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General framework (rational expectations)

A rational expectations (RE) version of a class of dynamic stochastic general
equilibrium(DSGE) models:

Ft (yt, yt−1, Etyt+1, Et−1yt, zt, εt | φ) = 0, (1)

where yt is an m × 1 vector formed by stacking all the variables in the model that have
an expectational term, εt is an n × 1 vector of independent random disturbances, φ is a
vector of all model parameters, and zt is a vector formed by stacking all current and
lagged variables that have no expectational terms.
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General framework (adaptive expectations)

A learning version of the RE model is to replace Etyt+1 by

Eb
t yt+1 ≡ βt, (2)

where the superscript b stands for learning. Denote the i th element of βt by βit, which
has the following general functional form f b

i :

βit = fb
i

�

yt, yt−1, xit, xit−1 | αt|t−1, αt−1|t−2, Pt|t−1, Pt−1|t−2, V, φo

�

, for Kalman filter,
(3)

βit = fb
i

�

yt, yt−1, xit, xit−1 | αt|t−1, αt−1|t−2, Pt|t−1, Pt−1|t−2, g, φo

�

, for constant gain,

(4)

where xit, a subset of current and lagged values of yt and zt, is a vector of
right-hand-side observable variables (up to t) in the learning regression, αt|t−1 is a
vector of beliefs based on information up to t − 1, Pt|t−1 and V (or g) governs the
dynamic evolution of αt+1|t, and φo is a vector of other model parameters. Without loss
of generality, we let m = 1 (the dimension of yt be one) and thus omit the subscript i in
(3) and (4) for the rest of the lectures. Note that the vector xt has the same length as
αt|t−1.
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Learning mechanisms

The learning mechanisms studied in the literature are based on the following regression
form:

yt = α′
t|t−1xt + σwt, (5)

where wt is an i.i.d. standard normal random variable.

Given α1|0 and P1|0, a Kalman filter algorithm updates αt|t−1 for t ≥ 2 with the following
formula:

αt|t−1 = αt−1|t−2 +
Pt−1|t−2xt−1(yt−1 − x′

t−1αt−1|t−2)

σ2 + x′
t−1Pt−1|t−2xt−1

, (6)

Pt|t−1 = Pt−1|t−2 −
Pt−1|t−2(xt−1x′

t−1)Pt−1|t−2

σ2 + x′
t−1Pt−1|t−2xt−1

+ V. (7)
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Learning mechanisms (continued)

Given α1|0 and P1|0, a constant-gain least squares algorithm updates αt|t−1 for t ≥ 2

with the following formula:

αt|t−1 = αt−1|t−2 + gPt−1|t−2xt−1(yt−1 − x′
t−1αt−1|t−2), (8)

P−1
t|t−1

= P−1
t−1|t−2

+ g

�

xt−1x′
t−1 − P−1

t−1|t−2

�
. (9)

It can be shown from (6)-(9) that a constant-gain algorithm can be approximated by a
Kalman filter with V proportional to σ2E(xtx′

t)
−1. This approximation works particularly

well for mean dynamics (which are described below).

Intuitively speaking, the loose relationships between the Kalman-filter and constant-gain
algorithms can be summarized as follows.

• Large V corresponds to large g. Both imply that the past data are heavily
discounted when beliefs are updated.

• A constant gain implies that V may be time-varying, proportional to Pt|t−1.

• The Kalman filter algorithm implies that the gain may be time-varying.
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Mean dynamics – Kalman filter

It is difficult to obtain analytical asymptotic results for the dynamics implied by arbitrary
V . For small V ’s, the beliefs drift at a slower rate and their evolution can be well
approximated by the mean dynamics, which are defined as follows. Consider

αt|t−1 = αt−1|t−2 +
(Pt−1|t−2/ε)xt−1(yt−1 − x′

t−1αt−1|t−2)

σ2 + x′
t−1(Pt−1|t−2/ε)xt−1

,

(Pt|t−1/ε) = (Pt−1|t−2/ε) −
(Pt−1|t−2/ε)(xt−1x′

t−1)(Pt−1|t−2/ε)

σ2 + x′
t−1(Pt−1|t−2/ε)xt−1

+ ε2V.

As ε → 0, the sequence of {αt|t−1, Pt|t−1/ε} generated by the above converges weakly
to the solution of the following ordinary differential equations (ODEs):

α̇ = PE
�

xt(yt − x′
tα)

�

, (10)

Ṗ = σ−2V − PE(xtx
′
t)P. (11)

The dynamics generated by (10) and (11) are called mean dynamics.
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Mean dynamics – constant gain

For a constant-gain learning algorithm, the beliefs will drift at a slow rate when g is small.
Consider

αt|t−1 = αt−1|t−2 + εgPt−1|t−2xt−1(yt−1 − x′
t−1αt−1|t−2),

P−1
t|t−1

= P−1
t−1|t−2

+ εg

�

xt−1x′
t−1 − P−1

t−1|t−2

�
.

