
Comparing numerical solutions of models
with heterogeneous agents (Model A): a
simulation - based parameterized

expectations algorithm

Lilia Maliar and Serguei Maliar∗†

August 21, 2007

Abstract

In this paper, we describe how to solve Model A (finite number
of countries - complete markets) of the JEDC project by using a
simulation-based Parameterized Expectations Algorithm (PEA).

JEL classification : C6; C63; C68; C88

Key Words : Nonlinear dynamic models; Heterogeneous agents;
Parameterized expectations; Monte Carlo simulation; Numerical solu-
tions

∗We thank Kenneth Judd and Michel Juillard for several useful suggestions. This
research was supported by the Stanford Institute for Theoretical Economics, the Center
for Financial Studies in Frankfurt, the Instituto Valenciano de Investigaciones Económicas
and the Ministerio de Ciencia y Tecnología de España under the Ramón y Cajal program
and BEC 2001-0535.

†Departamento de Fundamentos del Análisis Económico, Universidad de Alicante,
Campus San Vicente del Raspeig, Ap. Correos 99, 03080 Alicante, Spain. E-mails:
maliarl@merlin.fae.ua.es (Lilia Maliar), maliars@merlin.fae.ua.es (Serguei Maliar).

1



1 Introduction
In this paper, we describe how to solve Model A (finite number of countries
- complete markets) of the JEDC project by using a simulation-based Pa-
rameterized Expectations Algorithm (PEA).1 We study only variants of the
model in which countries are heterogeneous in their fundamentals A5, A7,
A8; the variants where countries are identical in their fundamentals A1, A3,
A4 are particular cases of the heterogeneous-country ones and can be solved
by using the same program.2

The plan of the paper is as follows: Section 2 presents the model and
derives the optimality conditions. Section 3 presents the algorithm. Section
4 describes the parameter choice. Section 5 discusses the results, and finally,
Section 6 concludes.

2 The model
We consider a model with a finite number of countries, N , where each country
is populated by a representative consumer. A social planner maximizes a
weighted sum of the expected lifetime utilities of the countries’ representative
consumers subject to the resource constraint, i.e.,
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where Et is the operator of conditional expectation; cnt , k

n
t , a

n
t , u

n, fn and
τn are consumption, capital, technology shock, utility function, production

1The computation of equilibrium in some of the studied models can be simplified by
using aggregation theory, see Maliar and Maliar (2003a) for a discussion of aggregation
results for dynamic models. In the present paper, we intentionally make no use of either
aggregation theory or any other simplifying analytical results.

2Models A1, A3 and A4, in which countries are identical in their fundamentals, can be
solved in a more efficient manner by exploiting their symmetric structure. In subsequent
version, we will write separate programs for those models.
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function and welfare weight of a country n ∈ {1, ..., N}, respectively; β is
the discount factor; δ is the depreciation rate; A is the level of technol-
ogy; and ϕ and ξ are the adjustment cost parameters. Initial condition³
{kn0}Nn=1 , {an0}Nn=1

´
is given. The process for technology shocks in country

n is given by

log ant = ρ log ant−1 + σ (et + ent ) , with et, e
n
t ∼ N (0, 1) , (3)

where ρ and σ are the autocorrelation coefficient and the standard deviation
of technology shocks, respectively.
We restrict attention to an interior first-order recursive (Markov) equi-

librium. If such an equilibrium exists, it satisfies First Order Conditions
(FOCs) of the form
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where n,m ∈ {1, ..., N} and where ωn
t and θnt are defined as
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Here, and further on in the text, notation of type hj stands for the first order
partial derivative of a function h (x1, ..., xj, ..., xJ) with respect to a variable
xj. FOCs (4), (5), (6) and resource constraint (2) determine the equilibrium
uniquely.

