the conditional expectation with q - dimensional shocks: many
methods have costs proportional to eq - curse of dimensionality!

• The good news: For many (if not most) problems in economics
— m - dimensional Hessians cost only m to compute

— n - dimensional approximation is polynomial in n

— q - dimensional integrals of Ck functions can use N points and converge at rate
N−k independent of dimension!

— Physics offers new ways to defeat the curse of dimensionality.
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Dynamic Example - Euler Equation Models

• Euler equation for simple growth model
u0(C(k)) = βu0(C(F (k)− C(k)))F 0(F (k)− C(k)) (16.4.2)

—When k is n-dimensional, we need to approximate n-dimensional functions
C (k)

— Identifying coefficients in C (k) approximation is an integration problem

—When we add uncertainty, we get multidimensiona integrals for conditional
expectations on right hand side.

— Dynamic equilibrium models have the same computational needs as dynamic
programming.

• Same computational tasks are present for dynamic games, which have both value
functions and policy functions to compute.
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Evaluating Derivatives Efficiently

• Common belief: “Newton’s method is impractical for large problems”
— Analytic derivatives are slow

Analytic Derivatives
+,- *,÷ Power Total Total

flops time
function u = (xσ + yσ + zσ)ρ 2 0 4 6 22

gradient ux = σρxσ−1 (xσ + yσ + zσ)ρ−1 4 3 5 32
uy = σρyσ−1 (xσ + yσ + zσ)ρ−1 4 3 5 32
uz = σρzσ−1 (xσ + yσ + zσ)ρ−1 4 3 5 32

grad. total: 12 9 15 36 114
Hessian ≥400
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— Finite differences are slow

Finite Difference Derivatives
+,- *,÷ Power Total Total

flops time
function u = (xσ + yσ + zσ)ρ 2 0 4 6 22

gradient ux = (u (x +∆, y, z)− u) /∆ 3 1 4 24
uy = (u (x, y +∆, z)− u) /∆ 3 1 4 24
uz = (u (x, y, z +∆)− u) /∆ 3 1 4 24

grad total: 9 3 12 24 72
Hessian ≥150
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• Automatic Differentiation to the rescue! Reduce redundant computations
Appx.

+,- *,÷ ab Total clock
flops time

function x1 = xσ, y1 = yσ, z1 = zσ 0 3 3 15
A = x1 + y1 + z1 2 2 2
u = Aρ 1 1 5

2 0 4 6 22

gradient x2 = x1/x, y2 = y1/y, z2 = z1/z, 3 3 3
A1 = ρ σ u/A 3 3 3
ux = x2 A1 1 1 1
uy = y2 A1 1 1 1
uz = z2 A1 1 1 1

grad. cost 9 9
15 31

— Two kinds of gains

∗ Fewer operations
∗ Less use of expensive operations: power (~10 adds), exponential (~5 adds),

10



• Insights are old
—Many, including Leigh Tesfatsion, recognized these ideas by mid 1980’s.

— Software development was slow. Tesfatsion was an early contributor.

• Theorem: (Griewank) For an n-dimensional function f :
— Cost (Jacobian) < 5 Cost (f)

— Cost (Hessian) < 5 n Cost (f)

• Comments:
— This is worst-case analysis

— This ignores any savings from avoiding costly operations.
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• Current applications and implications
— Use Newton methods (and discard DFP, BFGS, and BHHH)

∗ AD is now incorporated into much software; AMPL and GAMS (but not
empirical packages!)

∗ L-B-J versus Fair-Taylor: already exploits sparseness, could exploit AD
∗ Solve stochastic dynamic games - Pakes-Maguire
· Most use Gauss—Seidel methods (e.g., mimic best reply dynamics)
· Ferris-Judd-Schmedders: 10,000 states, 40,000 unknowns with binding
constraints; done in 5 seconds on a laptop

— Perturbation methods

∗ Perturbation methods are gaining in popularity: Judd, Guu, Gaspar, An-
derson, Juillard, Collard, Kim2, Jesus Fernandez-Villaverde, Juan Rubio.

