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Abstract

This paper describes a numerical method for solving Model B (con-
tinuum of agents and saving through capital) of the JEDC project. At
the individiual level, we use an Euler equation algorithm which com-
putes a policy function on a grid of prespecified points. At the aggre-
gate level, we describe the economy’s state by the first and the second
moments of the wealth distribution, and we solve for the Aggregate
Law of Motion (ALM) by Monte Carlo simulation, as in Krusell and
Smith (1998). Also, we propose a simple and fast bisection and up-
dating method for finding the ALM, which in some cases, can be a
useful alternative to Krusell and Smith’s (1998) updating.
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1 Introduction

This paper describes a numerical method for solving Model B (continuum of
agents and saving through capital) of the JEDC project. At the individual
level, we use an Euler equation algorithm which computes a policy function
on a grid of prespecified points. At the aggregate level, we describe the econ-
omy’s state by the first and the second moments of the wealth distribution,
and we solve for the Aggregate Law of Motion (ALM) by Monte Carlo sim-
ulation, as in Krusell and Smith (1998). Also, we propose a simple and fast
bisection and updating method for finding the ALM, which in some cases,
can be a useful alternative to Krusell and Smith’s (1998) updating.

The plan of the paper is as follows: Section 2 describes the model. Sec-
tion 3 presents the algorithm. Section 4 describes the calibration and the
algorithm’s parameters. Section 4 discusses the results, and finally, Section
5 concludes.

2 Model B

We study a variant of Krusell and Smith’s (1998) model. The economy is
composed of a set of heterogeneous agents and a representative firm. Agent
7 solves the following problem
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kL, >0, (3)

where k{ > 0 is given. Here, c} is consumption; k! is capital; €! is idiosyncratic
shock that determines the employment status, with €, = 1 and €, = 0 corre-
sponding to the employed and the unemployed states, respectively; 5 € (0, 1)
is the discount factor; § € (0, 1] is the depreciation rate of capital; v > 0 is
the utility-function parameter; [ is the time endowment; r;, w;, pw; and 7,
are the interest rate, wage, unemployment benefit and labor-income tax rate,
respectively, and finally, (3) is a restriction on borrowing.



The profit-maximizing conditions of the representative firm are
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where K; and L; are the aggregate capital and labor, respectively; a; is the
aggregate productivity shock that can take two values 1 — A® and 1 + A%
and a € (0,1) is the share of capital in production.

The government redistribute funds from employed to unemployed agents
by setting the tax rate
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where u; = 1 — L; is an unemployment rate.

3 The algorithm

In this section, we first discuss how to find a solution to the individual
problem by using an Euler equation method described in Maliar and Maliar
(2006). We next describe a bisection procedure for solving the model without
aggregate uncertainty. We then outline Krusell and Smith’s (1998) updating
procedure for computing the ALM in the model with aggregate uncertainty.
We finally propose a bisection and updating method for finding the ALM
that can be a useful alternative to Krusell and Smith’s (1998) updating,.

3.1 The individual problem

In our economy, each agent solves the problem (1) — (3), which is a variant of
the problem with an occasionally binding inequality constraint. The Euler
equation associated with this problem can be written as

C(k,e,m,a)” — h(k,e,m,a)
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where variables without and with primes refer to the current and future pe-

riods, respectively; C (k,e,m,a) is a time-invariant consumption function;

h(k,e,m,a) is the Lagrange multiplier associated with the borrowing con-

straint (3); and m is a set of statistics characterizing the wealth distribution.

(We omit the individual superscripts for the sake of notational convenience).
The corresponding set of Kuhn-Tucker conditions is given by

h(k,e,m,a) >0, (8)
A(k,e,m,a) >0, h(k,e,m,a) A(k,e,m,a) =0, 9)

where A (k,e,m,a) is a time-invariant asset function
A(k,e,mya) =K

=rk+ (1—%) wle +w (1 —¢)+ (1 —-0)k—C(k,e,m,a). (10)

Therefore, we are to solve for C (k,e,m,a), A(k,e,m,a) and h(k,e,m,a)
satisfying the Euler equation (7), Kuhn-Tucker conditions (8) and (9) and
budget constraint (10).

