
Comparing numerical solutions of
models with heterogeneous agents
(Models B): a grid-based Euler

equation algorithm

Lilia Maliar, Serguei Maliar
and Fernando Valli

University of Alicante



Our algorithm is relatively stylized

• At the individual level: Euler equationmethod
on a grid of prespecified points.

• At the aggregate level: Monte Carlo simu-
lation and updating the ALM, as inKrusell
and Smith (1998).

• Also, we propose a simple bisection and
updating method for computing the ALM
that in some applications can work faster
than the pure updating, as in Krusell and
Smith (1998).



Individual problem

• The Euler equation,
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whereC (k, ε,m, a) is the consumption func-
tion;
h (k, ε,m, a) is the Largange multiplier;
m is a set of aggregate statistics.

• Kuhn-Tucker conditions are
h (k, ε,m, a) ≥ 0,

A (k, ε,m, a) ≥ 0, h (k, ε,m, a)A (k, ε,m, a) = 0,

where A (k, ε,m, a) is the asset function,

A (k, ε,m, a) ≡ k0 = rk+wε+(1− δ) k−C (k, ε,m, a) .
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where (s) ≡ (k, ε,m, a) is the state space.

• Step 1. Choose a grid for the individual as-
sets on the interval [kmin, kmax]. Fix initial
asset function, A (k, ε,m, a).

• Step 2. Set the Lagrange multiplier to zero
h (k, ε,m, a) = 0. Substitute A (k, ε,m, a)

in the right side and compute
∼
A (k, ε,m, a).

For each grid point, in which
∼
A (k, ε,m, a)

does not belong to [kmin, kmax], set
∼
A (k, ε,m, a)

at the corresponding boundary value.



• Step 3.Compute the asset function for next
iteration by using updating:
≈
A (k, ε,m, a) = ηA

∼
A (k, ε,m, a)+(1− ηA)A (k, ε,m, a) ,

where ηA ∈ (0, 1].

Iterate on Steps 2− 3 until
≈
A (k, ε,m, a) =

A (k, ε,m, a) with a given precision, 10−10, ac-
cording to the least-square norm.

By construction, the function A (k, ε,m, a)
satisfies:

• the Euler equation;
• the Kuhn-Tucker conditions
A (k, ε,m, a) ≥ 0, h (k, ε,m, a)A (k, ε,m, a) = 0;

• budget constraint.



We are left to check that the Lagrange mul-
tiplier is non-negative, i.e.,

h (k, ε,m, a) ≥ 0,

Notice that under γ > 0, the term [h (s) + ...]−1/γ

in equation
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is decreasing in h (s). Recall that, when the
unconstrained solution (under h (s) = 0) vio-
lated the borrowing constraint, we set the as-
set holdings at the borrowing limit, i.e., we in-
crease A (s). To preserve the equality sign, we
should decrease consumption [h (s) + ...]−1/γ,
which requires to increase the multiplier h (s).



The ALM: Krusell and Smith (1998)
Let m = {m1, ...,mM} be statistics charac-

terizing the aggregate state and let the ALM
be

m0 = f (b,m) ,

where b = (b1, ..., bS) is a vector of coefficients.
We solve for the ALM by using updating:

• Step I. Fix some initial vector b. Gener-
ate and fix time series of length T for the
aggregate shocks and idiosyncratic shocks.
Fix the initial wealth distribution.

• Step II. Given b and ALM, compute a so-
lution to the individual problem.



• Step III. Use ALM and the individual de-
cision rules computed in Step II to sim-
ulate the economy T periods forward by
explicitly solving for the asset holdings of
each agent and by calculating the set of
statistics m for each t = 1, ..., T .

• Step IV. Use the time series for m calcu-
lated in Step III to re-estimate the ALM
coefficients.

• Step V. Call the new ALM coefficients byeb.
• Step V I. Compute the ALMfor next itera-
tion by using updating:

≈
b = ηb

∼
b+(1− ηb) b,

ηb ∈ (0, 1] .