∗ Some have incorporated AD ideas into their code: Anderson-Levin-Swanson
∗ Laplace expansions in statistics.
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Function Approximation

• Linear polynomial methods:

f (x, y, z, ...) =
mX
i=1

aiφi (x, y, z, ...) , φi multivariate polynomials

— Choices for φ are tensor versus complete:

degree 1 in each variable degree 2 in each variable
one D 1, x 1, x, x2

2D tensor {1, x}⊗ {1, y} ©
1, x, x2

ª⊗ ©1, y, y2ª
product = {1, x, y, xy} =

©
1, x, x2, y, y2, xy,

3D tensor {1, x}⊗ {1, y}⊗ {1, z} x2y, xy2, x2y2
ª

product = {1, x, y, z, xy, xz, yz, xyz}

2D complete 1, x, y 1, x, x2, y, y2, xy

3D complete 1, x, y, z 1, x, y, z, xy, xz, yz, x2, y2, z2,
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— Proper notion of “degree” in multivariate context is sum of powers

degree
¡
xiyjzk

¢
= i + j + k

— Complete polynomials like X
i+j+k≤m

aijkx
iyjzk

have far fewer terms than tensor products like
mX
i=0

mX
j=0

mX
k=0

aijx
iyjzk

with ratio being about d! in d-dimensional case.

— Complete polynomials are better in terms of approximation power per term

degree k Number terms in complete poly Number terms in tensor product
2 ≈ 1

2n
2 3n

3 ≈ 1
6n
3 4n

— See Gaspar-Judd (1997), Kubler-Krueger (2003).
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• Splines
— One dimension is easy

mX
i=0

aiBi (x)

— Tensor approach is bad; no “complete” approach since no Bi covers all x, y:
mX
i=0

mX
j=0

aijBi (x)Bj (y)

— Radial basis functions to the rescue:

∗ Functional form uses arbitrary, scattered points pi in
NX
i=1

aiφ (kx− pik)

∗ φ choices include
e−r

2
,

1√
1 + r2

,
1

1 + r2
,
√
1 + r2, ...

∗ New results show that these can be excellent approximations. Need to figure
out best choices for pi points.
∗ Recent work shows that RBFs can be very effective on PDEs similar to ones
from economics.
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Defining the Domain

• Choosing the domain of our problem (e.g., states in a DP or dynamic GE model)
is important

—Want to include values for state that are part of the solution

— Choosing too large a domain will create unnecessary computational burdens.

• More choices with higher dimensions
— One dimension: Domain is interval; just need to know max and min

— Two dimensions: More choices - square/rectangle, sphere/ellipse, simplex, etc.

— Three dimensions: More choices - cube, sphere, ellipsoid, cylinder, simplex, etc.

• Judd (1992), Gaspar-Judd (1997) made mechanical choice of hypercubes.
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• Cube versus Sphere
— Spheres are much more compact:

∗ In cube of unit length at edge, length of longest diagonal is n1/2
∗ Ratio of sphere to cube volume is

πn/2

(n/2)! , n even
2n/2+1πn/2

1·3·5·...·n , n odd

∗ Smaller volume reduces costs of approximation; allows one to exploit peri-
odicity

∗ Smaller volume reduces cost of integration
— If solution has a central tendency, then it rarely visits vertices
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an edge corresponds to a scheme of size 1. As an example, the scheme00* repre-
sents the edge going from corner(0;0;0) to the corner(0;0;1), or the scheme**0
the lower face of a cube.

The count of schemes of sizek equals the number of possibilities for selectingk
wildcard positions out ofn, multiplied with the number of possibilities to assign 0 or
1 to the remainingn� k positions, i.e. 2n�k. Therefrom it follows for the countNn

k of
k-dimensional hypercubes bordering then-dimensional hypercube:

Nn
k = 2n�k

�
n
k

�
: (1)

Equation (1) was used to derive the values in table 1. The number of hypersurfaces, to
which a corner belongs, can be found in a similar manner. It has to be counted, how
many schemes of sizen�1 are realized by a given bitstring. This are justn schemes,
one for each bit position. The remaining 2n�n = n hypersurfaces of the hypercube
are disjoint to that corner, and each connecting line from the corner to an inner point
of one of those disjoint hypersurfaces completely lies within the hypercube.