Our solution method is similar to the parameterized expectations algo-
rithm used in den Haan and Marcet (1990), Christiano and Fisher (2000),
Maliar and Maliar (2003), and Algan and Allais (2003), however, unlike
those papers, we parameterize the asset function and not the expectation
term in the Euler equation. Furthermore, we do not use a polynomial pa-
rameterization, but compute the solution on a grid of prespecified points.
The grid for capital (asset) holdings consists of a number of points in the
range [Kmin, kmax|- To evaluate the asset function outside the grid, we use a
polynomial interpolation.

By substituting budget constraint (10) in the Euler equation (7), we ob-
tain

-1/
SE 1—0+r (11)

(1= ) e w (1= )+ (=041 A0 - A(AQ))

where h (-) = h(k,e,m,a), A(-) = A(k,e,m,a) and A (A (")) = A(A(k,e,m,a)).
Consequently, we implement the following iterative procedure:

4



e Step 1. Fix some initial asset function, A (k,e,m,a), on the grid. We
set the initial asset function to 0.9 times a grid value of the individual
capital, A (k,e,m,a) = 0.9k for all k,e,m, a.

e Step 2. Use the assumed asset function A (k,e,m,a) to calculate con-
sumption in (11) in each point on the grid by setting the Lagrange
multiplier equal to zero, i.e., h(k,e,m,a) = 0 for all k,e,m,a. Com-

pute the new asset function, A (k,e,m,a), from (10). For each point
of the grid, in which A (k,e,m,a) does not belong to [kmin, kmax], Set

A(k,e,m,a) at the corresponding boundary value.

e Step 3. Compute the asset function for next iteration A (k,e,m,a) by
using updating:

‘Z(k757m7 a) = nAfZ (k757m7a> + (1 - UA)A(k7€7m7 a): Na € (07 1] :
(12)

Iterate on Steps 2 — 3 until Zl(k:,s,m, a) = A(k,e,m,a) with a given
degree of precision, 1071, according to the least-square norm.

Note that by construction, the obtained solution satisfies the Euler equa-
tion (7), the Kuhn-Tucker conditions in (9) and budget constraint (10).
We are left to check that our solution satisfies the remaining Kuhn-Tucker
condition (8), i.e., that the Lagrange multiplier is non-negative whenever
the borrowing constraint (3) binds. Notice that under v > 0, the term
{h(k,e,m,a)+ ..} in (11) is decreasing in the value of h(k,e,m,a).
Since when the unconstrained solution (obtained under h (k,e,m,a) = 0)
violated the borrowing constraint (3), we set the asset holdings in the left
side of (3) at the borrowing limit, we should increase the Lagrange multiplier
in the right side of (11) in order to preserve the equality sign. Hence, our
method insures that the Lagrange multiplier is always non-negative.

3.2 No aggregate uncertainty: a bisection method

We first consider a model without aggregate uncertainty. In order to solve
such a model, we are to find an interest rate, which is consistent with the
stochastic steady state. This can be done by a standard bisection method



computing a one-dimensional fixed point, as described in Huggett (1993) and
Aiyagari (1994).

Suppose that we know two values, r and 7, on the opposite sides of the
steady state interest rate r*, such that r < r* < 7. Then, we can find the
equilibrium interest rate as follows:

o Step I. Define r* = (T +r) /2. Fix the initial wealth distribution
across IV heterogeneous agents. For each agent, generate and fix time
series for the idiosyncratic shocks of length 7. We discard the first 7}
periods in order to eliminate the effect of initial conditions.

e Step I1. Given r¥*, compute a solution to the individual problem as
described in Section 3.1.

e Step I11. Use ¢ and the individual decision rules computed in Step
I to simulate the economy T" periods forward by explicitly solving for
the asset holdings of each agent : =1, ..., N.

e Step I'V. Use the time series for the individual asset holdings calculated
in Step 111 in order to mean of the wealth distribution.

e Step V. Deduce the corresponding interest rate 7.
o Step VI.If 7 > ¥ let ¥ = r¥*; otherwise, let r = 7.
Iterate on Steps I1 — VI until 7 = 7% with a given degree of precision.

The bisection method works very fast and guarantees the convergence:
typically it requires about 20 iterations for a very accurate approximation.

3.3 Aggregate uncertainty

We describe two methods for finding the ALM in the model with aggregate
uncertainty: one is Krusell and Smith’s (1998) updating and the other is a
combination of bisection and updating.



