Finite Forecasting Function Solutions to the Stochastic Growth Model

Eric R. Young

University of Virginia

Heterogeneity and Macrodynamics August 30-September 1, 2007

・ロン ・回 とくほど ・ ほとう

Main Idea

Transition for actual state is infinite-dimensional:

$$\Gamma_{t+1} = H(\Gamma_t, a_t, a_{t+1})$$

Prices are only functions of *m*₁:

$$m_{1,t+1} = H_1(\Gamma_t, a_t, a_{t+1})$$

Project onto lower dimension space:

$$m_{1,t+1} = \widehat{H}_1(m_{1,t}, a_t, a_{t+1})$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Main Idea

Transition for actual state is infinite-dimensional:

$$\Gamma_{t+1} = H(\Gamma_t, a_t, a_{t+1})$$

▶ Prices are only functions of *m*₁:

$$m_{1,t+1} = H_1\left(\Gamma_t, a_t, a_{t+1}\right)$$

Project onto lower dimension space:

$$m_{1,t+1} = \widehat{H}_1(m_{1,t}, a_t, a_{t+1})$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Main Idea

Transition for actual state is infinite-dimensional:

$$\Gamma_{t+1} = H(\Gamma_t, a_t, a_{t+1})$$

▶ Prices are only functions of *m*₁:

$$m_{1,t+1} = H_1\left(\Gamma_t, a_t, a_{t+1}\right)$$

Project onto lower dimension space:

$$m_{1,t+1} = \widehat{H}_1(m_{1,t},a_t,a_{t+1})$$

・ロン ・回 とくほど ・ ほとう

Algorithm

Guess law of motion:

$$\log\left(m_{1}'\right) = A\left(a\right) + B\left(a\right)\log\left(m_{1}\right)$$

- Solve household problem
- Simulate
- Update law of motion

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Algorithm

Guess law of motion:

$$\log(m_{1}') = A(a) + B(a) \log(m_{1})$$

- Solve household problem
- Simulate
- Update law of motion

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Algorithm

Guess law of motion:

$$\log(m_1') = A(a) + B(a) \log(m_1)$$

- Solve household problem
- Simulate
- Update law of motion

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Algorithm

Guess law of motion:

$$\log(m_{1}') = A(a) + B(a) \log(m_{1})$$

- Solve household problem
- Simulate
- Update law of motion

・ロン ・回 と ・ ヨ と ・ ヨ と

Solving the Household Problem

$$v(k, l, m_1, a,) = \max_{k' \ge 0} \{u(c) + \beta E [v(k', l', m'_1, a') | l, m_1, a] \}$$

- Value iteration with Howard's improvement
- Cubic and linear splines for value function
- Feasible sequential quadratic programming method for maximization

・ロン ・回 と ・ ヨ と ・ ヨ と

Solving the Household Problem

$$v(k, l, m_1, a,) = \max_{k' \ge 0} \{u(c) + \beta E [v(k', l', m'_1, a') | l, m_1, a] \}$$

- Value iteration with Howard's improvement
- Cubic and linear splines for value function
- Feasible sequential quadratic programming method for maximization

・ロン ・回 とくほど ・ ほとう

Solving the Household Problem

$$v(k, l, m_1, a,) = \max_{k' \ge 0} \{u(c) + \beta E [v(k', l', m'_1, a') | l, m_1, a] \}$$

- Value iteration with Howard's improvement
- Cubic and linear splines for value function
- Feasible sequential quadratic programming method for maximization

・ロン ・回 と ・ ヨ と ・ ヨ と

Simulation Procedure

Nonstochastic simulation procedure

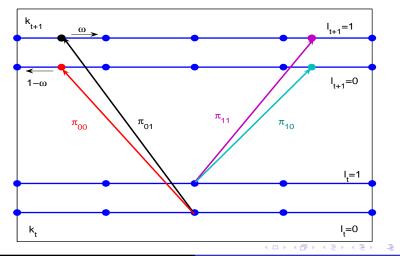
- Store distribution as vector of point masses
- Each period redistribute mass at point (k, l) according to transition probabilities

・ロン ・回 と ・ ヨン ・ ヨン

Simulation Procedure

- Nonstochastic simulation procedure
- Store distribution as vector of point masses
- Each period redistribute mass at point (k, l) according to transition probabilities

・ロト ・回ト ・ヨト ・ヨト


Simulation Procedure

- Nonstochastic simulation procedure
- Store distribution as vector of point masses
- Each period redistribute mass at point (k, l) according to transition probabilities