All other entries in table 1 are obvious.
The volume of an-dimensional unit hypercube is 1. Forn! ∞, the volume of a

hypercube withl > 1 goes to infinity, while forl < 1 it goes to 0. Also, the length of
the diagonal of a unit hypercube (

p
n) goes to infinity, the hypercube becomes more

and more extended. According to [4], the hypercube can be imagined as a highly
anisotropical body, more ressembling a spherical “hedgehog” than a convex body. The
inner ball-like part with radius 1=2 is covered with a large number (2n) of “spikes” of
length

p
n=2 (going to infinity for largen) (see figure 4). ”‘The surfaces of cubes are

so horribly jagged that they might even be thought of as being almost fractal.”’ ([4],
p. 42).

n-dimensional
unit cube of

volume 1 n-dimensional ball
within the cube

(radius 1/2)

2n "Spikes" of
length n1/2/2 ≈ ∞

Figure 4: ”‘Spiking Hypercube”’ [4].

Finally, a short computation will show the change of relative volumina within the
hypercube, when problem dimension increases. On the main diagonal of a hypercube,
a random pointP is selected with coordinatesp1 = p2 = : : : = pn = p and p > 1=2.
This way, two subcubes of the hypercube are defined, with one including the point
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n Vn

1 2.00000
2 3.14159
3 4.18879
4 4.93480
5 5.26379
6 5.16771
7 4.72477
8 4.05871
9 3.29851
10 2.55016

Table 2: Volume of the unit cube for the dimensions 1 to 10.

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

n

Sn/Cn

1

Sn

Cn

Figure 5: Ratio of the volumes of unit hypersphere and embedding hypercube of side-
length 2 up to the dimension 14.

As it was the case for the hypersimplex, the volume of a hypersphere goes to 0,
independent from the size of its radius. Table 2 gives the volumes of some unit cubes
for n= 1; : : : ;10. The hypersphere forn= 5 has the biggest volume, but this depends
on R. Especially, forR= 1=

p
2, the hypersphere attains its maximum in “our” 3-

dimensional world.

As an example consequence for search spaces, the ratio of volumes of unit hy-
persphere and embedding hypercube (with a sidelength of 2) will be considered (see
figure 5). Despite of the fact that the volume of the hypercube goes to infinity, and the
hypersphere touches all faces of the hypercube (i.e. at 2npoints), the volume of the em-
bedded hypersphere goes to 0! Moreover, forn> 10 we could neglect this volume part
within the hypercube for all practical computations. This is an important distinction
between search methods, which explores the hypercube, and search methods, which
explores the hypersphere. The last ones will not “see” very much from their world.

Also, it has to be noted that the term “high dimension” may refer to values ofn as
small as 10 or so.
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Integration - Gaussian-style formulas

• Integration formulas for one dimension look likeZ 1

−1
f (x) dx=

nX
i=1

ωif (xi)Z ∞
−∞

f (x)e−x
2
dx=

nX
i=1

ωif (xi)

— n point formula

— 2n parameters (points and weights)

— uses n bits of information

— exactly integrates all polynomials of degree 2n− 1.
• Simple approach for higher dimensions:
— Take product of one-dimensional methods:

mX
i1=1

· · ·
mX

id=1

ω1i1ω
2
i2
· · ·ωd

id
f (x1i1, x

2
i2
, · · · , xdid)

— Curse of dimensionality - number of points used is exponential in dimension d
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• There are other approaches
— Do not have to use simple Cartesian grids

— Consider X = {(x, y, z) |x, y, z ∈ {−1, 1}}. The rule
4

3
(f(1, 0, 0) + f(−1, 0, 0) + f (0, 1, 0) + f (0,−1, 0) + f (0, 0, 1) + f(0, 0,−1))

uses 6 points and exactly integrates all degree 3 polynomials©
1, x, y, z, x2, y2, z2, xyz, xy2, x2y, xz2, x2z, yz2, y2z

ª
over [−1, 1]3

—More generally, in dimension d you can use 2d points and exactly integrate all
degree 3 polynomials over [−1, 1]d withZ

[−1,1]d
f

.
= ω

dX
i=1

¡
f (uei) + f (−uei)¢ ,

where

ei is + 1 or − 1 in dimension i
u=

µ
d

3

¶1/2
, ω =

2d−1

d

— In general, there are nongrid sets of points that can be used.
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• New research direction I: Find rules that are good for many polynomials
— Choose points zi and weights ωi, i = 1, ..,m, to create a quadrature rule,
Q (f ; z, ω), to minimize errors.