3.3.1 An updating method

To solve for the ALM in the model with aggregate uncertainty, we can use
an updating method proposed in Krusell and Smith (1998). Choose a set
of statistics m = {my,...,my} for describing the wealth distribution and
parameterize the ALM of m by a flexible functional form of the current m,
ie.,

m' = f(b,m), (13)

where b = (by,...,bs) is a vector of coefficients to be computed. In our
experiments, we consider m consisting of either the first moment (mean) or
the first and second moments (mean and variance) of the wealth distribution.
We consider four values for the mean and the variance, which are uniformly
distributed on the appropriate intervals.

We solve for the ALM by using the following updating procedure:

e Step I. Fix some initial vector b. Generate and fix time series of length
T for the aggregate shocks. Fix the initial wealth distribution across
N heterogeneous agents. For each agent, generate and fix time series
for the idiosyncratic shocks of length 7. We discard the first 77 peri-
ods when re-estimating (13) in order to eliminate the effect of initial
conditions.

e Step I1. Given b and ALM (13), compute a solution to the individual
problem as described in Section 3.1.

e Step I11. Use ALM (13) and the individual decision rules computed in
Step I to simulate the economy 7" periods forward by explicitly solving
for the asset holdings of each agent ¢ = 1, ..., N and by calculating the
set of statistics m for each t =1,...,T.

e Step I'V. Use the time series for the statistics m calculated in Step 11
in order to re-estimate the ALM coefficients in (13).

e Step V. Call the resulting vector of the ALM coefficients in (13) by b.

e Step VI. Compute the ALM coefficients for next iteration by using
updating:

b :nbb+<1_nb> bv My € (071] (14)

Iterate on Steps 11 — VI until b = b with a given degree of precision.



3.3.2 A bisection and updating method

We now propose a bisection and updating method that can be used as a
fast alternative to Krusell and Smith’s (1998) updating. The standard one-
dimensional method is fast and efficient but unfortunately, cannot be directly
extended to more than one dimension because there is no direct way to
implement a bisection on vectors. So, for multi-dimensional case, we propose
a method that combines both bisection and updating, namely, we perform a
bisection with respect to one of the coefficients, and we perform an updating
of the rest of the coefficients. To be precise, let b = (b, ..., bs), and without
a loss of generality, let bg be the bisection coefficient. We replace Step V' of
the algorithm of Section 3.3.1 by the following steps.

e Step Va'. Call the resulting vector of the ALM coefficients in (13) by
b= (’51, ...,ES>. If b > b, let b = b and b = b: otherwise, let b = b
and b = b.

o Step V. Let b = (b+b) /2. Perform Steps I1—IV of the algorithm

of Section 3.2 for the ALM vector b’ and get the new vector b If
bs > b let b = b*; otherwise let b = bs.

Iterate on Step V' until ES = 0% with a given degree of precision.

Hence, in our case, the completion of the bisection steps Va' — Vb does
not guarantee finding the true solution because the convergence in the coef-
ficient bg was achieved for some sequence of the coefficients (b, ..., bg_1) over
which we had no control. Thus, at the end of the bisection step, we compute

b for next iteration by updating according to (14) and continue iterations un-

til the convergence of all the coefficients, b = b. In some cases, our bisection
and updating method can imply a substantial reduction in computational
time. In Appendix A, we describe a numerical example where our bisection
and updating method delivers a solution almost three times faster than the
pure updating method. We have studied an application of our bisection and
updating method only to a simple setting, in which the aggregate state space
is summarized by one statistic and in which the ALM is given only by one
equation. However, we expect this method to be also useful in more sophis-
ticated settings including those in which decision rules are state contingent



and in which the aggregate state space is represented by more than one sta-
tistic. Also, this method can be always used for fast solving a one-moment
version of the model, so that the obtained solution is subsequently used as
an initial guess for updating in several-moment versions of the model.

4 Calibration and algorithms parameters

We calibrate the model with aggregate uncertainty by using the following set
of parameters.

Table 1: Benchmark calibration

Parameters | 8 v« o 1 l A
Values 099 1 036 0.025 0.15 1/0.9 0.01

The unemployment rate in the good and bad states is equal 4% and 10%,
respectively. The transition probabilities are given in Table 2.

Table 2: Transition probabilities

s,e/se |1-A%0 1-A%1 1+A%0 1+A91
1—A%0 0525 0.35 0.03125  0.09375

1—A%1|0.0388890 0.836111 0.002083 0.122917
1+ A0 |0.09375 0.03125 0.291667 0.583333
1+ A%1|0.009115 0.115885 0.024306 0.850694

For the model with only idiosyncratic shocks, we assume that the produc-
tivity takes an average value a; = 1 for all ¢, the employment takes values
corresponding to the bad aggregate state L’ = 0.9; and the Markov chain for
the individual shocks is given in Table 3.