3 A simulation-based PEA
To solve the model, we use a version of the simulation-based Parameterized
Expectations Algorithm (PEA) by den Haan and Marcet (1990).3 Under the

3An extensive discussion of this version of the PEA and a list of its applications can be
found in Marcet and Lorenzoni (1999). For a general discussion of the projection methods,
see Judd (1992, 1998).
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PEA, one should approximate the conditional expectation in (6) by a para-
metric function of state variables and search for approximate decision rules by
simulation. If N > 1, we cannot use the parameterization of the expectation
in the Euler equations (6) proposed in den Haan and Marcet’s (1990) because
we would get N equations identifying linearly-dependent marginal utilities
of consumption and we would be left with only one restriction, resource con-
straint (2), to determine N capital stocks. In other words, consumption and
labor would be overidentified and the capital stocks would be underidentified
(see Marcet and Lorenzoni, 1999, for a discussion of this issue). To deal with
this problem, we re-write the Euler equation (6) as follows:
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where n ∈ {1, ..., N}. The validity of representation (7) requires that in
equilibrium, no capital stocks ever reaches zero, which was indeed the case in
our simulations. In the Appendix, we provide the Euler equations for Models
5, 7 and 8 in (13), (17) and (23), respectively.
The state space includes 2N state variables, which in period t, are N cap-

ital stocks {knt }Nn=1 and N current technology shocks {ant }Nn=1. We approxi-
mate each country’s decision rule for the next-period capital stock, knt+1, by
an exponentiated polynomial of state variables. When the number of coun-
tries is large, even low-order polynomial approximations require computing a
large number of coefficients and can be computationally costly. For example,
ifN = 10, a first-order polynomial has (2N + 1)N = 210 coefficients, and the
second-order polynomial has (1 + 2N +N (2N + 1))N = 2310 coefficients.
Moreover, the number of polynomial coefficients increases exponentially with
the order of a polynomial, which is the so-called curse of dimensionality. We
therefore restrict attention to the second-order polynomial approximations
in which we exclude the cross-terms. (For example, under N = 10, our re-
duced second-order polynomial has (1 + 4N)N = 410 coefficients). Thus,

4



we postulate the following decision rules for the countries’ capital stocks:⎡⎣ k1t+1
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is fixed, equations (2), (4), (5),

(8) determine uniquely the model’s dynamics. Our objective is to find the
unknown parameters in approximation (8).
We compute the set of parameters v by using the following iterative

procedure:

• Step 1. Fix initial conditions. We choose kn0 = kss, and an0 = 1 for n =

1, ..., N .4 Draw and fix for all simulations a random series
n
{ant }Nn=1

oT
t=0

by using (3). For an iteration i, fix a set of parameters v = v (i) ∈
R(4N+1)N . Specifically, for an initial iteration, we assume

vns = 1 if s = n and vns = ε if s 6= n,

where n = 1, ..., N, s = 1, ..., 4N and ε is a small number (we take
ε = 10−5).5

• Step 2. Given v (i), recursively calculate
n©
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fying (2), (4) and (5).

4Here, and further on in the text, zss denotes a steady state value of a variable z.
5Non-zero initial values of the coefficients are needed in order to initialize the MATLAB

subroutine ”nlinfit”, which we use to perform the nonlinear regression.
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• Step 4. Construct variables
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Run a nonlinear least-square regression of the constructed variables on
explanatory function (6) and call the estimated vector of parameters
G (v (i)).

• Step 5. Compute the vector v (i+ 1) for the next iteration

v (i+ 1) = (1− µv)v (i) + µvG (v (i)) , (10)

where µv ∈ (0, 1) is the updating parameter.

Iterate on Steps 2− 5 until a fixed point is found, v∗ = G (v∗).

We shall now describe how to perform Step 3. For each t, we have 2N
conditions, specifically, one resource constraint (2), N − 1 conditions of type
(4) and N conditions of type (5), which allow us to restore 2N unknowns,
{cnt , lnt }Nn=1. In principle, we can solve for the consumption and labor alloca-
tions by using a numerical solver. However, this might be computationally
costly as we are to find a solution to a 2N-dimensional system of non-linear
equations T × I times, where I is the number of iterations necessary for con-
vergence (for example, if T = 10000 and I = 1000, we have T ×I = 107). We
describe two cheap alternatives to the procedure of solving for consumption
and labor by a numerical solver on each iteration.
The first alternative is used in Model 5: we reduce the computational

cost by calculating the relation between the individual and aggregate con-
sumption outside of the iterative cycle.6 Specifically, let us consider FOC
(4) and construct a grid for values for aggregate consumption Ct =

PN
n=1 c

n
t

such that {C1, C2, ..., CM}. The grid should be chosen so that the value
of Ct, which can effectively occur along simulations, is always within the
range [C1, CM ]. Define the grid function for individual consumption cn (Cm),
n = 1, ..., N , m = 1, ...,M by computing the solution to FOC (4) for each
Cm ∈ {C1, C2, ..., CM}. To be specific, from (4), we express consumption of

6This approach is also described in Maliar and Maliar (2005).
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countries n = 2, ..., N in terms of consumption of country n = 1; and from
resource constraint (2), we express the aggregate consumption; see condition
(14) in the Appendix. Within the iterative cycle, with our grid function, we
can compute c1t by interpolation and restore the remaining c

n
t .