∗ The literature is for one-dimensional problems:

min
z,ω

∞X
i=0

µ
Q
¡
xi; z, ω

¢− Z xi dx

¶2
∗ A few mathematicians do this - Gismalla, Cohen, Minka
∗ This is not done often since “you can’t publish the results”.
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— I created one for a two-D sphere:

∗We need new formulas if we switch to spheres
∗ Choose 12 points (24 coordinates and 12 weights) to minimize sum of squared
errors of formula applied to xiyj, i, j ≤ 20.
∗ Use unconstrained optimization software; use many restarts to avoid local
solution

∗ Result was
0.2227 (f [−0.8871, 0] + f [0,−0.8871] + f [0, 0.8871] + f [0.8871, 0])

+ 0.2735 (f [−0.6149, 0.6149] + f [−0.6149,−0.6149]
+f [0.6149,−0.6149] + f [0.6149, 0.61496])

+ 1.0744f [−0.3628, 0] + 1.0744f [0, 0.3628]
+1.0744f [0,−0.3628] + 1.0744f [0.3628, 0]

with relativized errors of 10(-5) on average and 10(-4) at worst on degree 20
polynomials

∗ Result had interesting symmetry - 3 groups of 4 points lying on 3 circles -
which gives indication as to what symmetries I should try in higher dimen-
sions.

25



-0.75 -0.5 -0.25 0.25 0.5 0.75

-0.75

-0.5

-0.25

0.25

0.5

0.75

CohenGBall.nb 1



— General strategy: Look for formulas with small numbers of points to find de-
sirable patterns for point sets, then assume those patterns when searching for
bigger formulas.

— General principal: Use your time to come up with ideas, and use the computer
to do the tedious work.

∗ Idea here: use formulas that integrate an important set of polynomials.
∗ Tedious work here: searching for optimal rule that satisfies the criterion.
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• New research direction II: Use more information
— Gauss-Turan methods use derivativesZ 1

−1
f (x) dx =

nX
i=1

ωi,0f(xi) +
nX
i=1

ωi,1f
0(xi) +

nX
i=1

ωi,2f
00(xi)

∗ n-point formula has 4n parameters, and uses 3n bits of information to inte-
grate first 4n polynomials

∗ In one dimension, the cost of f and first two derivatives is about same as
three f ’s, so no gain in one dimension.
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— However, Gauss-Turan has potential for high-dimensional integrals (Judd, 2006)

∗ The formulaZ 1

−1

Z 1

−1
f(x, y) dx dy=

nX
i=1

ωi,0f(xi, yi)

+
nX
i=1

(ωi,xfx(xi, yi) + ωi,yfy(xi, yi))

+
nX
i=1

(ωi,xxfxx(xi, yi) + ωi,xyfxy(xi, yi) + ωi,yyfyy(xi, yi))

uses 6n bits of information at n points - one f evaluation and five derivatives
- has 7n parameters and can integrate first 7n polynomials

∗ Using automatic differentiation, multidimensional Gauss-Turanwill beat reg-
ular quadrature rules that use only f values
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Integration - Monte Carlo

• If X were distributed uniformly on [0, 1], thenZ 1

0

f(x) dx = E {f (X)} = If

• Monte Carlo idea: use statistics to estimate E {f (X)} and use that as an approx-
imation of

R 1
0 f (x) dx.

— Generate N draws from U [0, 1], {xi}Ni=1, and let estimate be

Îf ≡ 1

N

NX
i=1

f(xi) (1)

— The “approximation” is a random variable, Îf , with variance

σ2
Îf
= N−1

Z 1

0

(f(x)− If)
2 dx = N−1σ2f . (2)

— Use σÎf as estimate of error.

— Central Limit Theorem: error goes to zero at rate N−1/2 independent of di-
mension.
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• Monte Carlo Propaganda
— Best deterministic methods converge at rate N−1/d: “Curse of dimensionality
since order ε error requires (1/ε)d points”.