Table 3: Transition probabilities. No aggregate shocks

e/e" | 0 1
0 0.40 0.60
1 0.044445 0.955555

By taking into account the normalization | = 1/L° = 1/0.9, we have that
production is given by Y = K“ and that the prices for capital and labor
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are, r = aK* ! and w = (1 — ) K, respectively. In the case of exogenous
interest rate, we assume that K = 43 and deduce the corresponding interest
rate and wage.

We now discuss the choice of some algorithms parameters. First, the
properties of the solution to the model will depend on the initial distribu-
tion of wealth assumed, and the effect of initial conditions does not vanish
over time. Given this feature of the model, it is natural to take the initial
distribution of wealth drawn from the ergodic distribution. However, such
distribution is unknown before the model is solved. We therefore solve the
model twice: we first assume that all agents have initial wealth equal to the
steady state level of capital, and we then use the terminal distribution of
wealth generated by the model as the initial distribution of wealth. We re-
port the properties of the solution when the initial wealth is drawn from the
ergodic distribution.

Second, to solve the individual problem, we are to choose the domain for
assets [Kmin, Fmax|, the number of grid points and their placement in the do-
main and a specific interpolation procedure. By definition (3), the individual
wealth is to be nonnegative, so we have k.;, = 0. Concerning k.., we are
to choose a value which is sufficiently large in order not to be reached along
simulations. We take k.., = 1000, and in our subsequent simulations, the
individual wealth never reached 500.

Finally, to evaluate the asset function outside the grid, we tried to use
both linear and cubic (spline) polynomial interpolation. The cubic polyno-
mial interpolation is two or three times slower but produces more accurate
solution than the linear one. Given the restriction on computational cost, we
therefore face a trade-off between a linear interpolation with a large number
of points and a cubic interpolation with a small number of points. We run a
number of experiments, and we concluded that the cubic interpolation with
few points is superior to the linear one, especially, in areas where the decision
rules are non-linear.

5 Results

In this section, we report the simulation results. We first study the individ-
ual problem with exogenous interest rate, we then consider the model with
only idiosyncratic uncertainty, and we finally analyze the model with both
idiosyncratic and aggregate uncertainty.
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5.1 The individual problem

In order to solve the individual problem, we are first to decide how many
grid points to take and where to place them in the domain. It is known since
the work of Huggett (1993) and Aiyagari (1994) that the individual decision
rules in this class of problems are non-linear near the liquidity constraints
but are close to linear at large levels of capital. In order to obtain an accurate
solution, one is to place many grid points at low levels of capital and few grid
points at high levels of capital. We propose the following polynomial rule for
placement of grid points

m

y(x) = 05)" for x =[0,0.5], (15)
where m is a degree of the polynomial. This function is normalized so that
y(0) =0and y (1) = 1. If m = 1, the grid points are distributed uniformly,
y(x) = x, and if m > 1, the points are more concentrates at low levels
of capital than at high levels of capital. By increasing m, we can increase
(decrease) concentration of grid points in the beginning (the end) of the
interval. The placement of the grid points depending on the polynomial
degree m is shown in Table 4 and is illustrated graphically in Figure 1 for
the case of 20 grid points.

To see which degree m leads to the most accurate solution, we first com-
pute an "accurate" solution by considering 100000 grid points uniformly
placed in the interval [kpin, kmax]- We then compute the decision rules by
considering 100 points placed according to (15) under different degrees m.
In the upper part of Table 5, we report the average and the maximum per-
centage errors between the capital choice under the accurate solution and the
100 grid-point solutions. As we see, the smallest maximum error is achieved
under the degree m = 7. In this table, we also report the level of wealth
under which the maximum error is achieved. As we see, the largest errors
are obtained under very low levels of wealth, 0.6-1.6 (i.e., in the area of non-
linearity). We view the solution with 100-points as relatively accurate: the
average error is about 0.0002% and the maximum error is about 0.09%. In
Table 5, we also tried to see how the accuracy depends on the number of
grid points, and we find that increasing the number of grid points from 100
to 400 increases the accuracy by about one order of magnitude.
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5.2 Model with no aggregate uncertainty

