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DSGE models

Et {f(yt+1, yt, yt−1, ut)} = 0

ut = σǫt

E(ǫt) = 0

E(ǫtǫ
′
t) = Σǫ

y : vector of endogenous variables

u : vector of exogenous stochastic shocks

σ : stochastic scale variable

ǫ : auxiliary random variables
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Remarks

The exogenous shocks may appear only at the current
period

There is no deterministic exogenous variables

Not all variables are necessarily present with a lead
and a lag

Generalization to leads and lags on more than one
period
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Solution function

yt = g(yt−1, ut, σ)

Then,

yt+1 = g(yt, ut+1, σ)

g(g(yt−1, ut, σ), ut+1, σ)

F (yt−1, ut, ut+1, σ) = f(g(g(yt−1, ut, σ), ut+1, σ), g(yt−1, ut, σ), yt−1, ut)

Et {F (yt−1, ut, ut+1, σ)} = 0
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Steady state

A deterministic steady state, ȳ, for the model satisfies

f(ȳ, ȳ, ȳ, 0) = 0

A model can have several steady states, but only one of
them will be used for approximation.
Furthermore,

ȳ = g(ȳ, 0, 0)
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First order approximation

Around ȳ:

Et

{

F (1)(yt−1, ut, ut+1, σ)
}

=

Et

{

f(ȳ, ȳ, ȳ, 0) + fy+

(

gy (gyŷ + guu + gσσ) + guu′ + gσσ
)

+fy0 (gyŷ + guu + gσσ) + fy−
ŷ + fuu

}

= 0

with ŷ = yt−1 − ȳ, u = ut, u′ = ut+1, fy+ = ∂f
∂yt+1

, fy0 = ∂f
∂yt

,

fy−
= ∂f

∂yt−1
, fu = ∂f

∂ut
, gy = ∂g

∂yt−1
, gu = ∂g

∂ut
, gσ = ∂g

∂σ .
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Taking the expectation

Et

{

F (1)(yt−1, ut, ut+1, σ)
}

=

f(ȳ, ȳ, ȳ, 0) + fy+ (gy (gyŷ + guu + gσσ) + gσσ)

+fy0 (gyŷ + guu + gσσ) + fy−
ŷ + fuu

}

= (fy+gygy + fy0gy + fy−
) ŷ + (fy+gygu + fy0gu + fu) u

+(fy+gygσ + fy0gσ) σ

= 0
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Recoveringgy

(fy+gygy + fy0gy + fy−
) ŷ = 0

Structural state space representation:
[

0 fy+

I 0

] [

I

gy

]

gyŷ =

[

−fy−
−fy0

0 I

] [

I

gy

]

ŷ

or
[

0 fy+

I 0

] [

yt − ȳ

yt+1 − ȳ

]

=

[

−fy−
−fy0

0 I

] [

yt−1 − ȳ

yt − ȳ

]
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Structural state space representation

Dxt+1 = Ext

with

xt+1 =

[

yt − ȳ

yt+1 − ȳ

]

xt =

[

yt−1 − ȳ

yt − ȳ

]

There is an infinity of solutions but we want a unique
stable one.

Problem when D is singular.

Computing first and second order approximations of DSGE models with DYNARE – p. 9/33



Real generalized Schur decomposition

Taking the real generalized Schur decomposition of the
pencil < E,D >:

D = QTZ

E = QSZ

with T , upper triangular, S quasi-upper triangular, Q′Q = I

and Z ′Z = I.
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Generalized eigenvalues

λi solves
λiDxi = Exi

For diagonal blocks on S of dimension 1 x 1:

Tii 6= 0: λi = Sii

Tii

Tii = 0, Sii > 0: λ = +∞

Tii = 0, Sii < 0: λ = −∞

Tii = 0, Sii = 0: λ ∈ C
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Applying the decomposition

D

[

I

gy

]

gyŷ = E

[

I

gy

]

ŷ

[

T11 T12

0 T22

] [

Z11 Z12

Z21 Z22

] [

I

gy

]

gyŷ

=

[

S11 S12

0 S22

] [

Z11 Z12

Z21 Z22

] [

I

gy

]