Iterate on Steps II − V I until
≈
b = b.



Some computation issues

• Initial distribution of wealth matters. We
solve the model twice: we first assume that
all agents have initial wealth equal to the
deterministic steady state, and we then use
a distribution of wealth generated by the
model as the initial one.

• To solve the individual problem, we are to
choose the domain for assets [kmin, kmax].
By definition, kmin = 0, and kmax is to be
sufficiently large not to be reached along
simulations. We take kmax = 1000; n our
simulations, the assets never reached 500.

• To evaluate the asset function outside the
grid, we tried both linear and cubic (spline)
polynomial interpolation. We find that the
cubic interpolation with few points is supe-
rior to the linear one.



Individual problem

• How many grid points to take and where
to place them in the domain?

• The individual decision rules are non-linear
near the liquidity constraints but are close
to linear at large levels of capital.

•We need many grid points at low levels of
capital and few grid points at high levels of
capital. We use the following polynomial
rule for placement of grid points

y (x) =
xm

(0.5)m
for x = [0, 0.5] ,

where m is a degree of the polynomial.
Note that y (0) = 0 and y (1) = 1.

• By increasingm, we can increase (decrease)
concentration of grid points in the begin-
ning (the end) of the interval



TABLE 1 

Grid-point placement depending on the polynomial degree 

x
3
x

5
x

7
x

9
x

0 0 0 0 0 

0,052632 0,00014579 4,0386e-007 1,1187e-009 3,099e-012 

0,10526 0,0011664 1,2924e-005 1,432e-007 1,5867e-009 

0,15789 0,0039364 9,8138e-005 2,4467e-006 6,0997e-008 

0,21053 0,0093308 0,00041355 1,8329e-005 8,1238e-007 

0,26316 0,018224 0,0012621 8,7401e-005 6,0527e-006 

0,31579 0,031491 0,0031404 0,00031317 3,123e-005 

0,36842 0,050007 0,0067877 0,00092132 0,00012505 

0,42105 0,074646 0,013234 0,0023461 0,00041594 

0,47368 0,10628 0,023848 0,0053508 0,0012006 

0,52632 0,14579 0,040386 0,011187 0,003099 

0,57895 0,19405 0,065042 0,021801 0,0073072 

0,63158 0,25193 0,10049 0,040086 0,01599 

0,68421 0,32031 0,14995 0,070199 0,032863 

0,73684 0,40006 0,21721 0,11793 0,064028 

0,78947 0,49205 0,30668 0,19115 0,11913 

0,84211 0,59717 0,42348 0,30031 0,21296 

0,89474 0,71629 0,57342 0,45906 0,3675 

0,94737 0,85027 0,76312 0,68491 0,61471 

1 1 1 1 1 
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• To analyze which m leads to the most ac-
curate solution.

• we first compute an "accurate" solution by
considering 100000 grid points uniformly
placed in the interval [kmin, kmax].

• we then compute the decision rules by con-
sidering 100 points placed under different
degrees m, and we look at errors.

• the smallest maximum percentage error is
achieved under the degree m = 7.

• we view the solution with 100-points as rel-
atively accurate: the average error is about
0.0002% and the maximum error is about
0.09%.

• we also look at how the accuracy depends
on the number of grid points and the level
of wealth.