As ε → 0, the sequence of {αt|t−1, P−1
t|t−1

} generated by the above converges weakly

to the solution of the following ordinary differential equations (ODEs):

dα(t)

dt
= PE

�

xt(yt − x′
tα)

�

, (12)

dP−1(t)

dt
= E(xtx

′
t) − P−1. (13)

The above ODEs generate the mean dynamics.
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Self-confirming equilibrium

A self-confirming equilibrium (SCE) is a vector of beliefs αSCE that is consistent with
what it observes and satisfies the population orthogonality and moment conditions
implied by the ODEs (10) and (11) ((12) and (13)) governing the mean dynamics:

E

�

xt(yt − x′
tαSCE)

�

= 0, (14)

σ−2V − PSCEE(xtx
′
t)PSCE = 0, for Kalman filter, (15)

E(xtx
′
t) − P−1

SCE = 0, for constant gain. (16)

• If V = σ2Extx′
t, the SCE under the constant-gain learning is the same as the

SCE under the Kalman filter learning, and the mean dynamics under both learning
algorithms should be very close.

• For ε being not small (e.g., ε = 1), the mean dynamics may not fully characterize
the evolution of beliefs if V or g is relatively large. In this case, loosely speaking,
we may get convergence to a nontrivial limit distribution of beliefs that are
governed by both mean and escape dynamics.

• An SCE serves as a natural bridge between a RE equilibrium and an adaptive
expectations equilibrium.
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Maximum likelihood (ML) procedure – the block-wise algorithm

Let dt, a subset of yt and zt, be an n × 1 vector of observable variables corresponding
to the fundamental shocks εt in (1), and st be a vector of hidden or observed exogenous
variables in (1). Denote

Dt = {d0, . . . , dt}, St = {s0, . . . , st}.

Using a state-space form of (1), suppose that one can form the conditional likelihood
function

p(dt|Dt−1, St, φ). (17)

• If st is a vector of hidden exogenous variables whose distribution is assumed to be
known, one can in principle integrate out ST in (17) to get the overall likelihood
p(DT |φ).

• If st is a vector of observed exogenous variables, then

p(DT |ST , φ) =

T �

t=1

p(dt|Dt−1, St, φ).

The maximum likelihood estimate (MLE) of φ can be obtained by maximizing the overall
likelihood with an efficient optimization routine.
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ML procedure – the block-wise algorithm (continued)

• When the model parameters φ are high-dimentional, the overall likelihood tend to
have long ridges and local peaks. This makes any optimization routine difficult to
perform.

• In this case, we break φ into several blocks following the idea of Gibbs sampling
(which will discussed later) and maximize the likelihood over one block of
parameters while conditioning on the other blocks of parameters at the previous
values.

• One iterates on this optimization block by block until the overall convergence
criterion is satisfied.

• One particular block of parameters contains some key learning parameters that
must be estimated to fit to the data (reverse-engineering estimation).

• These parameters are V , P1|0, and g.
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ML procedure – the block-wise algorithm (continued)

• It may be necessary to estimate the initial belief coefficients α1|0, depending on
whether such estimation may create the over-fitting problem or whether it may
destroy a reasonable economic interpretation of belief coefficients.

• In the SWZ US inflation model, α1|0 is fixed at the regression estimate obtained
from the presample data so as to avoid the unduly influence by the updated beliefs
in the sample.

• The parameter σ is in general not a free parameter and is normalized according to
a certain rule (we will discuss this issue further in the SWZ US inflation paper).
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ML procedure – posterior odds ratios

Without loss of generality, we omit the exogenous variables st for the rest of the lectures.
Suppose we have two models; let φm1 correspond to the r1 × 1 vector of parameters for
Model 1 and φm2 be the r2 × 1 vector for Model 2. The overall likelihood functions for
both models are p(DT |φm1) and p(DT |φm2). Let the degrees of freedom for Model 2
be df = r2 − r1, and φ̂m1 and φ̂m2 be the MLEs respectively. By the Schwarz criterion
(SC), the asymptotic posterior odds ratio of Model 1 to Model 2 in log value is

logp(DT |φ̂m1) −

�

logp(DT |φ̂m2) − (df/2)logT

�

.

Note that the log likelihood for Model 2 is adjusted by the degrees of freedom (relative to
the baseline model, which is Model 1). Thus, as the number of the model’s parameters
increases, the model will be penalized in terms of its odds.
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Markov-Chain Monte Carlo (MCMC) procedure – the Gibbs sampler

The likelihood function oftentimes is unbounded when it is integrated over the parameter
space. This makes is impossible to make probability (or Bayesian) inferences. In
general, the likelihood function is multiplied by a proper prior distribution p(φ), which
gives the posterior probability density:

p(φ|DT ) ∝ p(DT |φ)p(φ).

Under fairly general conditions, the posterior pdf is proper as the prior is proper.

The Gibbs sampler begins with breaking φ into, say, B blocks of parameters where each
block φ(b) for b ∈ {1, . . . , B} has a know distribution conditional on the other blocks.