The second alternative we describe for Models 7 and 8. It is a simple
updating approach, which is similar in spirit to the one we use in Step 5,
but instead of updating coefficients, we update labor allocations. Specifi-
cally, from (5), we solve for consumption in terms of labor for all countries
n = 1, ...,N (see conditions (18) and (24) for Model 7 and Model 8, respec-
tively); from (4), we express labor of countries n = 2, ..., N in terms of labor
of country n = 1 (see conditions (19) and (25) for Model 7 and Model 8,
respectively); and finally, from resource constraint (2), we express labor of
country 1 in terms of the other variables (see conditions (20) and (26) for
Model 7 and Model 8, respectively).

Let
n
{lnt (j)}Nn=1

oT
t=0

be the labor series for Models 7 and 8 obtained on

iteration j. Use an updating condition like (10) in order to recompute the

series and call the new series
n
{L (lnt (j))}Nn=1

oT
t=0
. Find the series for the

next iteration by using the updating

lnt (j + 1) = (1− µl) l
n
t (j) + µlL (lnt (j)) , (11)

where µl ∈ (0, 1) is the updating parameter. Iterate until a fixed point
{lnt }∗ = L ({lnt }∗) for all t, n is found with a sufficient degree of accuracy. On
the first iteration (j = 0), we assume that lnt (0) is equal to its steady state
value for all t and n.
Let us finally discuss the convergence properties of the PEA. It is well-

known that the PEA is not a contraction mapping method, and it does
not automatically guarantee finding a solution. The problem arises if the
initial guess about the parameters v is very far from the true solution, in
which case the simulated series can become non-stationary and can break
down the regression. In order to enhance the convergence properties of the
algorithm, we use the approach ”moving bounds” described in Maliar and
Maliar (2003b). We specifically restrict each capital stock knt+1 in the model
to be within bounds

£
k (i) , k (i)

¤
such that

k (i) = kss exp (−λi) ,
k (i) = kss (2− exp (−λi)) ,
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where i is the number of iterations performed, and λ > 0 is the parameter
determining the pace at which the bounds are moved. Under this choice,
on the first iteration (i = 0), the simulated series coincide with the steady
state solution, knt (0) = kss for all t. On the subsequent iterations, the lower
and upper bounds gradually move approaching 0 and 2kss, respectively. In
fact, our updating procedure (11) for computing labor allocations in Models
7 and 8 may also lead to series with undesirable properties on initial itera-
tions, namely, the series can be highly nonstationary or the series can take
negative values. To prevent these undesirable outcomes, we impose bounds
on simulated series of consumption and labor as well.

4 Parameterization
In this preliminary version, we restrict attention to one particular set of the
parameters. The parameters which are common for all studied models are
summarized in Table 1.

Table 1. Common parameters.

α β δ ρ σ φ ξ
0.36 0.99 0.025 0.95 0.01 10 2

The country-specific parameters are provided in Table 2.

Table 2. Country-specific parameters.

A5 A7 A8
(γm, γM) = (0.25, 1.0) (γm, γM) = (0.25, 0.5) (γm, γM) = (0.2, 0.4)

(χm, χM) = (0.75, 0.9)
(µm, µM) = (−0.3, 0.3)

The remaining model’s parameters are chosen so that both capital and labor
in the steady state are equal to one. To be specific, we set the level of
technology at A = 1−β+βδ