TABLE 2 

Decision rule errors depending on polynomial degree and number of 

grid points 

Average error 

compared to the 

accurate solution

Maximum error 

compared to the 

accurate solution

Wealth under 

maximum error

100 grid point 

Polynomial degree    

1 0,0023444 0,34711 1.6 

2 6,382e-006 0,010158 0.6 

3 2,8005e-006 0,0037153 1.6 

4 1,7269e-006 0,0019896 1.6 

5 1,6978e-006 0,0018806 0.6 

6 1,7102e-006 0,0016388 1.6 

7 1,9658e-006 0,00086033 0.6 

8 2,2776e-006 0,0012321 0.6 

9 2,5752e-006 0,0011811 0.9 

Polynomial of degree 7 

Number of grid 

points 

100 1,9658e-006 0,00086033 0.6 

200 5,5139e-007 0,00078441 1.0 

300 2,0893e-007 0,00021801 1.0 

400 1,0151e-007 0,00015021 2.5 



Model without aggregate uncertainty

•We solve for an interest rate in a model
without aggregate uncertainty by simula-
tion.

•WeassumeN = 10000 heterogeneous agents,
we fix the length of time series T = 1100
and we discard the first T1 = 100 periods
in order to eliminate the effect of initial
conditions.

•We again compare all solutions to an "ac-
curate" solution by taking a grid of 5000
points distributed according to 7 degree poly-
nomial.



TABLE 3 

Errors in Model B II depending on the number of grid points and specific 

random draw 

Number of the 

grid points 

Average error 

compared to the 

accurate solution

Maximum error 

compared to the 

accurate solution

Percentage

difference in 

capital stocks

100 4,2835e-005 0,0024234 1,4717e-009 

200 1,6516e-005 0,00090135 1,4389e-009 

300 1,039e-005 0,00044333 1,4359e-009 

400 7,1918e-005 0,00039331 1,4717e-009 

Random draw for 

shocks

Average

difference

compared to the 

benchmark 

solution

Maximum 

difference

compared to the 

benchmark 

solution

Percentage

difference in 

capital stocks 

compared to the 

benchmark 

solution

1 1,318e-011 3,4227e-011 1,0926e-011 

2 9,7232e-011 1,9258e-010 5,0491e-011 

3 2,0634e-010 4,0765e-010 1,0662e-010 



• Our 100-point solution is still sufficiently
accurate: the average error is about 0.005%
and themaximumerror is about 0.2%. The
difference in the steady state levels of cap-
ital across the experiments is very small,
10−7%.

• Does specific realization of shocks matter?
No. The obtained differences in the deci-
sion rules and the steady state capital stock
across four realizations are very small, 10−8%.



Model with aggregate uncertainty

•We solved the models by characterizing the
aggregate state space with the mean of the
wealth distribution, and also, with both
the mean and the variance of the wealth
distribution.

• For the case of one moment (mean), the
ALM are given by

ln (Kt+1) = 0.1235+0.9657 ln (Kt) R2 = 0.999934

with the low aggregate shock, and by

ln (Kt+1) = 0.1385+0.9631 ln (Kt) R2 = 0.999967

with the high aggregate shock.



• For the case of two moments (mean and
variance), the ALM for aggregate (mean)
capital are given by

ln (Kt+1) = 0.1224+0.9661 ln (Kt) R2 = 0.999935

with the low aggregate shock, and by

ln (Kt+1) = 0.1398+0.9628 ln (Kt) R2 = 0.999967

with the high aggregate shock; the ALM
for the variance of capital, Σ, are given by

ln (Σt+1) = 0.1745−0.0393 ln (Kt)+0.9958 ln (Σt) R2 = 0.999699

with the low aggregate shock, and by

ln (Σt+1) = 0.1705−0.0435 ln (Kt)+0.9958 ln (Σt) R2 = 0.999920

with the high aggregate shock.



• Results
•We carried out all the required tests, and
we calculated all the statistics for themodel
with one moment (mean).

• In the ALM-NO case, we simulate the time
series of length T = 1100 for a panel of
N = 10000 agents using the individual de-
cision rules, and we average the individual
quantities to compute the aggregate quan-
tities.

• In the ALM-YES case, we use the ALM to
compute the time series of aggregate capi-
tal, andwe use the individual decision rules
to compute the time series for one agent.