We assess the accuracy of the solution in the model without aggregate uncer-
tainty. To solve for an interest rate in such a model, we use a bisection pro-
cedure described in Section 3.1.1. To run simulations, we assume N = 10000
heterogeneous agents, we fix the length of time series to 7" = 1100, and we
discard the first 77 = 100 periods in order to eliminate the effect of initial
conditions. We perform a bisection until 1071° precision in the interest rate
value was achieved. We again compute an "accurate" solution by taking a
grid of 5000 points distributed according to a 7 degree polynomial, and we
compare all other solutions to this accurate solution. In the upper part of
Table 6, we report the average and the maximum errors and the difference
between the steady state levels of capital under one fixed sequence of shocks.
We see that a 100-point solution is still sufficiently accurate: the average er-
ror is about 0.005% and the maximum error is about 0.2%. The difference in
the steady state levels of capital across the experiments is very small, namely,
less than 1.5 x 1077 %.

We also study how the properties of the solution depend on a specific
realization of shocks. We specifically compute the solution to the 100 point
model by re-drawing shocks four times and compared the first solution to the
other three solutions. The results are reported in the bottom part of Table
6. As we see, the obtained differences in the decision rules and the steady
state capital stock across the four realizations are very small, 1078%, so we
conclude that our choice (N = 10000 and 7" = 1100 with 7} = 100 discarded
periods) leads to solutions the properties of which do not significantly depend
on specific realization of shocks.

5.3 Results

This section presents the results for the model with aggregate uncertainty.
We solved the models by characterizing the aggregate state space with the
mean of the wealth distribution, and also, with both the mean and the vari-
ance of the wealth distribution.

For the case of one moment (mean), the ALM are given by

In (K1) = 0.1235 +0.9657In (K;)  R* = 0.999934
with the low aggregate shock, and by
In (K1) = 0.1385+0.96311n (K;) R* = 0.999967
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with the high aggregate shock. For the case of two moments (mean and
variance), the ALM for aggregate (mean) capital are given by

In (K1) =0.1224 +0.96611n (K;) R* = 0.999935
with the low aggregate shock, and by
In (K;11) = 0.1398 +0.96281n (K;) R* = 0.999967

with the high aggregate shock; the ALM for the variance of capital, X, are
given by

In (2,41) = 0.1745 — 0.03931In (K;) + 0.99581n (¥,) R? = 0.999699
with the low aggregate shock, and by
In ($;41) = 0.1705 — 0.04351n (K;) + 0.99581n (¥;) R? = 0.999920

with the high aggregate shock. Computational time required for solving the
one-moment model was 1.31 hour, and computational time for solving the
two-moment model was 5.23 hours.

To illustrate the solution to the individual problem, we present the fol-
lowing results. Figures 2 shows the decision rules for next-period capital and
consumption as functions of the individual capital for the four possible combi-
nations of values for aggregate and idiosyncratic shocks: Low-low, Low-high,
High-low and High-high where the first and the second name corresponds to
the aggregate and the individual shocks, respectively.

Furthermore, in Figure 3, we plot the ALM for two possible values of
the aggregate shock; we draw a stationary wealth distribution obtained in
the last period of the simulation; we present the time series of aggregate
capital obtained for the ALM-NO case; and finally, we plot the error of the
aggregate capital series which is the difference between the capital series in
the ALM-NO and ALM-YES cases.

We subsequently carried out all the required tests, and we calculated all
the statistics, as is indicated in the description of the problems. The results
in the tables and the figures correspond to the case when the aggregate state
space is characterized only with the mean. In the ALM-NO case, we simulate
the time series for a panel of N = 10000 agents using the individual decision
rules, and we average the individual quantities to compute the aggregate
quantities. In the ALM-YES case, we use the ALM to compute the time series
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of aggregate capital, and we use the individual decision rules to compute the
time series for one agent.

The results about risk sharing for both ALM-NO and ALM-YES cases
are provided in Tables 7. Prices (interest rate and wage rate) are reported in
Table 8. As far as the business cycle statistics are concerned, the standard
deviations of and the cross-correlation at leads and lags between aggregate
variables are provided in Tables 9, 10, 11, and 12. In Table 13, we present the
results of the accuracy test about the Euler equation errors on a simulated
time path for the ALM-NO case (for the first 10 agents of the sample) and
for the ALM-YES case (for one agent). Also, in this table, we illustrate
the accuracy of aggregate policy rule by providing the maximum and the
average absolute errors of the difference between the time series of aggregate
capital for the ALM-NO and ALM-YES cases. The Denhaan-Marcet statistic
regards is reported in Table 14: we show the results for the ALM-NO case
(the test was replicated 100 times using the numerical solution for the first
10 agents of the sample), and we also show the results for the ALM-YES case
(with only one replication). Finally, the statistics of the wealth distribution
obtained for the ALM-NO case are given in Table 15.