αβ
. In Model 5 with no labor choice, this value of A

ensures that the steady state capital stock is equal to one, while in Models 7
and 8 with labor choice, it ensures that the capital to labor ratio in the steady
state is equal to one. Furthermore, if capital and labor are equal to one, then
fn (knss, l

n
ss) = fn (1, 1) = 1 for any of the production functions considered in

Models 5, 7 and 8. In autarky, steady state consumption is identical for all
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countries and is given by cnss = Afn (knss, l
n
ss) − δknss = A − δ. Substituting

steady state consumption, capital and labor in the intratemporal FOC (5)
allows us to identify the remaining utility-function parameters of Models 7
and 8: in Model 7, the parameter ψ is computed from (21) and in Model 8,
the parameters b1, ..., bn are computed from (27) (see the Appendix). We next
calibrate the welfare weights to match consumption in the steady state. The
welfare weights are defined up to a multiplicative constant. Thus, without
a loss of generality, we set the welfare weight of the first country equal to
one, τ1 = 1. We restore the remaining welfare weights from condition (4),
which in Models 5, 7 and 8, becomes (16), (22) and (28), respectively, (see
the Appendix).
We compute a solution under two lengths of simulation, T1 = 3000 and

T2 = 10000. We set the updating parameter in the decision rule for capital
(10) at µv = 0.1. We use the moving-bounds parameter λ = 0.001, which
approximately corresponds to having k = 0.9kss and k = 1.1kss after 100
iterations. The convergence criterion used was that the L2 distance obtained
between the vectors of coefficients in two subsequent iterations is less than
10−10.
As far as consumption and labor allocations are concerned, finding them

with a high degree of accuracy on each iteration on v would imply a high
computational cost and is in fact not useful since on the next iteration, we
would have to re-compute the consumption and labor allocations for a dif-
ferent vector v. We therefore do not target a high precision in consumption
and labor series on each iteration on v but do 10 updatings of the consump-
tion and labor series according to (11) under µx = 0.01. As the solution
for capital stock characterized by v is refined along the iterations, so do the
consumption and labor series. Our convergence criterion for consumption
and labor is that the L2 distance obtained between the corresponding time
series on two subsequent iterations is less than 10−10.
As far as the initial guess is concerned, we proceed in two steps. First, we

compute a solution under a first-order exponentiated polynomial by starting
from a non-stochastic steady state. Second, we use the obtained results as an
initial guess for our second order polynomial approximation. Our program is
written in Matlab, and we run simulations on Pentium 4 PC with 3.33Ghz
processor.
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5 Results
Our algorithm was successful in finding the solutions to all considered models.
For the sake of comparison, we report the solutions under both simulation
lengths considered T1 = 3000 and T2 = 10000. In Figures 1, 2 and 3, we
illustrate the solution to the Model 8 under T2 = 10000 for N = 2, 6, 10
countries.
We now discuss the accuracy issues. Under our computational method,

the only relevant source of approximation errors is the Euler equation errors.
First, the resource constraint (2) is by construction satisfied exactly. Second,
to compute numerically the consumption function in Model 5, we use very
fine grid for aggregate consumption, namely, 1000 points, situated between
0.5 and 1.5 level of aggregate consumption in the steady state; the fine grid
guarantees a high degree of accuracy. Thirs, in Models 7 and 8, we iterate on
labor allocations until the approximation error in each allocation is less than
10−10, which again implies a very high accuracy. Thus, all the approxima-
tion errors under our method are a priory negligible compared to the Euler
equation errors. We therefore focus only on the last type of errors. Before
performing the tests, we removed the first 100 observations to eliminate the
effect of initial conditions.
To evaluate the errors of the Euler-equation approximation, we express

the Euler equation (4) in the following normalized form:

n
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Under N = 2, the conditional expectation was computed by using product
four-point Gauss-Hermite integration and uder N = 6 and N = 10, it was
computed by using a monomial formula of degree 3, as is described in Judd
(1998). In Test 1, we compute the approximation error of the Euler equation
across a set of 100 points for capital stocks and shocks, x = 1, ..., 100, that are
randomly chosen at each of the following radia r ∈ {0.01, 0.1, 0.3} from the
deterministic steady state. In Test 2, we compute the errors on 100 points for
capital stocks and shocks that are drawn from the simulated series in periods
t = 10, 20, 30, ..., 100. Finally, in Test 3, we calculate the Denhaan-Marcet
statistics, as described in Taylor and Uhlig (1990),

mn = (an)0 (z0z)
£
z0z (ηn)2

¤−1
(z0z) an,
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where an = (z0z)−1 z0ηn is the ordinary least square estimator in the regres-
sion of the Euler equation residual, ηn ≡ [ n1 , ..., n