Given the initial values φ
(0)
(1)

, . . . , φ
(0)
(B)

(usually taken from the estimate at the posterior

peak or from the neighborhood around the peak to ensure that the starting value does
not have an extremely low probability), one can make the successive drawings:

φ
(t)
(b)

∼ p

�

φ(b)|φ(t)
<(b)

, φ
(t−1)
>(b)

, DT

�

, t = 1, 2, . . . ,

where φ<(b) denotes all the blocks φ(i) for i < b and φ>(b) denotes all the blocks φ(i)

for i > b.
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MCMC procedure – the Metropolis algorithm

There is a more general algorithm called Metropolis-Hastings. But since the Metropolis
algorithm is often used for many problems in economics, we describe the Metropolis
algorithm only.
Given the initial value φ(0) (often taken from the estimate at the posterior peak or from
the neighborhood around the peak), the Metropolis algorithm involves the four steps for
t = 1, 2, . . . :

(1) Given the value φ(t−1), compute the proposal draw

φprop = φ(t−1) + ξφ,

where ξφ ∼ N(c Σ̃φ) (although ξφ can have any distribution as long as the pdf
value for φprop conditional on φ(t−1) is the same as the pdf value for φ(t−1)

conditional on φprop.
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MCMC procedure – the Metropolis algorithm (continued)

(1) To capture the correlation among the elements in φ, the covariance matrix Σ̃φ may
be computed to be the inverse of the second derivatives matrix of the log likelihood
formed as

�

T

t=1

ĝtĝ
′
t

� −1

where

ĝt =
∂ logp(dt|Dt−1, φ̂)

∂ φ̂
.

The scale factor c will be adjusted to keep the acceptance ratio optimal (around
25% − 40%).

(2) Compute

r = min
	
p(φprop|DT )

p(φ(t−1)|DT )
, 1




.

(3) Randomly draw ν from the uniform distribution U(0, 1).

(4) If ν <= r, let φ(t) = φprop (acceptance); otherwise, keep φ(t) = φ(t−1) (rejection).
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MCMC procedure – Metropolis within Gibbs

In some applications (like the SWZ US inflation model), a conditional posterior density
p(φ(b)|φ−(b) within the Gibbs sampler is not of any standard form. Note that (φ−(b)

represent all the other blocks of parameters than φ(b). In this case, the Metropolis

algorithm can be applied to this block by setting φ
(t)
(b)

= φ
prop
(b)

with the acceptance

probability

r = min

�
�

�

p

�

φ
(t)
<(b)

, φ
prop
(b)

, φ
(t−1)
>(b)

|DT

�
p

�

φ
(t)
<(b)

, φ
(t−1)
≥(b)

|DT

� , 1
�
�

� .
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Marginal data density (MDD)

The MDD measures the model’s fit to the data and forms a basis for calculating the
posterior odds ratios. Denote the support of p(φ|DT ) by Θφ. The MDD’s analytical
solution is

p(DT ) =
Θφ

p(DT | φ)p(φ) dφ

There are a number of methods for approximating the above object numerically.

• One generic approach is the MHM procedure (Gelfand and Dey 1994; Geweke
1999).

• Another one is to utilize Gibbs sampling (Chib 1995).

The latter approach is in general very reliable and accurate if the Gibbs sampler exists,
because each conditional posterior density can be evaluated in closed form.
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MDD – the modified harmonic means (MHM) procedure

Let g(φ) be a weighting function that must be a pdf (not kernel) whose support is
contained in Θp. The MHM method is based on the observation that

p(DT )−1 =
Θφ

g(φ)

p(DT | φ)p(φ)
p(φ | DT )dφ. (18)

A numerical evaluation of the integral on the right hand side of (18) can be done through
the Monte Carlo integration

p̂(DT )−1 =

N

i=1

g(φ(i))

p(DT | φ(i))p(φ(i))
, (19)

where φ(i) is the ith draw of φ from the posterior distribution p(φ | DT ).
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MDD – using Gibbs sampling

The MDD can be evaluated using the following identity

p(DT ) =
p (DT | φ∗) p (φ∗)

p (φ∗ | DT )
,

for any φ∗ ∈ Θφ. Typically, p (DT | φ∗) and p (φ∗) can be evaluated in closed form but
p (φ∗ | DT ) cannot. To evaluate p (φ∗ | DT ) accurately, we decompose this term
according to the Gibbs sampler:

p (φ∗ | DT ) = p

�

φ∗
(1) | DT

�

p

�

φ∗
(2) | φ∗

(1), DT
�

. . . p

�

φ∗
(B) | φ∗

<(B), DT

�

.

The first term on the right hand side can be approximated well from the output of the

original Gibbs sampler φ
(i)
(b)

:

N−1
N

i=1

p

�

φ∗
(1) | φ

(i)
>(1)

, DT

�

a.s.−→ p

�

φ∗
(1) | DT

�

.
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MDD – using Gibbs sampling (continued)

Because the conditional density p

�

φ∗
(1)

| φ
(i)
>(1)

, DT

�

can be evaluated in closed form,

the approximation will be accurate with enough Gibbs draws.