• Our program was written in Matlab.
• Simulations were carried out on Pentium 4
PC with 2.2GHz processor.
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Figure 2. Individual decision rules.
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Figure 3. Properties of the solution.



TABLE 4 

Risk sharing statistics 

 ALM-NO ALM-

YES

 Average 

across

agents

Standard

deviation

Statistic

Correlation of individual and aggregate 

consumption 

0,4215 0,15806 0,44747 

Correlation of individual consumption and 

aggregate income 

0,28869 0,095484 0,30769 

Correlation of individual consumption and 

aggregate wealth 

0,4064 0,15831 0,42966 

Correlation of individual consumption and 

individual income 

0,54468 0,072166 0,57525 

Correlation of individual consumption and 

individual wealth 

0,91109 0,041365 0,93777 

Standard deviation of individual 

consumption 

0,11043  0,11478 

Standard deviation of individual capital 7,3558  8,1248 

Autocorrelation of individual consumption 0,98152 0,013052 0,98864 

          1 lag 0,96333 0,024117 0,97549 

          2 lags 0,94572 0,03352 0,96098 

          3 lags 0,99647 0,001932 0,99731 

Autocorrelation of individual capital 0,98979 0,005551 0,99188 

          1 lag 0,98166 0,009914 0,98489 

          2 lags 0,4215 0,15806 0,44747 

          3 lags 0,28869 0,095484 0,30769 



TABLE 5 

Prices

 ALM-NO ALM-YES 

 Average Standard 

deviation

Average Standard 

deviation

Interest rate 0,034894 0,001055 0,034896 0,001056 

Wage rate  2,384 0,018091 2,3839 0,018055 

Autocorrelation of interest rate     

          1 lag 0,7364  0,7381  

          2 lags 0,51821  0,52035  

          3 lags 0,3556  0,3564  

Autocorrelation of wage rate     

          1 lag 0,97531  0,97527  

          2 lags 0,9439  0,94363  

          3 lags 0,9095  0,90893  

TABLE 6 

Business cycle statistics

 ALM-NO ALM-YES 

Average income 0,11889 0,12716 

Average consumption 0,044095 0,042835 

Average investment 0,10494 0,1049 



TABLE 7 

Cross correlation of income and consumption at leads and lags 

ALM-NO

 yt yt-1 yt-2 yt-3 ct ct-1

yt 1 0,8019 0,63418 0,50755 0,68522 0,558 0

yt-1  1 0,80161 0,63241 0,71034 0,68421 0

yt-2   1 0,79998 0,71611 0,70939 0

yt-3    1 0,71139 0,71581 0

ct     1 0,98237 0

ct-1      1 0

ct-2       1

ct-3       

ALM-YES

 yt yt-1 yt-2 yt-3 ct ct-1

yt 1 0,79687 0,62504 0,49286 0,6434 0,51944 0

yt-1  1 0,79663 0,6233 0,67902 0,64235 0

yt-2   1 0,79504 0,69336 0,67804 0

yt-3    1 0,69515 0,69319 0

ct     1 0,98567 0

ct-1      1 0

ct-2       1

ct-3       



TABLE 8 

Cross correlation of income and investment at leads and lags 

ALM-NO

 yt yt-1 yt-2 yt-3 it it-1

yt 1 0,80156 0,6336 0,50684 0,943 0,75164 0,

yt-1  1 0,80129 0,63188 0,68231 0,94286 0,

yt-2   1 0,79971 0,4689 0,68194 0,

yt-3    1 0,31172 0,4665 0,

it     1 0,74176 0,

it-1      1 0,

it-2       1

it-3        

ALM-YES

 yt yt-1 yt-2 yt-3 it it-1 it-2

yt 1 0,79687 0,62504 0,49286 0,94989 0,75376 0,

yt-1  1 0,79663 0,6233 0,68903 0,94979 0,

yt-2   1 0,79504 0,47481 0,68873 0,

yt-3    1 0,3138 0,47246 0,

it     1 0,74228 0,

it-1      1 0,

it-2       1

it-3        



TABLE 9 