T ]
0, with n

1 , ...,
n
T defined

in (12) on a list z which includes a constant, the current state variables, and
the second-order monomials of the current state variables. The Denhaan-
Marcet statistic has approximately χ (11) distribution, see den Haan and
Marcet (1994). A two-sided test at a significance level of 2.5% at each side
is 3.82 < mn < 21.92.
For each test implemented, we report computational time (in seconds),

which is denoted by T(test 1), T(test 2) and T(test 3) for Tests 1, 2 and 3,
respectively. In Test 1, for each radius r, we provide the maximum Euler
equation errors max = max

n∈{1,...,N},x=1,...,10
{k n

t (x)k}, where k·k denotes the
absolute value. In Test 2, we provide both the mean Euler equation error, =
1
10N

P10
x=1

PN
n=1 k n

t (x)k, and the maximum Euler equation error. Finally, in
Test 3, we report the minimum and the maximum of the Denhaan-Marcet
statistic, mmin = min

n∈{1,...,N}
{mn} and mmax = max

n∈{1,...,N}
{mn}, respectively.

The computational time and the results of the accuracy tests for Models 5,
7 and 8 are presented in Tables 3, 4, and 5, respectively (notation z (−p)
means z10−p).

Table 3. The results for Model A5.
N = 2 N = 6 N = 10

Sim. length 3000 10000 3000 10000 3000 10000

T (solution) 1m15s 4m24s 27m09s 1h03m 8h15m 14h33m
T(test 1) 0.63s 0.63s 1.76s 1.86s 42.20s 42.78s
max (r1) 3(-4) 2(-4) 4(-4) 4(-4) 8(-4) 5(-4)
max (r2) 4(-3) 4(-4) 5(-3) 2(-3) 5(-3) 2(-3)
max (r3) 2(-2) 5(-3) 3(-2) 9(-3) 3(-2) 1(-2)
T(test 2) 0.23s 0.24s 0.56s 0.63s 14.05s 14.08s

2(-4) 2(-4) 3(-4) 2(-4) 4(-4) 3(-4)
max 1(-3) 5(-4) 2(-3) 1(-3) 2(-3) 2(-3)
T(test 3) 0.16s 0.55s 8.25s 28.95s 1m17s 4m26s
mmin 4.75 5.91 71.74 54.21 268.53 182.24
mmax 7.91 16.60 89.52 79.95 302.12 236.94
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Table 4. The results for Model A7.
N = 2 N = 6 N = 10

Sim. length 3000 10000 3000 10000 3000 10000

T (solution) 4m15s 8m56s 44m12s 1h10m 9h12m 13h48m
T(test 1) 15.94s 16.16s 5m32s 5m15s 3h25m 4h05m
max (r1) 7(-4) 2(-4) 1(-3) 4(-4) 1(-3) 7(-4)
max (r2) 7(-3) 5(-4) 1(-2) 2(-3) 5(-3) 3(-3)
max (r3) 5(-2) 5(-3) 8(-2) 1(-2) 3(-2) 2(-2)
T(test 2) 5.39s 5.42s 1m53s 1m46s 1h19m 1h40m

2(-4) 1(-4) 4(-4) 3(-4) 5(-4) 3(-4)
max 1(-3) 5(-4) 2(-3) 1(-3) 3(-3) 2(-3)
T(test 3) 0.13s 0.59s 8.78s 28.99s 1m20s 5m15s
mmin 9.97 23.45 73.27 98.74 200.69 211.63
mmax 10.71 27.13 98.85 131.16 252.19 266.12

Table 5. The results for Model A8.
N = 2 N = 6 N = 10

Sim. length 3000 10000 3000 10000 3000 10000

T (solution) 4.07m 12.03m 24m18s 1h24m 3h21m 4h34m
T(test 1) 30.86s 30.45s 1h21m 2h01m 5h26m 24h17m
max (r1) 4(-4) 3(-4) 7(-4) 7(-4) 8(-4) 8(-4)
max (r2) 3(-3) 6(-4) 2(-3) 2(-3) 4(-3) 2(-3)
max (r3) 2(-2) 7(-3) 2(-2) 1(-2) 4(-2) 1(-2)
T(test 2) 10.36s 10.23s 42m05s 42m41s 1h56m 8h18m