—MC converges at rate N−1/2 for any dimension d

— So, MC breaks the curse of dimensionality but deterministic methods cannot.

• Observations about Monte Carlo Propaganda
— Implementations of MC use pseudorandom sequences which are deterministic
instead of random numbers

— Therefore, MC propaganda says that MC won’t work if you use standard “ran-
dom number” generators

— Implementations of MC converge at rate N−1/2 for any dimension d

— Therefore, there do exist deterministic methods which converge at rate N−1/2

for any dimension d.

— Therefore, MC propaganda is logically inconsistent!
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• This is well understood inmath community, particularly by the pioneers of pseudo-
random numbers:

— “Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin”. - John von Neumann (1951) (who authored some
pseudorandom sequences).

— “Anyone who has not seen the above quotation in at least 100 places is probably
not very old.” - D. V. Pryor (1993)

— “A random sequence is a vague notion embodying the idea of a sequence in
which each term is unpredictable to the uninitiated and whose digits pass a
certain number of tests, traditional with statisticians and depending somewhat
on the uses to which the sequence is to be put.” - D. H. Lehmer (1951).

— “A bad RNG is one that fails simple tests, and a good RNG is one that fails
only complicated tests that are hard to find.” L’Ecuyer
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• Question: Huh???
• Answer: MC propagandists pull a bait-and-switch
— They use worst-case analysis (Bahravov theorem) when they say “Best deter-
ministic methods for integrating C1 functions converge at rate N−1/d”

— They use (the weaker) probability-one criterion when they say “MC methods
converge at rate N−1/2”

• Mathematical Facts:
—MC worst-case convergence rate is N−0 - no convergence - since there always
is some sequence where MC does not converge

— LCM methods converge at N−1/2 for smooth functions in worst case; proofs
(see Neiderreiter) are number-theoretic.

— If f is Ck and periodic on the hypercube, there are deterministic rules (number-
theoretic methods based on Fourier analysis) which converge at rate N−k in-
dependent of dimension
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Integration - General Sampling Methods

• Sampling methods (including MC) use sequence xi and computesN -point approx-
imation Z 1

0

f(x) dx ≡ 1

N

NX
i=1

f (xi) (3)

• There are alternatives called quasi-Monte Carlo methods. Two simple examples
in Rd are

Weyl: xn =
³
n p

1/2
1 , · · · , n p1/2d

´
mod 1

Niederreiter: xn =
¡
n 21/(d+1), · · · , n 2d/(d+1)¢mod 1

• Convergence for integrals using Weyl or Neiderreiter is N−1.
• The debate is which deterministic formulas we should use, not deterministic versus
random.

—MC sequences are designed to look like iid sequences; coincidentally, they do
well at integration

— qMC sequences are designed to be uniformly distributed and to do well at
integration
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1500 Points generated by LCM
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First 1500 Weyl points
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Fig. 9. Orthogonal projection of a randomized (0, 3,19)-net.

Rather than using independent replications, an alternate approach to esti-
mate p( 2

fK
(or p( 2

fM
) is to rely on a single large scrambled (0,m, s)-net. Recall that

a (0, m, s)-net is a point set with bm points MA
n
, n"1,2, bmN. Suppose the

(0,m, s)-net is divided equally into b subsets of points as follows:

so that each subset (or netlet) becomes a (0,m!1, s)-net with bm~1 points.
Hence, a single scrambled (0, m, s)-net can be interpreted as a (0,m!1, s)-net

K.S. Tan, P.P. Boyle / Journal of Economic Dynamics & Control 24 (2000) 1747}1782 1765



114 I.H. Sloan, R.S. Womersley / Numerical integration on the sphere

Figure 1. Computed extremal system for n = 64, dn = 4225.

where from (2.1)

wj =
∫
Sr
�j (x) ds(x).