Cross correlation of consumption and investment at leads and lags 

ALM-NO

 ct ct-1 ct-2 ct-3 it it-1 it-2

ct 1 0,74176 0,52724 0,36911 0,943 0,68231 0,

ct-1  1 0,74165 0,52525 0,75164 0,94286 0,

ct-2   1 0,73967 0,58751 0,75133 0,

ct-3    1 0,46475 0,5861 0,

it     1 0,80156 0,

it-1      1 0,

it-2       1

it-3        

ALM-YES

 ct ct-1 ct-2 ct-3 it it-1 it-2

ct 1 0,98567 0,96212 0,93277 0,37187 0,42059 0,

ct-1  1 0,98566 0,96201 0,22741 0,37029 0,

ct-2   1 0,9856 0,1161 0,22571 0,

ct-3    1 0,03468 0,11408 0,

it     1 0,74228 0,

it-1      1 0,

it-2       1

it-3        



TABLE 10 

Absolute percentage error 

 Average error Maximum 

error

Euler equation errors on a simulated time path 

(ALM-NO)

0,0021769 0,021991 

Euler equation errors on a simulated time path 

(ALM-YES)

0,0086893 0,10129 

Aggregate policy rule errors 0,00060847 0,0021909 

TABLE 11 

Den Haan and Marcet statistics 

ALM-NO ALM-YES 

Fraction of times below 2.5% 

critical value 

0 Statistic for one agent 5,8149 

Fraction of times above 97.5% 

critical value 

43 Low critical value 1,2373 

  High critical value 14,449 



TABLE 12 

Wealth distribution (ALM-NO) 

 Unconditional Conditional 

on low shock 

Conditional

on high shock 

Fraction of times agent is at 

constraint 

3,2062e-005 5,1954e-005 2,2478e-005 

5
th

 percentile of wealth 

distribution 

13,04 12,847 13,188 

10
th

 percentile of wealth 

distribution  

16,201 16,017 16,342 

Average capital stock 39,934 39,715 40,103 

Moment 2 0,86301 0,86523 0,86131 

Moment 3 1,2616 1,2645 1,2595 

Moment 4 1,7022 1,7061 1,6991 

Moment 5 2,0751 2,0798 2,0714 



The properties of the solution

• The statistics obtained underALM-NOand
ALM-YES are very close.

• Solutions are sufficiently accurate:

—Maximum difference between the series
for capital under ALM-NO and ALM-
YES is about 0.2%.

• Our method does not have accumulation of
errors over time since the budget constraint
was imposed when calculating the solution.



Bisection&updating

•Wepropose a bisection and updatingmethod
that can be a fast alternative to Krusell
and Smith’s (1998) updating.

• Before we present this method, let us re-
call the standard one-dimensional bisection
method for solving for the interest rate in
the model without aggregate uncertainty,
e.g., Aiyagari (1994).



One-dimensional section

• Suppose that we know two values, r and
r, on the opposite sides of the steady state
interest rate r∗, such that r < r∗ < r.

• Define rbis = (r + r) /2 and compute the
corresponding wealth distribution and the
interest rate er. If er > rbis, let r = rbis;
otherwise, let r = rbis.

Iterate until er = rbis = r∗.

The bisection method works fast and guar-
antees the convergence in 10-20 iterations. Un-
fortunately, the bisection method cannot be
directly extended to more than one dimension
because there is no easy way to make a bisec-
tion of vectors.



The ALM: bisection&updating
Formulti-dimensional case, we propose amethod

that combines bisection and updating, namely,
we perform bisection of one coefficient, and
we update of the other coefficients. Let b =
(b1, ..., bS), and let bS be the bisection coeffi-
cient.

• Step I. Fix some initial vector b.