ŷ

Computing first and second order approximations of DSGE models with DYNARE – p. 12/33



Selecting stable trajectory

To exclude explosive trajectories, one imposes

Z21 + Z22gy = 0

gy = −Z−1
22 Z21

A unique stable trajectory exists if Z22 is non-singular: there
are as many roots larger than one in modulus as there are
forward–looking variables in the model (Blanchard and
Kahn condition) and the rank condition is satisfied.
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Recoveringgu

fy+gygu + fy0gu + fu = 0

gu = − (fy+gy + fy0)
−1

fu
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Recoveringgσ

fy+gygσ + fy0gσ = 0

gσ = 0

Yet another manifestation of the certainty equivalence
property of first order approximation.
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First order approximated decision functions

yt = ȳ + gyŷ + guu

E {yt} = ȳ

Σy = gyΣyg
′
y + σ2guΣǫg

′
u

The variance is solved for with an algorithm for Lyapunov
equations.
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Second order approximation of the model

Et

n

F (2)(yt−1, ut, ut+1, σ)

o

=

Et

�

F (1)(yt−1, ut, ut+1, σ)

+0.5

�

Fy−y−
(ŷ ⊗ ŷ) + Fuu(u⊗ u) + Fu′u′(u′

⊗ u′) + Fσσσ2

�
+Fy−u(ŷ ⊗ u) + Fy−u′ (ŷ ⊗ u′) + Fy−σ ŷσ + Fuu′(u⊗ u) + Fuσuσ + Fu′σu′σ

�

= Et

�

F (1)(yt−1, ut, ut+1, σ)

�
+0.5

�

Fy−y−
(ŷ ⊗ ŷ) + Fuu(u⊗ u) + Fu′u′(σ2~Σǫ) + Fσσσ2

�

+Fy−u(ŷ ⊗ u) + Fy−σ ŷσ + Fuσuσ

= 0
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Representing the second order derivatives

The second order derivatives of a vector of multivariate
functions is a three dimensional object. We use the
following notation

∂2F

∂x∂x
=













∂2F1

∂x1∂x1

∂2F1

∂x1∂x2
. . . ∂2F1

∂x2∂x1
. . . ∂2F1

∂xn∂xn

∂2F2

∂x1∂x1

∂2F2

∂x1∂x2
. . . ∂2F2

∂x2∂x1
. . . ∂2F2

∂xn∂xn

...
... . . . ... . . . ...

∂2Fm

∂x1∂x1

∂2Fm

∂x1∂x2
. . . ∂2Fm

∂x2∂x1
. . . ∂2Fm

∂xn∂xn












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Composition of two functions

Let

y = g(s)

f(y) = f(g(s))

then,
∂2f

∂s∂s
=

∂f

∂y

∂2g

∂s∂s
+

∂2f

∂y∂y

(

∂g

∂s
⊗

∂g

∂s

)
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Recoveringgyy

Fy−y−
= fy+ (gyy(gy ⊗ gy) + gygyy) + fy0gyy + B

= 0

where B is a term that doesn’t contain second order
derivatives of g().
The equation can be rearranged:

(fy+gy + fy0) gyy + fy+gyy(gy ⊗ gy) = −B

This is a Sylvester type of equation and must be solved with
an appropriate algorithm.
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Recoveringgyu

Fy−u = fy+ (gyy(gy ⊗ gu) + gygyu) + fy0gyu + B

= 0

where B is a term that doesn’t contain second order
derivatives of g().
This is a standard linear problem:

gyu = − (fy+gy + fy0)
−1 (B + fy+gyy(gy ⊗ gu))

Computing first and second order approximations of DSGE models with DYNARE – p. 21/33



Recoveringguu

Fuu = fy+ (gyy(gu ⊗ gu) + gyguu) + fy0guu + B

= 0

where B is a term that doesn’t contain second order
derivatives of g().
This is a standard linear problem:

guu = − (fy+gy + fy0)
−1 (B + fy+gyy(gu ⊗ gu))
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Recoveringgyσ, guσ