The practical computation of the weights proceeds differently. The reproducing
kernel basis functions gj (x) = Gn(xj , x), where Gn(x, y) is the reproducing kernel for
Pn(S

r) [19], satisfy ∫
Sr
gj (x) ds(x) = 1 for j = 1, . . . , dn,

so the condition that the cubature rule (1.1) is exact for all polynomials in Pn can be
written as

Gw = e, (3.1)

wherew is the vector of cubature weights, e is the vector of 1’s in R
dn andG is the matrix

defined in (2.4). In particular the cubature rule is exact for the constant polynomial
1 ∈ Pn, so

∑dn
j=1wj = |Sr |. Hence the average weight is wavg = |Sr |/dn = 1/λavg,

or wavg = 4π/dn for r = 2. The computed minimum and maximum values of the ratio
of the cubature weights to the average weight for the extremal systems of section 2 are



• Portfolio example
—More relevant for dynamic stochastic general equilibrium than option pricing
examples

— Assumptions

∗ n assets (iid Uniform), n = 10, 15, 20, 25, 30
∗ random portfolio with total variance fixed
∗ u (c) = −e−c

— Goal: compute expected utility, a n - dimensional integralZ
[−1,1]n

u

Ã
1 +

nX
i=1

θizi

!
dz
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—Methods

∗ degree 8 Taylor series (exploiting some AD methods): high fixed cost of
computing general formula but application is practically instantaneous

∗ Monte Carlo, Weyl, one randomly shifted Weyl
∗ 105 points

— Results:

∗ Taylor series: high fixed cost to get general formula but application is prac-
tically instantaneous - shows value of AD and symbolic method for integrals

∗ Taylor and Weyl were less than two standard errors fromMC: MC could not
reject the others

∗Weyl was 10-100 times better than MC
∗ Performance at n = 30 was same as n = 10.
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• Practical facts
— qMC has been used for many high-dimension (e.g., 360) problems in option
pricing problems

— pMC asymptotics kick in early; qMC asymptotics take longer for the qMC
sequences we know

— Therefore, pMCmethods have finite sample advantages, not asymptotic advan-
tages.

— “quasi-MC” is bad name since qMC methods have no logical connection to
probability theory
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• News:
— New sequences: randomized (t−m− s) sequences have N−3/2 convergence -
Owen

— New methods are now producing good qMC rules.

— qMC outperforms MC by factor of 10 in mixed logit discrete-choice models and
simulated maximum likelihood multinormal models - Train, Bhat

— qMC successes for computing Normal probabilities (x ∼ N (0, 1))

Pr [Ax ≤ b] , x ∼ N (0n, In×n) ;

see Sandor-Andras (J. Econometrics, 2004); beats GHKby 10-100 for dimension<
10; by more than 2 for dimension 10-50.

— qMC can do MCMC and Gibbs, and be faster than MC by 10-100 on ordinary
problems

∗ “Sampling Strategies for MCMC” (November, 2005) Tribble and Owen.
∗ “A quasi-Monte Carlo Metropolis Algorithm1,” Owen and Tribble, 2005.

• Conjecture: There is a lot of “low hanging fruit” available for econometricians
working on applying qMC to econometrics problems.

1Should be called Metropolis - Rosenbluth - Rosenbluth - Teller - Teller method.
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Methodology: Pure Math versus Experimental Math

• MC methods as practiced is very useful and sound but not supported by usual
mathematical theorems. Real proof is

— Suppose f (x) =
P∞

i=0 aix
i on [0, 1] and

P∞
i=K aix

i is negligible for some

— Suppose computations show that a sequence Xi properly computes
R
xidx at

rate N−1/2 for each i < K.

— Then, MC will compute
R
f (x) at rate N−1/2

• This is experimental mathematics NOT probability theory!
• Experimental math:
— Test out conjecture on many cases to explore validity

— Combine computational results with pure math to arrive at conclusions with
known range of validity

— Computational results may inspire theorems, such as Neiderreiter analysis of
LCM.
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• Problem is not with using MC, but with understanding logical underpinnings.
—MC in practice is not based on probability theory

— It is inspired by probability theory, but theorems do not apply

— This inspiration led to search for pMC sequences which, by testing, were found
to do a good job on some problems

•Why are these logical points important?
— All agree that Monte Carlo is a very important and useful tool.