3(-4) 2(-4) 6(-4) 4(-4) 7(-4) 4(-4)
max 1(-3) 7(-4) 3(-3) 2(-3) 4(-3) 2(-3)
T(test 3) 0.13s 0.63s 8.38s 25.45s 1m05s 4m28s
mmin 16.23 50.88 88.07 104.38 215.10 222.39
mmax 16.44 57.21 112.19 131.45 245.69 262.82

The results in the tables show similar regularities for all the models consid-
ered.

• The computational time increases around 2 times when the length of
simulations increases from T1 = 3000 to T2 = 10000 and the error can
decrease up to several times.
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• The model delivers errors in the magnitude of 10(−4) in the ergodic
distribution and with the radia which are close to the mean of ergodic
distribution, however, the accuracy is sharply reduced if the radia in-
creases. This is because the PEA computes the solution on the ergodic
distribution, and thus, does not accurately predict the tails.

• Given the length of simulation, the accuracy is reduced as the number
of countries increases. This is because we have the same number of
observations to identify a larger number of parameters.

• As far as Test 3 is concerned, for N = 2, the Denhaan-Marcet statis-
tics are mainly within the critical interval, but for other cases, they are
larger than the upper critical value. However, many algorithms com-
monly accepted in the literature fail on this statistics (see Taylor and
Uhlig, 1990, page 14).

6 Conclusion
The simulation-based PEA, described in this paper, was successful in solving
a complete-market neoclassical stochastic growth model with a finite num-
ber of countries. In all experiments considered, the algorithm was able to
converge to the true solution starting from the non-stochastic steady state.
Our algorithm can be applied to models with either homogeneous or het-
erogeneous countries without modifications, as it does not rely on countries’
symmetricity. The PEA we use is not particularly costly: under the length
of simulation T = 10000, it takes few minutes to solve a two-country model,
about 1 hour to solve a six-country model and up to 14 hours to solve a ten-
country model. In fact, the speed of computations was not our priority: we
set the algorithm’s parameters to values, which are common for all models
considered and which guarantee convergence even if we start iterations far
from the true solution. In most of the cases, computational time could be
reduced twice or more if we change the algorithm’s parameters depending on
a specific model. Overall, we view all the obtained solutions as sufficiently
accurate: when the state variables are drawn from the ergodic distribution,
the errors do not exceed 10−3, i.e., 0.1%. This magnitude of errors is likely to
be not essential for many economically relevant applications. For example,
such errors would play a little role in the model’s second-moment properties,
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which are standartly used in the real-business-cycle literature for describing
the predictions of the studied models.
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7 Appendix
In this section, we provide the optimality conditions (written in the forms
used in iterations) as well as conditions used for calibrating the parameters
in our three models of interest.

Model A5 There is no labor choice, so that condition (5) is absent. The
remaining conditions (7), (2) and (4), respectively, are

eknt+1 = βEt

n¡
cnt+1

¢−1/γn hθnt+1 + αant+1A
¡
knt+1

¢α−1io
(cnt )

−1/γn ωn
t

knt+1, (13)

Ct =
NX
n=1

cnt =
NX
n=1

"
(1− δ) knt + antA (k

n
t )

α − ϕ

2
knt

µ
knt+1
knt
− 1
¶ξ

− knt+1

#
,

(14)

cnt =
h¡
c1t
¢−1/γ1 τ1/τni−γn . (15)

To calibrate the welfare weights of countries n = 2, ..., N , we use condition
(15) evaluated in the steady state,

τn =
¡
c1ss
¢−1/γ1 / (cnss)−1/γn . (16)

Model A7 Conditions (7), (5) and (4), respectively, are

eknt+1 =
βEt

(
(cnt+1)

ψ
(Le−lnt+1)

1−ψ 1−1/γn

cnt+1

h
θnt+1 + αant+1A

¡
knt+1

¢α−1 ¡
lnt+1
¢1−αi)

[(cnt )ψ(Le−lnt )1−ψ]
1−1/γn

cnt
ωn
t

knt+1,

(17)ecnt = ψ (Le − lnt )