6 Conclusion

In this paper, we describe an algorithm for solving Krusell and Smith’s (1998)
model with a continuum of agents where savings are made through capital.
To solve the individual problem, we use an Euler equation algorithm iterating
on a grid of prespecified points. To solve for the ALM, we summarize the
economy’s state by the first two moments of the wealth distribution and use
Monte Carlo simulation. Our algorithm is relatively fast, especially, if the
ALM is computed with our bisection and updating method. The solutions
delivered by our algorithm are sufficiently accurate, as the accuracy checks
show. Overall, our results are close to those in Young (2003), which is not
surprising given that we characterize the aggregate state space with the same
set of statistics as he does. It would be of interest to see the performance
of our method in the context of Model C, where, as found by Young (2003)
and Reiter (2003), no single aggregate statistics is sufficient for accurate
forecasting of the future prices.
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Appendix A

In this appendix, we describe a numerical example where we compare the
performance of Krusell’s and Smith bisection method described in Section
3.3.1 with an updating and bisection method described in Section 3.3.2. To
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carry out the comparison, we consider Krusell and Smith’s (1998). We rep-
resent the aggregate economy state by the mean of the wealth distribution
and parameterize ALM (13) as follows:

In (Kt+1) = bl + bgat + b3 In (Kt) . (16)

This specification is more restrictive than the one considered in Krusell and
Smith (1998) because it forces the coefficient on In (K;) to be the same with
both high and low aggregate productivity shocks, however, as we will see, it
still leads to an accurate approximation.

We consider the model with v = 1 and solve it first by using Krusell
and Smith’s (1998) updating described in Section 3.3.1. and then by using
the bisection and updating method that we propose in Section 3.3.2 for an
identical set of the parameters including the realizations of the individual
and aggregate shocks. In both cases, we use the same updating parameter

of n, = 0.5 and target the same degree of precision, namely, that b and b
differ by not more than 1075 according to the least-square norm. We set the
precision of bisection to a relatively low value such that bg and b%* differ by
less than 1073 (since bisection has to be implemented after each updating, it
is not essential to have a high degree of precision on each single step but only
to achieve high precision at the end of the algorithm). Our initial guess for
the coefficients was b = (0,0, 1). We summarize the results of this experiment
below:

Updating ‘ Bisection and updating

by = 0.08799863 by = 0.08800197

by = 0.00532372 by = 0.00532067

bs = 0.96321271 bs = 0.96321262

R? =0.99994110 R? =0.99994110

Computational time = 34.24 min | Computational time = 13.44 min

There are two noteworthy results here. First, our parameterization (16)
delivers a solution which is comparable in accuracy to the one obtained
under Krusell and Smith’s (1998) parameterization of two state-contingent
ALM. (Under their parameterization, we have two state contingent values of
R? = 0.99994989 and R? = 0.99992851 with the high and the low aggregate
productivity shocks, respectively). Second, under the identical parameteriza-
tion (16) and given the same degree of accuracy, our bisection and updating

16



method delivers a solution almost three times faster than the pure updating.
For the sake of comparison, we shall also mention that it took us more than an
hour to solve this model by using pure updating under the state-contingent
ALM, as in Krusell and Smith (1998).
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TABLE 4
Grid-point placement depending on polynomial degree

X X x> x° X’ x°
0 0 0 0 0 0
0,052632 0,052632 0,00014579 4,0386€-007 1,1187e-009 3,099¢-012
0,10526 0,10526 0,0011664 1,2924e-005 1,432¢-007 1,5867e-009
0,15789 0,15789 0,0039364 9,8138e-005 2,4467e-006 6,0997¢-008
0,21053 0,21053 0,0093308 0,00041355 1,8329¢-005 8,1238e-007
0,26316 0,26316 0,018224 0,0012621 8,7401e-005 6,0527¢-006
0,31579 0,31579 0,031491 0,0031404 0,00031317 3,123e-005
0,36842 0,36842 0,050007 0,0067877 0,00092132 0,00012505
0,42105 0,42105 0,074646 0,013234 0,0023461 0,00041594
0,47368 0,47368 0,10628 0,023848 0,0053508 0,0012006
0,52632 0,52632 0,14579 0,040386 0,011187 0,003099
0,57895 0,57895 0,19405 0,065042 0,021801 0,0073072
0,63158 0,63158 0,25193 0,10049 0,040086 0,01599
0,68421 0,68421 0,32031 0,14995 0,070199 0,032863
0,73684 0,73684 0,40006 0,21721 0,11793 0,064028
0,78947 0,78947 0,49205 0,30668 0,19115 0,11913
0,84211 0,84211 0,59717 0,42348 0,30031 0,21296
0,89474 0,89474 0,71629 0,57342 0,45906 0,3675
0,94737 0,94737 0,85027 0,76312 0,68491 0,61471
1 1 1 1 1 1
TABLE 5