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

Simulation Procedure

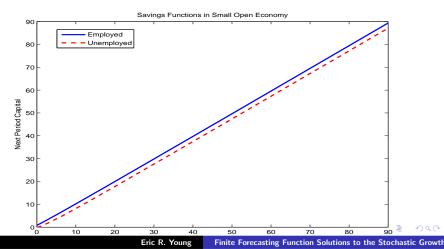
Simulation

Eric R. Young Finite Forecasting Function Solutions to the Stochastic Growth

Stationary Economies Aggregate Shock Economy

Stationary Economies

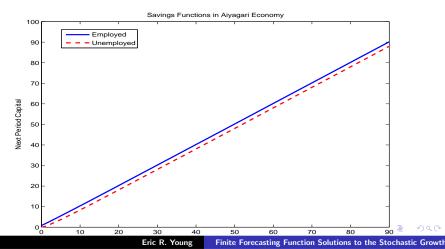
Table 1 Stationary Distributions


Economy	m(1)	<i>m</i> (2)	m(3)	<i>m</i> (4)	Bind
Small Open	10.995	0.344	-0.266	0.442	0.2
Aiyagari	37.678	0.478	0.467	0.691	0.2

・ロン ・回 とくほど ・ ほとう

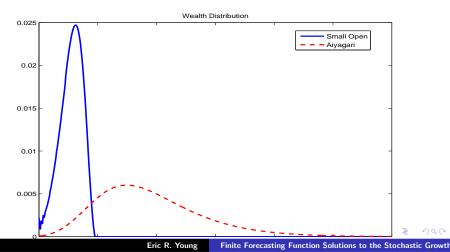
Stationary Economies Aggregate Shock Economy

Decision Rules, Small Open Economy


Savings

Stationary Economies Aggregate Shock Economy

Decision Rules, Aiyagari Economy


Savings

Stationary Economies Aggregate Shock Economy

Wealth Distributions

Savings

Stationary Economies Aggregate Shock Economy

Accuracy Tests

Aggregate Law of Motion

$$\begin{array}{lll} \log \left(m_{1}^{\prime} \right) & = & 0.132 + 0.965 \log \left(m_{1} \right) \\ R^{2} & = & 0.99998, \widehat{\sigma} = 0.0001, e_{\max} = 0.00002 \end{array}$$

$$\begin{aligned} \log \left(m_1' \right) &= & 0.123 + 0.966 \log \left(m_1 \right) \\ R^2 &= & 0.99999, \widehat{\sigma} = 0.0001, e_{\mathsf{max}} = 0.00003 \end{aligned}$$

den Haan Accuracy Tests

Max Error, Simulation	1.23%
Average Error, Simulation	0.12%
Max Error, Impulse	3.16%
Average Error, Impulse	0.44%

Eric R. Young Finite Forecasting Function Solutions to the Stochastic Growth

◆ロ → ◆□ → ◆ 三 → ◆ 三 → の へ ()

Stationary Economies Aggregate Shock Economy

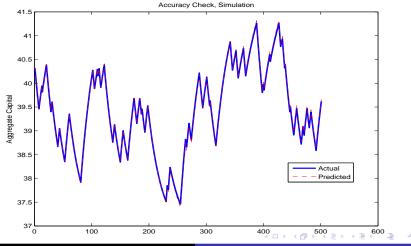
Accuracy Tests

Aggregate Law of Motion

$$\begin{array}{lll} \log \left(m_{1}^{\prime} \right) & = & 0.132 + 0.965 \log \left(m_{1} \right) \\ R^{2} & = & 0.99998, \widehat{\sigma} = 0.0001, e_{\max} = 0.00002 \end{array}$$

$$\begin{array}{lll} \log \left(m_1' \right) & = & 0.123 + 0.966 \log \left(m_1 \right) \\ R^2 & = & 0.99999, \widehat{\sigma} = 0.0001, e_{\sf max} = 0.00003 \end{array}$$

den Haan Accuracy Tests

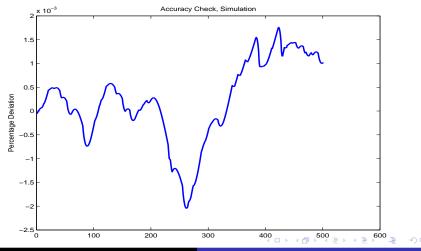

Max Error, Simulation	1.23%
Average Error, Simulation	0.12%
Max Error, Impulse	3.16%
Average Error, Impulse	0.44%

(日) (四) (王) (王) (王)