— Recognition of the true foundation for MC will encourage us to develop other
methods based on a similarly disciplined combination of analysis and compu-
tational experimentation.
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Modelling Suggestion I: Use Continuous Time

•We pay a high price when we choose discrete-time formulations
• Dynamic programming: “next period’s value”
— Discrete-time: V (F (x, U (x))) - double composition

— Continuous-time: V 0 (x)F (x, U (x)) - single composition plus multiplication
and gradient

— Stochastic discrete time: E {V (F (xt, U (xt)) , θt+1) |θt} - double composition
plus multidimensional integral

— Stochastic continuous time: V 0 (x)F (x, U (x))+σ2V 00 (x) - single composition,
multiplication, gradient, and Hessian

— Composition of unknown functions (V and U) is far costlier than derivatives
for both perturbation and projection methods

• Stochastic games: Doraszelski-Judd show that continuous-time games are orders
of magnitude faster than discrete-time games.
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Modelling Suggestion II: Use Finite-Dimensional States

• Many economists have problems with infinite-dimensional states, such as the dis-
tribution of income

• Alternative approach: There is only a finite number of people
• Example: suppose you have dynamic programming problemwithN factories, each
with DRTS, with adjustment costs for investment.

— Bellman equation

V (k)=max
I

u (c) + βV (k + I)

c=Σif (ki)− Σig
i
¡
Ii (k)

¢
— Equations defining V (k) and I (k):

V (k)=u (c) + βV (k + I (k))

0=−u0 (c) (1 + αIi (k)) + Vi (k + I (k))

— Idea: Use perturbation method to compute Taylor series for V (k) and the
Ii (k)
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— Problems:

∗ Vi is a vector of length N ; Vij is a matrix with N2 elements;

∗ Ii (k) is a list ofN functions; Iij (k) is anN×N matrix; Iijm (k) isN×N×N

tensor, etc.

∗ If N = 109, that is a lot of unknowns

— Solution: Exploit symmetry at steady state

∗ Vi = Vj, ∀i, j
∗ Vii = V11, ∀i; Vij = V12, ∀i 6= j

∗ Viii = V111, ∀i; Viij = V112, Vijj = V122, ∀i 6= j; Vijm = V123, ∀i 6= j 6= m 6= i

∗ Similarly for Ii functions
— High-order Taylor series are feasible

∗ The number of unknowns when computing q’th derivative is 2q independent
∗ Solutions depend on N ; take N →∞ to find infinite population solution

∗ Risk - idiosyncratic and aggregate - can be added with little extra computa-
tional cost.

— Similar to Gaspar-Judd (1997) and Krusell-Smith (1997) uses of symmetry, but
far more efficient
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Modelling Suggestion III: Get Rid of Kinks

• General observation: the more smoothness, the better for computation.
• Economists love to put in discontinuities.
• Hubbard (1986) example (why not pick on a Republican big shot business school
dean?)

—Wanted to examine tax policy implications of borrowing constraints.

— Assumed one could not borrow against future wages; equivalent to

r (W ) =

(
r, W > 0

∞W < 0

or, equivalently,

u (c,W ) =

(
u (c) ,W > 0

−∞ W < 0
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— Is this economically reasonable? Borrowing is not infinitely painful

∗ First, go to parents.
∗ Second, run up credit card debt.
∗ In general, there is a set of sources of credit, with rising interest rates
∗ Empirical fact: people do have debt!

— Results were interesting, but hampered by computational inefficiencies

∗ Used a slowmethod to deal with endogenous age at which one is constrained.
∗ Taxing capital income may be a good idea if it reduces wage taxation and
liquidity constraint of borrowing constrained people.

• General point: kinks and discontinuities create problems but there are few prob-
lems where nonsmooth functions are necessary
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• Citation: R.Glenn Hubbard and Kenneth L. Judd, “Liquidity Constraints, Fiscal
Policy, and Consumption,” Brookings Papers on Economic Activity, 1986: 1.
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The Future: Computing Speed

•We need more speed to do the necessary heavy lifting - searches for good methods,
symbolic manipulation, experimental mathematics - implicit in the ideas men-
tioned above.