• ...
• Step V a0. Call the re-estimated ALM co-
efficients by eb = ³eb1, ...,ebS´. If ebS > bS,

let b = eb and b = b; otherwise, let b = b
and b = eb.

• Step V b0. Let bbis =
¡
b + b

¢
/2. Perform

Steps II − IV of the algorithm for bbis,
and get the new vector eb. If ebS > bbisS let
b = bbis; otherwise let b = bbis.



• Step V I. Compute the ALMfor next itera-
tion by using updating:

≈
b = ηb

∼
b+(1− ηb) b,

ηb ∈ (0, 1] .

Iterate on Steps II − V I until
≈
b = b.



• Unlike in one-dimensional case, the com-
pletion of the bisection steps V a0−V b0 does
not guarantee finding the true solution be-
cause the convergence of bS was achieved
for some sequence of other coefficients (b1, ..., bS−1)
over which we had no control.

• Thus, at the end of the bisection step, we
update

≈
b for next iteration and continue

iterations until the convergence of all the

coefficients,
≈
b = b.

• In some cases, our bisection and updating
method can imply a substantial reduction
of computational time compared to the up-
dating method.



Bisection&updating versus updating

• To carry out the comparison, we consider
Krusell and Smith’s (1998) model. We as-
sume the following ALM:

ln (Kt+1) = b1 + b2at + b3 ln (Kt) .

This specification is more restrictive than
the one in Krusell and Smith (1998) be-
cause it forces the coefficient on ln (Kt) to
be the same with both high and low aggre-
gate productivity shocks.

•We solve the model first by using Krusell
and Smith’s (1998) updating and then by
using our bisection and updating method
for the same set of parameters, the same
realizations of the individual and aggregate
shocks and the same initial guess for the
coefficients, b = (0, 0, 1).



Results of this experiments are summarized
below:

Updating Bisection and updating
b1 = 0.08799863 b1 = 0.08800197
b2 = 0.00532372 b2 = 0.00532067
b3 = 0.96321271 b3 = 0.96321262
R2 = 0.99994110 R2 = 0.99994110
Time = 34.24 min Time = 13.44 min

• First, the one-equation parameterization leads
to almost as accurate solution as one ob-
tained under Krusell and Smith’s (1998)
state-contingent ALM. (Under their para-
meterization, we haveR2 = 0.99994989 and
R2 = 0.99992851 with the high and low
states, respectively).



• Second, given the same parameterization
and the same degree of accuracy, our bisec-
tion and updating method delivers a solu-
tion almost three times faster than the up-
dating. (It took us more than an hour to
solve the model by using the updating un-
derKrusell and Smith’s (1998) state-contingent
ALM).

•We have discussed an application of our bi-
section and updatingmethod only to a sim-
ple setting, however, we expect this to be
also useful in more sophisticated settings.

• At least, we can use this method for fast
solving a one-moment version of the model,
so that the obtained solution is subsequently
used as an initial guess for updating in several-
moment versions of the model.



Conclusion

•Wedescribe an algorithm for solvingKrusell
and Smith’s (1998) model with continuum
of agents and savings through capital.

• To solve the individual problem, we use
an Euler equation algorithm iterating on
a grid of prespecified points.

• To solve for the ALM, we summarize the
economy’s state by the first two moments
of the wealth distribution and use Monte
Carlo simulation.

• Our algorithm is relatively fast, especially,
if the ALM is computed with our bisec-
tion and updating method: in our exam-
ple, finding a solution to the benchmark
Krusell and Smith’s (1998) model requires
around 13 minutes.



• Overall, our results are close to those in
Young (2003), which is not surprising given
that we characterize the aggregate state
space with the same set of statistics as he
does.

• It would be of interest to see the perfor-
mance of ourmethod in the context ofModel
C, where, as found by Young (2003) and
Reiter (2003), no single aggregate statis-
tics is sufficient for accurate forecasting of
the future prices.