The last term p

�

φ∗
(B)

| φ∗
<(B)

, DT

�

can be evaluated in closed form so that no

approximation is needed.

To approximate p

�

φ∗
(b)

| φ∗
<(b)

, DT

�

, we use the Gibbs sampler to produce draws

φ
(i) (b−1)
>(b)

with the first b − 1 blocks fixed at the ∗ values:

N−1
N

i=1

p

�

φ∗
(b) | φ∗

<(b), φ
(i) (b−1)
>(b)

, DT
�

a.s.−→ p

�

φ∗
(b) | φ∗

<(b), DT

�

.

Again all the conditional posterior densities can be evaluated in closed form. This
algorithm is efficient if φ∗ is chosen near the posterior mode. By varying the value of φ∗,
one can

• obtain the standard error for the MDD,
• use it as the basis to check the convergence of the Gibbs sampler.
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VARs as a benchmark for model comparison

• VARs have been known to fit to the data very well and thus have often used as a
benchmark for comparing different DSGE models.

• Restricted VARs have been used to give each structural equation more economic
interpretations (Rudebusch and Svensson 1999, 2002).

Is there any efficient method to compute the MDD for a restricted VAR? Waggnoer and
Zha (2003) develop a Gibbs sampling algorithm for a class of identified VARs with linear
restrictions on both contemporaneous and lagged coefficients. The models of
Rudebusch and Svensson (1999, 2002) are special cases of these restricted VARs.

• With the Gibbs sampler for restricted VARs, one can use the Chib procedure
discussed above to obtain a very accurate evaluation of the MDD.

• For example, it takes less than 1 minute to obtain a reliable estimate of the MDD
for a large VAR with 13 lags and 10 variables.

• The program swz_mardd.m computes the MDD for a restricted VAR. The file
readme_swz.prn gives detailed instructions of how to use the code.

• For quarterly data, the prior is typically set as mu(1) = 1; mu(2) = 0.5 (or 0.2);
mu(3) = 0.1; mu(4) = 1.0; mu(5) = 1.0; mu(6) = 1.0.

• For monthly data, it is typically set as mu(1) = 0.6; mu(2) = 0.1; mu(3) = 0.1; mu(4)
= 1; mu(5) = 5.0; mu(6) = 5.0.
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The SWZ US inflation model

The SWZ model takes a special form of (1) where yt = πt, zt = ut, and εt = [w1t w2t]′:

ut − u∗ = θ0(πt − Et−1πt) + θ1(πt−1 − Et−2πt−1) + τ1(ut−1 − u∗) + σ1w1t, (20)

πt = xt−1 + σ2w2t. (21)

• Equation (20) is an expectations-augmented Phillips curve in which systematic
monetary policy has neither short-run nor long-run effects on unemployment.

• Equation (20) embodies a stronger form of ‘policy irrelevance’ than do many of
today’s New Keynesian Phillips curves.

• Ignore the nonneutralities present in those models and aim to reverse engineer a
set of government beliefs that can explain the low frequency swings in U.S. data.

• Insist that the true DGM have the strong policy irrelevance of the Lucas supply
function.
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Government’s optimization problem

The policy decision xt−1 solves the “Phelps problem”:

min
xt−1

Ê

∞

t=1

δt((πt − π∗)2 + λ(ut − u∗∗)2) (22)

subject to (21) and
ut = α̂′

t|t−1Φt + σwt. (23)

The beliefs α̂t|t−1 is updated in the same way as (6) and (7), where we replace αt|t−1

by α̂t|t−1, xt by Φt, and yt by ut.

Solving this government problem leads to the solution characterized by (3). Specifically,
we will have

xt−1 = fb(ut−1, Φt−1|α̂t|t−1, Pt|t−1, V, σ, δ, λ, π∗, u∗∗). (24)

Omitting the subscript t|t − 1 for the α’s, we consider

ut = α̂0π0 + α̂1πt−1 + α̂2ut−1 + α̂3πt−1 + α̂4ut−2 + α̂5 + σwt. (25)
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Government’s optimization problem (Euler equations)

Let L1t be the Lagrangian multiplier for (21) and L2t for (25). The first-order conditions
w.r.t. ut, πt, and xt−1 are

2λ(ut − u∗∗) = L2t − δα̂2EtL2t+1 − δ2α̂4EtL2t+2, (26)

2(πt − π∗) = α̂0L2t − δα̂1EtL2t+1 − δ2α̂3EtL2t+2 + L1t, (27)

Et−1L1t = 0. (28)

Two dummy equations are

πt−1 = πt−1, (29)

ut−1 = ut−1, . (30)

Three expectational errors are ξ1t, ξ2t, and ξ3t defined as

L1t = Et−1L1t + ξ1t = ξ1t, (31)

L2t = Et−1L2t + ξ2t, (32)

EtL2t+1 = Et−1L2t+1 + ξ3t. (33)
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Sims’s gensys form

To put the government’s optimal problem in the gensys form (a linear form of (1)), let yG
t

be a vector of 8 variables:

yG
t = [xt πt πt−1 ut ut−1 L2t EtL2t+1 EtL2t+2]′.