• More speed is coming.
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Vacuum tubes were replaced by transistors, and transistors by integrated circuits, whose components became
ever smaller and more numerous. During the 1980s microcomputers reached the consumer market, and the
industry became more diverse and competitive. Powerful, inexpensive computer workstations replaced the
drafting boards of circuit and computer designers, and an increasing number of design steps were automated.
The time to bring a new generation of computer to market shrank from two years at the beginning of the
1980s to less than nine months. The computer and communication industries grew into the largest on earth.

Computers doubled in capacity every two years after the war, a pace that became an industry given:
companies that wished to grow sought to exceed it, companies that failed to keep up lost business. In the
1980s the doubling time contracted to 18 months, and computer performance in the late 1990s seems to be
doubling every 12 months.

Faster than Exponential Growth in Computing Power. The number of MIPS in $1000 of computer from 1900 to the present.
Steady improvements in mechanical and electromechanical calculators before World War II had increased the speed of calculation a
thousandfold over manual methods from 1900 to 1940. The pace quickened with the appearance of electronic computers during the
war, and 1940 to 1980 saw a millionfold increase. The pace has been even quicker since then, a pace which would make humanlike
robots possible before the middle of the next century. The vertical scale is logarithmic, the major divisions represent thousandfold
increases in computer performance. Exponential growth would show as a straight line, the upward curve indicates faster than
exponential growth, or, equivalently, an accelerating rate of innovation. The reduced spread of the data in the 1990s is probably the
result of intensified competition: underperforming machines are more rapidly squeezed out. The numerical data for this power curve
are presented inthe appendix.

http://www.transhumanist.com/volume1/appendix.htm


The Future: Griebel-Wozniakowski Theorem

• Question: Are there good rules out there to defeat the curse of dimensionality?
We want assurances before we begin this search.

• Answer: Yes, if we formulate problem in reasonable spaces.
• "On the Optimal Convergence Rate of Universal and Non-Universal Algorithms
for Multivariate Integrationand Approximation” by Griebel and Wozniakowski

— Consider functions that belong to reproducing kernel Hilbert spaces.

∗Without loss of generality it is enough to consider linear algorithms.
∗ The best algorithms for approximation and integration that works for all
RKHS displays a curse of dimensionality.

∗ For any given RKHS, the optimal rate of convergence is at least 1/2 for
multivariate integration 1/4 for multivariate approximation.
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∗ If the kernel is a product of univariate kernels, i.e.,Z
[0,1]n

g (x) dF (x) =

Z
[0,1]

...

Z
[0,1]

Z
[0,1]

g (x) dF1 (x1) dF2 (x2) ...dFn (xn)

then the optimal algorithm converges at the same rate as the slowest op-
timal algorithm across the univariate kernels. Hence, the optimal rate of
convergence of universal algorithms for product kernels does not depend in
dimension!

— Proof is nonconstructive, but tells us that computer searches are not necessarily
futile.

• Economics problems are generally integrals of smooth functions over products of
smooth univariate kernels as long as we stay away from kinks.
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The Future: Quantum Computing

• New technology may also break curse of dimensionality
• Quantum computer example
— Load quantum computer with a function f and a number n.

— ZAP it and it becomes n computers (more precisely, the quantum state of the
computer will be a superposition of the n possible states) where computer i
computes f (i), i = 1, .., n

— ZAP it n−1/2 times

— Take a random draw among the n computers before they collapse back to one,
but sample is now biased so that you get max f (i) with probability 1− n−1!
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• Quantum complexity theory
— Examines possible efficiency of quantum computer algorithms.

— There are examples of where quantum breaks curse of dimensionlity.

— “Path Integration on a QuantumComputer,” Traub andWozniakowski (2001).

∗ Path integration on a quantum computer is tractable.
∗ Path integration on a quantum computer can be solved roughly ε−1 times
faster than on a classical computer using randomization, and

∗ exponentially faster than on a classical computer with a worst case assurance.
∗ The number of quantum queries is the square root of the number of function
values needed on a classical computer using randomization.

• In general, integration is faster on a quantum computer than a classical computer
- Brassard-Hoya-Mosca-Tapp.
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Conclusion

• If you formulate models in the right way, and If you use best available math, then
you can avoid the curse of dimensionality

• New developments are making that easier to do.
• The path is clear, but there is a lot of work to do to build the road.
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