Decision rule errors depending on polynomial degree and number of grid points

Average error compared
to the accurate solution

Maximum error compared
to the accurate solution

Wealth under maximum
error

100 grid point

Degree of polynomial

1 0,0023444 0,34711 1.6
2 6,382e-006 0,010158 0.6
3 2,8005e-006 0,0037153 1.6
4 1,7269e-006 0,0019896 1.6
5 1,6978e-006 0,0018806 0.6
6 1,7102e-006 0,0016388 1.6
7 1,9658e-006 0,00086033 0.6
8 2,2776e-006 0,0012321 0.6
9 2,5752e-006 0,0011811 0.9
Polynomial of degree 7
Number of the grid points
100 1,9658e-006 0,00086033 0.6
200 5,5139e-007 0,00078441 1.0
300 2,0893e-007 0,00021801 1.0
400 1,0151e-007 0,00015021 2.5
TABLE 6

Decision rule errors depending on polynomial degree and number of grid points

Average error compared
to the accurate solution

Maximum error compared
to the accurate solution

Percentage difference in
capital stocks




100 grid point

Degree of polynomial

1 1,318e-011 3,4227e-011 1,0926e-011
2 9,7232e-011 1,9258e-010 5,0491e-011
3 2,0634e-010 4,0765e-010 1,0662e-010
Polynomial of degree 7
Number of the grid points
100 4,2835e-005 0,0024234 1,4717e-009
200 1,6516e-005 0,00090135 1,4389¢e-009
300 1,039e-005 0,00044333 1,4359¢e-009
400 7,1918e-005 0,00039331 1,4717e-009




TABLE 7
Risk sharing statistics

ALM-NO ALM-YES
Average Standard Statistic
across agents deviation
Correlation of individual and aggregate consumption 0,4215 0,15806 0,44747
Correlation of individual consumption and aggregate income 0,28869 0,095484 0,30769
Correlation of individual consumption and aggregate wealth 0,4064 0,15831 0,42966
Correlation of individual consumption and individual income 0,54468 0,072166 0,57525
Correlation of individual consumption and individual wealth 0,91109 0,041365 0,93777
Standard deviation of individual consumption 0,11043 0,11478
Standard deviation of individual capital 7,3558 8,1248
Autocorrelation of individual consumption 0,98152 0,013052 0,98864
1 lag 0,96333 0,024117 0,97549
2 lags 0,94572 0,03352 0,96098
3 lags 0,99647 0,0019323 0,99731
Autocorrelation of individual capital 0,98979 0,0055511 0,99188
1 lag 0,98166 0,0099143 0,98489
2 lags 0,4215 0,15806 0,44747
3 lags 0,28869 0,095484 0,30769
TABLE 8
Prices
ALM-NO ALM-YES
Average Standard Average Standard
deviation deviation
Interest rate 0,034894 0,0010552 0,034896 0,0010561
Wage rate 2,384 0,018091 2,3839 0,018055
Autocorrelation of interest rate
1 lag 0,7364 0,7381
2 lags 0,51821 0,52035
3 lags 0,3556 0,3564
Autocorrelation of wage rate
1 lag 0,97531 0,97527
2 lags 0,9439 0,94363
3 lags 0,9095 0,90893
TABLE 9
Business cycle statistics
ALM-NO ALM-YES
Average income 0,11889 0,12716
Average consumption 0,044095 0,042835
Average investment 0,10494 0,1049