The canonical form for a rational expectations model is

Γ0yG
t = Γ1yG

t−1 + c + Ψεt + Πηt, (34)

where εt is a vector of exogenous variables and ηt is a vector of endogenous
disturbances satisfying Etηt+1 = 0.

• There are 8 equations for this government problem.
• They are (21), (25), (26), (27) combined with (31), (29), (30), (32), and (33).
• We now put them in the matrices Γ0, Γ1, c, Ψ, and Π.
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Canonical form for the government problem

Γ0 =

�
�������������������������

0 1 0 0 0 0 0 0

0 −α̂0 −α̂1 1 −α̂2 0 0 0

0 0 0 2λ 0 −1 δα̂2 δ2α̂4

0 2 0 0 0 α̂0 δα̂1 δ2α̂3

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

�
�������������������������

Γ1 =

�
�������������������������

1 0 0 0 0 0 0 0

0 0 α̂3 0 α̂4 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

�
�������������������������
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Canonical form for the government problem (continued)

C =

�
�������������������������

0

α̂5

2λu∗∗

2π∗

0

0

0

0

�
�������������������������

Ψ =

�
�������������������������

σ2 0

0 σ

0 0

0 0

0 0

0 0

0 0

0 0

�
�������������������������

Π =

�
�������������������������

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 1
�

�������������������������

εt =

�

w2t

wt
�

ηt =

�
���

ξ1t

ξ2t

ξ3t

�
���

Solving this optimization problem will lead to the solution of the form (24).
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Ramsey equilibrium

As a benchmark, suppose that the government has full knowledge of the economy. In
this case, there is no model misspecification on the part of the government, and the
government solves out its optimal policy subject to (20) instead of (23).

This problem can be solved directly with Dynare’s OLR procedure – using the Dynare
module sz1. The optimal inflation policy for this case is always equal to π∗.
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Nash equilibrium and SCE

The Nash equilibrium inflation rate is:

πNash = π∗ − λ(u∗ − u∗∗) [(1 + δτ1)θ0 + δθ1] . (35)

The larger are u∗ − u∗∗, θ0, and θ1 in absolute value, the higher is the Nash inflation
rate compared to the Ramsey rate π∗.

• The mean inflation rate at the SCE agrees with the Nash inflation rate.
• To obtain the SCE, one can numerically solve out the ODEs (10) and (11).
• Setting the government’s beliefs at the SCE, the Dynare module sz2 can be used

to simulate the dynamics of inflation, which may escape from the SCE.
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Learning equilibrium

• The government has a misspecified model but updates its beliefs according to the
Kalman filter algorithm.

• At each time t, the government’s beliefs are updated and its optimal policy is
resolved again according to the canonical form described above.

• The Dynare module sz3 solves this problem and simulates the path of inflation.
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Role of the government’s learning from misspecified models

• In this model, inflation converges much faster to the SCE under Kalman filtering
learning than under RLS. In effect, the Kalman filter learning rule with drifting
coefficients seems to discount the past data more rapidly than the constant gain
RLS learning rule.

• Consider εV . As the government’s prior belief parameter ε → 0 (at the limit there
is no time variation in the parameters), inflation converges to the self-confirming
equilibrium (SCE) and the mean escape time becomes arbitrarily long.

• As the government’s prior belief parameter σ → 0 (in the limit, there is no variation
in the government’s regression error or arbitrarily large time variation in the drifting
parameters), large escapes from an SCE can happen arbitrarily often and
nonconvergence is possible.

• The covariance matrix V in the government’s prior belief about the volatility of the
drifting parameters affects the speed of escape. The covariance matrix V

combined with the prior belief parameter ε, affects the speed of convergence to the
SCE from a low inflation level.
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Methodology and MCMC algorithm

Group all other free structural parameters as

φ = {v∗, θ0, θ1, τ1, ζ1, ζ2, u(CP ), u(CV )},

where v∗ = u∗(1 − τ1), CP and CV are upper triangular such that P1|0 = C′
P CP and

V = C′
V CV , and ζ1 = 1/σ2

1 and ζ2 = 1/σ2
2 represent the precisions of the

corresponding innovations. The notation u(CP ) or u(CV ) means that only the upper
triangular part of CP or CV are among the free parameters.

The structural parameter ζ = 1/σ2 is not free. It is clear from (6) and (7) that if we scale
V and P1|0 by κ and ζ by 1/κ, the beliefs remain the same and so does the likelihood
(implying the model is unidentified). Following Sargent and Williams, we impose the
restriction ζ = ζ1.

To take into account parameter uncertainty, we employ the Bayesian method and
develop a Monte Carlo Markov Chain (MCMC) algorithm that breaks φ into three
separate blocks: θ, {ζ1, ζ2}, and ϕ where

θ = [v∗ θ0 θ1 τ1]′ ,

and ϕ = {u(CP ), u(CV )}.
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Methodology and MCMC algorithm (continued)

The prior pdf of φ can be factored as:

p(φ) = p(θ) p(ϕ) p(ζ1, ζ2).