Stationary Economies Aggregate Shock Economy

Accuracy Tests

Simulation

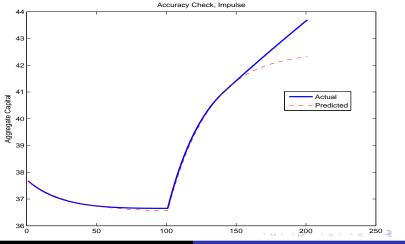

Eric R. Young

Finite Forecasting Function Solutions to the Stochastic Growth

Stationary Economies Aggregate Shock Economy

Accuracy Tests

Simulation

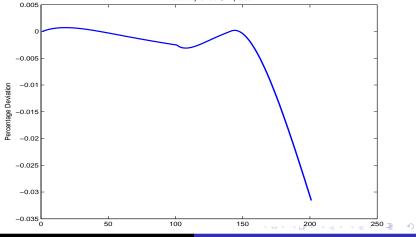

Eric R. Young

Finite Forecasting Function Solutions to the Stochastic Growth

Stationary Economies Aggregate Shock Economy

Accuracy Tests

Impulse


Eric R. Young

Finite Forecasting Function Solutions to the Stochastic Growth

Stationary Economies Aggregate Shock Economy

Accuracy Tests

Impulse Accuracy Check, Impulse

Eric R. Young

Finite Forecasting Function Solutions to the Stochastic Growth

Stationary Economies Aggregate Shock Economy

Cross-Sectional Moments

Risk Sharing Properties

X	σ_{x}	$\rho(x_t, C_t)$	$\rho(\mathbf{x}_t, \mathbf{Y}_t)$	$\rho(\mathbf{x}_t, \mathbf{K}_t)$	$\rho(x_t, y_t)$	$\rho(\mathbf{x}_t, \mathbf{k}_t)$
Ct	0.259	0.251	0.176	0.239	0.972	0.970
k _t	21.465					

x	$\rho(x_t, x_{t-1})$	$\rho(x_t, x_{t-2})$	$\rho(x_t, x_{t-3})$
Ct	0.995	0.990	0.986
k _t	1.000	0.999	0.998

・ロト ・回ト ・ヨト ・ヨト

Stationary Economies Aggregate Shock Economy

Wealth Distribution

Wealth Distribution						
Const	Const(g)	Const(<i>b</i>)	5%	10%		
0.011%	0.005%	0.017%	1.3%	3.2%		
m(1)	m(2)	m (3)	<i>m</i> (4)	<i>m</i> (5)		
39.431	0.543	0.611	0.864	1.032		

Algorithm

• Guess value function $v^0(b, y, a)$

Solve household problem

$$\widehat{v}(b, y, a, q) = \max_{b' \ge \overline{b}} \left\{ u\left(b + ay - qb'\right) + \beta E\left[v^n\left(b', y', a'\right) | y, a\right] \right\}$$

Simulate, solving equation for q_t at each t:

$$\int b'(b,a,y,q_t)\,\Gamma_t(b,y)=0$$

Update value function:

$$v^{n+1}(b, y, a) = \widehat{v}(b, y, a, C(a))$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Algorithm

- Guess value function $v^0(b, y, a)$
- Solve household problem

$$\widehat{v}(b, y, a, q) = \max_{b' \geq \overline{b}} \left\{ u\left(b + ay - qb'\right) + \beta E\left[v^n\left(b', y', a'\right) | y, a\right] \right\}$$

Simulate, solving equation for q_t at each t:

$$\int b'(b,a,y,q_t)\,\Gamma_t(b,y)=0$$

Update value function:

$$v^{n+1}(b, y, a) = \widehat{v}(b, y, a, C(a))$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Algorithm

- Guess value function $v^0(b, y, a)$
- Solve household problem

$$\widehat{v}(b, y, a, q) = \max_{b' \ge \overline{b}} \left\{ u\left(b + ay - qb'\right) + \beta E\left[v^n\left(b', y', a'\right) | y, a\right] \right\}$$

Simulate, solving equation for q_t at each t:

$$\int b'(b,a,y,q_t)\,\Gamma_t(b,y)=0$$

Update value function:

$$v^{n+1}(b, y, a) = \widehat{v}(b, y, a, C(a))$$

・ロン ・回 と ・ ヨン ・ ヨン

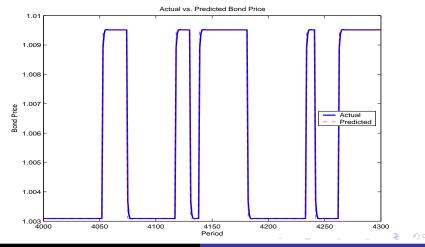
Algorithm

- Guess value function $v^0(b, y, a)$
- Solve household problem

$$\widehat{v}(b, y, a, q) = \max_{b' \ge \overline{b}} \left\{ u\left(b + ay - qb'\right) + \beta E\left[v^n\left(b', y', a'\right) | y, a\right] \right\}$$

Simulate, solving equation for q_t at each t:

$$\int b'(b,a,y,q_t)\,\Gamma_t(b,y)=0$$


Update value function:

$$v^{n+1}(b, y, a) = \widehat{v}(b, y, a, C(a))$$

・ロン ・回 と ・ ヨン ・ ヨン

Bond Price Simulation

Impulse

Eric R. Young

Finite Forecasting Function Solutions to the Stochastic Growth

Bond Price Simulation

Impulse

Eric R. Young

Finite Forecasting Function Solutions to the Stochastic Growth