TABLE 10
Cross correlation of income and consumption at leads and lags

ALM-NO
Yt Y1 Y2 Yts Ct Cr1 Ct2 Ct3
Vi 1 0,8019 0,63418 0,50755 0,68522 0,558 0,45468 0,37479
Vit 1 0,80161 0,63241 0,71034 0,68421 0,55681  0,45307
Yz 1 0,79998 0,71611 0,70939 0,68316 0,55527
Vi 1 0,71139 0,71581 0,70923  0,68331
C 1 0,98237 0,95607 0,92463
Cus 1 0,98236  0,95592
Ces 1 0,98227
Cis 1
ALM-YES
Yt Y1 Y2 Yts Ct Cr1 Ci2 C3
Vi 1 0,79687 0,62504 0,49286 0,6434 0,51944  0,41972 0,34269
Vit 1 0,79663 0,6233  0,67902 0,64235 0,51823 0,41816
Yz 1 0,79504 0,69336 0,67804 0,64126 0,51675
Vi 1 0,69515 0,69319 0,678 0,64151
C 1 0,98567 0,96212 0,93277
Cus 1 0,98566  0,96201
Ces 1 0,9856
Cis 1
TABLE 11
Cross correlation of income and investment at leads and lags
ALM-NO
Yt Y1 Yo Yis I It I.p Is
Y, 1 0,80156 0,6336 050684 0,943 0,75164 0,58751  0,46475
Vit 1 0,80129 0,63188 0,68231 0,94286 0,75133 0,5861
Vi 1 0,79971 0,4689  0,68194 0,94271  0,75007
Vs 1 0,31172  0,4665 0,67951  0,9427
i 1 0,74176  0,52724  0,36911
It 1 0,74165 0,52525
i 1 0,73967
i 1
ALM-YES
Yt Y1 Yo Y3 Iy [ I.p Is
Yi 1 0,79687 0,62504 0,49286 0,94989 0,75376 0,58586 0,4572
Vit 1 0,79663  0,6233 0,68903 0,94979 0,75352 0,58443
Vi 1 0,79504 0,47481 0,68873 0,94966 0,75225
Vs 1 0,3138 0,47246  0,68635 0,94964
i 1 0,74228 0,52782  0,36605
et 1 0,74223  0,52588
i 1 0,74029
i 1




TABLE 12

Cross correlation of consumption and investment at leads and lags

ALM-NO
Ct Cta Ci2 Cis Iy [ I.p Is
C 1 0,74176  0,52724 0,36911 0,943 0,68231  0,4689 0,31172
Cit 1 0,74165 0,52525 0,75164 0,94286 0,68194 0,4665
Ces 1 0,73967 0,58751 0,75133 0,94271 0,67951
Cis 1 0,46475 0,5861 0,75007  0,9427
i 1 0,80156 0,6336 0,50684
iy 1 0,80129 0,63188
I 1 0,79971
Iis 1
ALM-YES
Ct Cia Ci2 Cis Iy [ I.p Is
C 1 0,98567 0,96212 0,93277 0,37187 0,42059 0,44718 0,46129
Cit 1 0,98566  0,96201 0,22741 0,37029 0,41901 0,44697
Cio 1 0,9856 0,1161 0,22571 0,36859 0,41894
Cis 1 0,03468 0,11408 0,22363 0,36884
iy 1 0,74228 0,52782  0,36605
iy 1 0,74223  0,52588
o 1 0,74029
s 1
TABLE 13
Absolute percentage error
Average error Maximum error
Euler equation errors on a simulated time path (ALM-NO) 0,0021769 0,021991
Euler equation errors on a simulated time path (ALM-YES) 0,0086893 0,10129
Aggregate policy rule errors 0,00060847 0,0021909
TABLE 14
Den Haan and Marcet statistics
ALM-NO ALM-YES

Fraction of times below 2.5% critical value 0 Statistic for one agent 5,8149
Fraction of times above 97.5% critical value 43 Low critical value 1,2373

High critical value 14,449

TABLE 15
Wealth distribution (ALM-NO)

Unconditional Conditional on low  Conditional on high

shock shock

Fraction of times agent is at constraint 3,2062¢e-005 5,1954e-005 2,2478e-005
5" percentile of wealth distribution 13,04 12,847 13,188
10™ percentile of wealth distribution 16,201 16,017 16,342
Average capital stock 39,934 39,715 40,103
Moment 2 0,86301 0,86523 0,86131
Moment 3 1,2616 1,2645 1,2595
Moment 4 1,7022 1,7061 1,6991
Moment 5 2,0751 2,0798 2,0714
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Figure 1. Power grid functions.
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Figure 3. Properties of the solution.
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