Fyσ = fy+gygyσ + fy0gyσ

= 0

Fuσ = fy+gyguσ + fy0guσ

= 0

as gσ = 0. Then
gyσ = guσ = 0
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Recoveringgσσ

Fσσ + Fu′u′Σǫ = fy+ (gσσ + gygσσ) + fy0gσσ

+(fy+y+(gu ⊗ gu) + fy+guu) ~Σǫ

= 0

taking into account gσ = 0.
This is a standard linear problem:

gσσ = − (fy+(I + gy) + fy0)
−1 (fy+y+(gu ⊗ gu) + fy+guu) ~Σǫ
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Second order decision functions

yt = ȳ + 0.5gσσσ2 + gy ŷ + guu + 0.5 (gyy(ŷ ⊗ ŷ) + guu(u⊗ u)) + gyu(ŷ ⊗ u)

We can fix σ = 1.

Second order accurate moments:

Σy = gyΣyg
′
y + σ2guΣǫg

′
u

E {yt} = (I − gy)
−1

(

ȳ + 0.5
(

gσσ + gyy
~Σy + guu

~Σǫ

))
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Stochastic versus deterministic SS

Deterministic steady state: the point where the agents
decide to stay, in the absence of shocks, and ignoring futur
shocks.
Stochastic steady state: the point where the agents decide
to stay, in the absence of shocks, but taking into account
the likelihood of futur shocks.
It is possible to compute a second order approximation
around the stochastic steady state.
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Further issues

Impulse response functions depend of state at time of
shocks and history of future shocks.

For large shocks second order approximation
simulation may explode

pruning algorithm (Sims)
truncate normal distribution (Judd)
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DYNARE commands

Commands:

check;

shocks; . . . end;

stoch_simul(options) variable list ;

Options:

order = 1,[2]

solve_algo = 0,1,[2]

dr_algo = [0],1

irf = 0,. . . ,[40],. . .

noprint
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Optimal Linear Regulator

Consider,

max
{u}∞t=0

E0

∞
∑

t=0

βt
(

y′tW11yt + 2y′tW12ut + u′
tW22ut

)

s.t.
A+Et (yt+1) + A0yt + A−yt−1 + But + Cet = 0

Lagrangian:

L = E1

∞
∑

t=1

βt−1
[

y′tW11yt + 2y′tW12ut + u′
tW22ut

+λ′
t (A+Et (yt+1) + A0yt + A−yt−1 + But + Cet)

]
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First order conditions

∂L

∂y1
= 2W11y1 + 2W12ut + A′

0λ1 + βA′

−
E1 (λ2)

= 0
∂L

∂yt

= 2W11yt + 2W12ut + β−1A′

+λt−1 + A′

0λt + βA′

−
Et (λt+1) t = 2, . . .

= 0
∂L

∂ut

= 2W ′

12yt + 2W22ut + B′λt t = 1, . . .

= 0
∂L

∂λt

= A+Et (yt+1) + A0yt + A−yt−1 + But + Cet

= 0

One can write the first equation (for t = 1) as the second one (for t > 1) if and only if λ0 = 0.
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Augmented model

2W11yt + 2W12ut + β−1A′
+λt−1 + A′

0λt + βA′
−Et (λt+1) = 0

2W ′
12yt + 2W22ut + B′λt = 0

A+Et (yt+1) + A0yt + A−yt−1 + But + Cet = 0

for y0 given and λ0 = 0.
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Example: cgg_olr.mod

var y inf r;

varexo e_y e_inf;

parameters delta sigma alpha kappa;

delta = 0.44;

kappa = 0.18;

alpha = 0.48;

sigma = -0.06;

model(linear);

y = delta * y(-1) + (1-delta) * y(+1) + sigma *(r - inf(+1)) + e_y;

inf = alpha * inf(-1) + (1-alpha) * inf(+1) + kappa*y + e_inf;

end;
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Example: cgg_olr.mod (continued)

shocks;

var e_y; stderr 0.63;

var e_inf; stderr 0.4;

end;

olr_inst r;

optim_weights;

y 1;

inf 1;

end;

olr;
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