The likelihood function is:

L (IT |φ) =
ζ

T/2
1 ζ

T/2
2

(2π)T/2
exp

�

−1

2

T

t=1

�

ζ1z2
1t + ζ2z2

2t

�
�

, (36)

where z1t and z2t are the functions of θ and ϕ:

z1t = ut − u∗ − θ0(πt − xt−1) − θ1(πt−1 − xt−2) − τ1(ut−1 − u∗),

z2t = πt − xt−1,

where the optimal decision rule depends on ϕ.
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Methodology and MCMC algorithm (continued)

The posterior pdf of φ is proportional to the product of the likelihood (36) and the prior
p(φ):

p(φ|IT ) ∝ L (IT |φ) p(φ). (37)

The posterior distribution of φ can be simulated by alternately sampling from the
conditional posterior distributions (Metropolis with Gibbs):

p(θ | IT , ζ1, ζ2, ϕ), Normal

p(ζ1, ζ2 | IT , θ, ϕ), Gamma

p(ϕ | IT , θ, ζ1, ζ2), Unknown pdf – using Metropolis.

In estimation, we set δ = 0.9936, λ = 1, π∗ = 2, and u∗∗ = 1. We set the initial belief
α̂1|0 at the regression estimate obtained from the presample data from January 1948 to
December 1959.
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Reverse engineering estimation

Log value of posterior kernel at its peak: 564.92

Estimates of coefficients in true Phillips curve and inflation process
with 68% and 90% probability intervals in parentheses

u∗ : 6.1104 (5.2500, 7.1579) (4.2238, 9.0586)

θ0 : −0.0008 (−0.0237, 0.0475) (−0.0458, 0.0719)

θ1 : −0.0122 (−0.0375, 0.0297) (−0.0589, 0.0526)

τ1 : 0.9892 (0.9852, 0.9960) (0.9817, 0.9996)

ζ1 : 35.6538 (28.7565, 32.4947) (27.6017, 33.7890)

ζ2 : 18.97671 (15.6565, 18.2557) (14.7008, 19.1196)

Estimate of P1|0 :
10.8705 14.3236 2.2518 -25.4037 -0.9279 -10.1548
14.3236 19.3721 2.9624 -33.9832 -1.1883 -13.5923
2.2518 2.9624 0.4690 -5.2629 -0.1928 -2.1050
-25.4037 -33.9832 -5.2629 59.8997 2.1339 23.9551
-0.9279 -1.1883 -0.1928 2.1339 0.0816 0.8526
-10.1548 -13.5923 -2.1050 23.9551 0.8526 9.5810

Estimate of V :
8.2323 -7.7781 0.9208 4.9782 -0.8136 -41.414
-7.7781 8.1400 0.0303 -5.089 1.9353 68.591
0.9208 0.0303 2.9854 0.1187 3.7012 72.067
4.9782 -5.089 0.1187 3.2032 -1.0548 -39.963
-0.8136 1.9353 3.7012 -1.0548 5.1362 100.6400
-41.414 68.591 72.067 -39.963 100.6400 2588.3000
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Reverse engineering estimation (continued)

Log likelihood and log posterior odds ratio

SWZ model BVAR(13) log odds favoring SWZ

SC 564.92 309.37 255.55
MDD 424.75 244.65 180.10
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Reverse engineering estimation (continued)

Log likelihood and log posterior odds ratio

SWZ model BVAR(13) log odds favoring SWZ

SC 564.92 309.37 255.55
MDD 424.75 244.65 180.10
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Reverse engineering estimation (continued)
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Reverse engineering estimation (continued)
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Reverse engineering estimation (continued)
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Reverse engineering estimation (continued)
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Reverse engineering estimation (continued)
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Reverse engineering estimation (continued)
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Shocks and beliefs
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Shocks and beliefs (continued)
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Importance of cross-equation restrictions

� The FOMC’s preoccupation with the recent data (readings
from the FOMC’s transcripts).

� Large and consequential changes in the FRB/US model at
the Federal Reserve Board from July 1996 and November
2003 (Tetlow and Ironside 2005).
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Importance of cross-equation restrictions (continued)
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Importance of cross-equation restrictions (continued)
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Importance of cross-equation restrictions (continued)
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Two peaks and an enduring decline
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Two peaks and an enduring decline (continued)
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Two peaks and an enduring decline (continued)
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Two peaks and an enduring decline (continued)
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SCE and escapes to the Ramsey equilibrium
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SCE and escapes to the Ramsey equilibrium (continued)
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SCE and escapes to the Ramsey equilibrium (continued)
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SCE and escapes to the Ramsey equilibrium (continued)
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Model II: SZW hyperinflation model

• A hidden Markov, adaptive expectations model.
• The likelihood function.
• Escapes, mean dynamics, rational expectations, and SCE.
• Quantitative implications of our estimates for rational

expectations and SCE versions.