1− ψ
(1− α) antA (k

n
t )

α (lnt )
−α , (18)

elnt = Le −
"¡
Le − l1t

¢(1−ψ)(1−1/γ1) (c1t )ψ(1−1/γ1)−1 τ1
(cnt )

ψ(1−1/γn)−1 τn

# 1
(1−ψ)(1−1/γn)

. (19)
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To re-compute el1t , we use resource constraint (2)
el1t =

⎡⎢⎢⎣
PN

n=1

∙
cnt + knt+1 − (1− δ) knt +

ϕ
2
knt

³
knt+1
knt
− 1
´ξ¸
−PN

n=2 a
n
tA (k

n
t )

α (lnt )
1−α

a1tA (k
1
t )

α

⎤⎥⎥⎦
1

1−α

.

(20)
We use condition (18) taken in the steady state to calibrate the parameter
ψ,

ψ =
cnss

cnss + (L
e − lnss) (1− α)A (knss)

α (lnss)
−α , (21)

and we calibrate the welfare weights of countries n = 2, ..., N from (19),

τn =
(c1ss)

ψ(1−1/γ1)−1 (Le − l1ss)
(1−ψ)(1−1/γ1)

(cnss)
ψ(1−1/γn)−1 (Le − lnss)

(1−ψ)(1−1/γn) . (22)

Model A8 Conditions (7), (5), (4) and (2), respectively, are

eknt+1 =
βEt

⎧⎪⎨⎪⎩
h¡
cnt+1

¢1−1/χn + bn
¡
Le − lnt+1

¢1−1/χni 1/χn−1/γn1−1/χn ¡
cnt+1

¢−1/χn ×
×
h
θnt+1 + αant+1A

¡
knt+1

¢µn−1 ¡α ¡knt+1¢µn + α
¡
lnt+1
¢µn¢1/µn−1i

⎫⎪⎬⎪⎭h
(cnt )

1−1/χn + bn (Le − lnt )
1−1/χn

i 1/χn−1/γn
1−1/χn (cnt )

−1/χn ωn
t

knt+1,

(23)

ecnt =
"
(1− α) antA (l

n
t )

µn−1 (α (knt )
µn + (1− α) (lnt )

µn)
1/µn−1

bn

#χn
(Le − lnt ) ,

(24)

elnt = Le−⎛⎜⎜⎜⎝ 1

bn

⎧⎪⎪⎨⎪⎪⎩
h
(c1t )

1−1/χ1 + b1 (L
e − l1t )

1−1/χ1
i 1/χ1−1/γ1

1−1/χ1 (c1t )
−1/χ1 τ1

(cnt )
−1/χn τn

⎫⎪⎪⎬⎪⎪⎭
1−1/χn

1/χn−1/γn

− (c
n
t )
1−1/χn

bn

⎞⎟⎟⎟⎠
1

1−1/χn

.

(25
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el1t =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎨⎩
PN

n=1

∙
cnt + knt+1 − (1− δ) knt +

ϕ
2
knt

³
knt+1
knt
− 1
´ξ¸
−

−PN
n=2 a

n
t+1A (α (k

n
t )

µn + (1− α) (lnt )
µn)1/µn

⎫⎬⎭
a1tA (1− α)1/µn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

µn

− α (knt )
µn

1− α

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
µn

,

(26)
We calibrate the parameters b1, ..., bN from the steady state version of (24),

bn =
(1− α)A (lnss)

µn−1 (α (knss)
µn + (1− α) (lnss)

µn)
1/µn−1 (Le − lnss)

(cnss)
1/χn

, (27)

and we calibrate the welfare weights according to (25),

τn =

h
(c1ss)

1−1/χ1 + b1 (L
e − l1ss)

1−1/χ1
i 1/χ1−1/γ1

1−1/χ1 (c1ss)
−1/χ1h

(cnss)
1−1/χn + bn (Le − lnss)

1−1/χn
i 1/χn−1/γn

1−1/χn (cnss)
−1/χn

. (28)
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Figure 1. Model A8 with 2 countries: time series solution.
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Figure 2. Model A8 with 6 countries: time series solution.
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Figure 3. Model A8 with 10 countries: time series solution.
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