Learning Models – p. 63/93



Data

• Our estimates condition on data for monthly inflation only.
• We ignore data on deficits, but estimate the seigniorage

component of the government’s budget constraint.
• We form likelihood function for histories of inflation.
• The likelihood function is numerically challenging.
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Literature

• Sargent and Wallace (1987) – rational expectations
dynamics are perverse.

• Marcet and Sargent (1989) – least squares learning
dynamics are more sensible.

• Marcet and Nicollini (2003) add an escape clause to the
Marcet-Sargent model and calibrate it to explain recurrent
hyperinflations.

• Escape dynamics of Sargent (1999), Cho, Williams, and
Sargent (2002), and Williams (2005).

• Sargent, Williams, and Zha (2005) model of escape
dynamics and U.S. inflation.
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Adaptive and REE dynamics

Mean adaptive dynamics and REE dynamics.

� �

βt

βt+1 − βt

h(βt)

g(βt)

1

Learning Models – p. 66/93



Adaptive dynamics and escapes (continued)

Adaptive dynamics and the ‘escape event’.

� �

βt

βt+1 − βt

g(βt)

1
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The model, part 1

Mt

Pt
=

1

γ
− λ

γ

P e
t+1

Pt
, (38)

Mt = θMt−1 + dt(st)Pt, (39)

dt(st) = d̄(st) + ηd t(st), (40)

Pr(st+1 = i|st = j) = qij , i, j = 1, ..., h, (41)

πt+1 =
Pt+1

Pt
, πb

t+1 = βt

The above model is a special case of (1) where yt = πt, zt = Mt, and εt is a shock to
dt(st).

βt = βt−1 + g(πt−1 − βt−1), (42)

The learning rule (42) is a special case of (8) and (9), where αt|t−1 = βt, xt−1 = 1, and
Pt|t−1 = 1. Clearly, eqn:belief-cg is also a special case of (4).
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No-breakdown conditions

1 − λβt−1 > 0, (43)

1 − λβt − dt(st) > δθ(1 − λβt−1), (44)
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The model, part 2

Expectations are reset after threatened breakdowns:

πt = π∗
t (st) ≡ π∗

1(st) + ηπ t(st), (45)

pπ (ηπ t(k)) =



















exp − [log (π∗
1 (k)+ηπ t(k))−log π∗

1 (k)]2

2σ2
π√

2πσπ(π∗
1 (k)+ηπ t(k))Φ((−log(δ)−log(π∗

1 (k))/σπ)

if −π∗
1(k) < ηπ t(k) < 1/δ − π∗

1(k)

0 otherwise

,

(46)

pd (ηd t(k)) =











exp − [log (d̄(k)+ηd t(k))−log d̄(k)]2

2σ2
d
(k)√

2πσd(k)(d̄(k)+ηd t(k))
if ηd t(k) > −d̄(k)

0 if ηd t(k) ≤ −d̄(k)

,

(47)
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The escape event and its probability

Let
$t(k) = 1 − λβt − δθ(1 − λβt−1) − d̄(k),

for k = 1, . . . , h. The probability of escape at time t is

I(βt−1 < 1/λ)

h
∑

k=1

[

Pr(st = k|Πt−1, φ̂)

∫ $t(k)

−d̄(k)
I(π∗

2(k) < βt)pd(ηd t(k))d ηd t(k)
]

.

• If perceived inflation βt is above π∗

2
(st), actual inflation is on

average higher than βt, perceived inflation tends to escalate, and
hyperinflation is likely to occur – this is the escape event.

• If perceived inflation βt is above $t(st), however, equilibrium is ε
away from breaking down and mechanical “reforms” on
expectations take place.
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The breakdown event and its probability

The probability of breakdown at time t is

I(βt−1 ≥ 1/λ) + I(βt−1 < 1/λ)

h
∑

k=1

[

Pr(st = k|Πt−1, φ̂)

∫ ∞

$t(k)
pd(ηd t(k))d ηd t(k)

]

.

• If βt−1 ≥ 1/λ, equilibrium at t − 1 was broken down and real
balances was negative. In this situation, the probability of no
equilibrium at t becomes one.

• If real balances at t − 1 is positive and perceived inflation βt is
above $t(st), we are entering the territory threatening the
existence of a positive price level to support the equilibrium.
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The likelihood function

The conditional likelihood is

p(πt|Πt−1, ST , φ) = p(πt|Πt−1, st, φ)

= C1 t

|ξπ| exp
{

− ξ2
π

2

(

logπt − logπ∗

1
(st)

)2
}

√
2π Φ (|ξπ|(−log(δ) − log(π∗

1
(st))) πt

+ C2 t

[

θ|ξd(st)|(1 − λβt−1)√
2π [(1 − λβt)πt − θ(1 − λβt−1)] πt

exp
{

−ξ2

d(st)

2

[

log[(1 − λβt)πt − θ(1 − λβt−1)] − logπt − logd(st)
]2

}

]

,

(48)
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The likelihood function (continued)

where

C1 t = I(βt−1 ≥ 1/λ) + I(βt−1 < 1/λ)
(

1 − Φ
[

|ξd(st)| (log (max[(1 − λβt) − δθ(1 − λβt−1), 0]) − logd(st))
])

,

C2 t = I(βt−1 < 1/λ) I
(

θ (1 − λ βt−1)

max (1 − λ βt, δθ(1 − λ βt−1))
< πt <

1

δ

)

.
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Estimation

• The overall likelihood can be computed recursively. It is
quite complicated and has local peaks.

• Estimation: (1) use the block-wise BFGS algorithm following
the idea of Gibbs sampling and EM algorithm; (2) iterate
between this BFGS algorithm and the IMSL constrainted
optimization routine.

• Estimation: (1) start with a grid of 300 starting points and
perturb around each local peak point in both small and big
steps to generate additional 200 new starting points; (2)
utilize the parallel and grid computing technology on the
Linux OS; (3) it takes 5 days to get the MLE for one country.
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Empirical results: log likelihood

Table 1: Log likelihood adjusted by the Schwarz
criterion

Hyperinflation Model 2-state AR(2) (df=-1) 2 × 2-state AR(2) (df=2)

Argentina 1232.5 1095.2 1490.1
Bolivia 1505.6 1483.7 1539.9
Brazil 750.34 782.97 838.02
Chile 1697.3 1605.4 1714.6
Peru 1651.0 1517.1 1652.3
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Empirical results: probabilities of regimes
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Empirical results: Argentina
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Empirical results: Argentina (continued)
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Argentina: probabilities of the four regimes conditional on the MLEs and the data.
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Empirical results: Argentina (continued)
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Argentina: probability of breakdown (top chart) and belief of next-period inflation βt (bottom chart).
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Empirical results: Brazil
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Brazilian inflation: actual versus one-step median forecast (top chart) and actual versus .90 probability bands of

one-step prediction (bottom chart).
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Empirical results: Brazil (continued)
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Brazil: probabilities of the four regimes conditional on the MLEs and the data.
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Empirical results: Brazil (continued)
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Brazil: probability of breakdown (top chart) and belief of next-period inflation βt (bottom chart).
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Empirical results: Chile
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Chilean inflation: actual versus one-step median forecast (top chart) and actual versus .90 probability bands of

one-step prediction (bottom chart).
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Empirical results: Chile (continued)
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Chile: probabilities of the four regimes conditional on the MLEs and the data.
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Empirical results: Chile (continued)
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Chile: probability of breakdown (top chart) and belief of next-period inflation βt (bottom chart).

Learning Models – p. 86/93



Other theories of expectations and equilibrium

• Rational expectations. Note that πt = π(st, st−1, dt) and denote
πe(st) ≡ Etπt+1. It can be shown that πt is a nonlinear function of πe(st) and
πe(st−1), denoted by h (πe(st), πe(st−1)). Specifically,

π(st, st−1, dt) = h (πe(st), π
e(st−1)) .

Taking expectations of both sides conditional on information at t − 1 with st−1 = i

gives
πe(i) = Et−1h(πe(st), π

e(i)).

The numerical solution for πe(i) is to find a fixed point to the above nonlinear
equation. The solution is not unique and there are multiple equilbria.

The unconditional rational expectations of πt is to take the average of πe(i)

according to the ergodic probability of st.
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Other theories of expectations and equilibrium

• Self-confirming equilibrium (SCE). According to (14) where αSCE = βSCE, xt = 1,
yt = πt, we need to compute the fixed point βSCE that solves

Eπt(βSCE) − βSCE = 0,

where πt depends on βSCE.

For an SCE conditional on st = i, compute the fixed point βSCE(i) that solves

E (πt(βSCE) | st = i) − βSCE(i) = 0,

where E( |st = i) is the conditional expectation.
• Relationship between adaptive expectations and SCE: the mean dynamics and

escape dynamics.
• We’ll study these at our parameter estimates – a way of studying how big is our

departure from rational expectations.
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SCE and conditional SCE

• Conditional SCE: pretend that regime is constant, compute
self-confirming β.

• Self-confirming equilibrium (SCE): find mean dynamics for
β, assuming regime switching, and compute fixed point.

• Compute REE forecasts of inflation in each state st.
• View conditional SCE’s as approximation to REE forecasts

of inflation conditional on state st.
• View SCE as an approximation to unconditional REE

forecast of inflation.
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Brazil SCE
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Argentina SCE
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Concluding remarks: the causes of inflation

• Our model attributes inflation to shocks, states that describe
the average and the volatility of deficits, and beliefs.

• We use a model with adaptive expectations, endogenous
escapes, and mechanical "reforms" that operate directly on
expectations.

• Staying in the (`, `) regime is the key to arresting inflation.
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Concluding remarks (continued)

• From our estimates, we can project what the deficit data
should be.

• We have provided evidence that our adaptive expectations
model often gives outcomes close to REE.

• As in Marcet-Nicolini, a small deviation from REE gives
escape dynamics that can help explain recurrent big
inflations in a way that gives a somewhat independent role
to expectations.
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