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The Question

• After ample evidence had accumulated in the 1970s in favor
the natural unemployment rate hypothesis, why did the Fed
wait so long to bring inflation down?

• ‘The picture’ •
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Standard answers take for granted that the Fed always

knew that the rational expectations version of the natu-

ral rate hypothesis was correct
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Standard answers take for granted that the Fed always

knew that the rational expectations version of the natu-

ral rate hypothesis was correct

• Fluctuations in the natural rate (Parkin, Ireland)

• Expectations traps (Chari, Christiano, Eichenbaum,
Albanesi)

• Imperfect estimates of the natural rate (Orphanides)

• Evil motives of Arthur Burns (DeLong)
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Our explanation features learning

• The Fed keeps several models on the table, including ones
that don’t incorporate the rational expectations version of
the natural rate hypothesis •.
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Our explanation features learning

• The Fed keeps several models on the table, including ones
that don’t incorporate the rational expectations version of
the natural rate hypothesis •.

• The Fed updates parameters of each model and its
posterior probabilities over models

• The Fed uses dynamic programming to choose a
first-period decision each period
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Anticipated utility model (Kreps)
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Anticipated utility model (Kreps)

• Using time t model, solve dynamic programming problem at
t.
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Anticipated utility model (Kreps)

• Using time t model, solve dynamic programming problem at
t.

• Take time t decision

• Update model

• Using time t + 1 model, solve dynamic programming
problem at t + 1 and . . .
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Three models

• Samuelson-Solow model (a long-run tradeoff)
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Three models

• Samuelson-Solow model (a long-run tradeoff)

• Solow-Tobin model (no ‘long-run’ tradeoff)

• Lucas model (no tradeoff)

Conquest of U.S. Inflation – p. 6/46



Variables

• ut unemployment
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Variables

• ut unemployment

• u∗
t natural rate

• yt actual inflation

• xt expected inflation
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Three models

• Samuelson-Solow model

yt = γ0 + γ1(L)yt−1 + γ2(L)ut + η1t
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Three models

• Samuelson-Solow model

yt = γ0 + γ1(L)yt−1 + γ2(L)ut + η1t

• Solow-Tobin model

∆yt = δ1(L)∆yt−1 + δ2(L)(ut − u∗
t−1) + η2t

• Lucas model

ut − u∗
t = φ1(yt − xt|t−1) + φ2(L)(ut−1 − u∗

t ) + η3t

• ηit is iid N(0, σ2
i ).
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Form of each model

Yt = Xtθ + νt

Conquest of U.S. Inflation – p. 9/46



Priors

p(θ, σ2) = p(θ|σ2)p(σ2)

The marginal prior p(σ2) makes the error variance an inverse
gamma variate.
The conditional prior p(θ|σ2) makes the regression parameters a
normal random vector.
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Posteriors

p(θ|σ2, Zt−1) = N(θt−1, σ
2P−1

t−1
),

p(σ2|Zt−1) = IG(st−1, vt−1),
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Posteriors

p(θ|σ2, Zt−1) = N(θt−1, σ
2P−1

t−1
),

p(σ2|Zt−1) = IG(st−1, vt−1),

Pt−1 is a precision matrix, st−1 a scale parameter for the
inverse-gamma density, and vt−1 counts degrees of freedom.
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Posteriors

p(θ|σ2, Zt−1) = N(θt−1, σ
2P−1

t−1
),

p(σ2|Zt−1) = IG(st−1, vt−1),

Pt−1 is a precision matrix, st−1 a scale parameter for the
inverse-gamma density, and vt−1 counts degrees of freedom.
The estimate of σ2 is just st−1/vt−1.
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Posteriors

After seeing outcomes at t, the central bank’s updated beliefs
are

p(θ|σ2, Zt) = N(θt, σ
2P−1

t )

p(σ2|Zt) = IG(st, vt)
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Posteriors

After seeing outcomes at t, the central bank’s updated beliefs
are

p(θ|σ2, Zt) = N(θt, σ
2P−1

t )

p(σ2|Zt) = IG(st, vt)

where

Pt = Pt−1 + XtX
′
t,

θt = P−1
t (Pt−1θt−1 + XtYt).

st = st−1 + Y ′
t Yt + θ′t−1Pt−1θt−1 − θ′tPtθt,

vt = vt−1 + 1.
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Model probabilities

Let αi0 = p(Mi) represent the prior probability on model i.
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Model probabilities

Let αi0 = p(Mi) represent the prior probability on model i.
Bayes’ theorem implies the posterior probability is

p(Mi|Y
t, Xt) ∝ mit · p(Mi) ≡ wit,

where mit is the marginalized likelihood function for model i at
date t.
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Model probabilities

Let αi0 = p(Mi) represent the prior probability on model i.
Bayes’ theorem implies the posterior probability is

p(Mi|Y
t, Xt) ∝ mit · p(Mi) ≡ wit,

where mit is the marginalized likelihood function for model i at
date t. The conditional likelihood for model i through date t is
defined via a prediction error decomposition as

l(Y t, Xt, θ, σ2) =
∏t

s=1
p(Ys|Xs, θ, σ

2).
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Model probabilities (2)

The marginalized likelihood is

mit =

∫∫

l(Y t
i , Xt

i , θi, σ
2
i )p(θi, σ

2
i )dθidσ2

i
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Model probabilities (2)

The marginalized likelihood is

mit =

∫∫

l(Y t
i , Xt

i , θi, σ
2
i )p(θi, σ

2
i )dθidσ2

i

mit is the normalizing constant in Bayes’ theorem and can also
be expressed as

mit =
l(Y t

i , Xt
i , θi, σ

2
i )p(θi, σ

2
i )

p(θi, σ2
i |Z

t
i )
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Posterior model probabilities

log wit+1 = log wit + log p(Yit+1|Xit+1, θi, σ
2
i )−

log
p(θi, σ

2
i |Z

t+1

i )

p(θi, σ2
i |Z

t
i )
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Posterior model probabilities

log wit+1 = log wit + log p(Yit+1|Xit+1, θi, σ
2
i )−

log
p(θi, σ

2
i |Z

t+1

i )

p(θi, σ2
i |Z

t
i )

A renormalization enforces that the model weights sum to 1

αit =
wit

w1t + w2t + w3t
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Posterior model probabilities (2)

or
αit = [expR1i(t) + expR2i(t) + expR3i(t)]

−1

where Rji(t) = (log wjt − log wit) summarizes the weight of the
evidence favoring model j relative to model i.
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State space models

Sit+j = Ai(t − 1)Sit+j−1 + Bi(t − 1)xt+j|t−1 + Ci(t − 1)ηit+j (1)

where (Sit, Ai(t− 1), Bi(t− 1), Ci(t− 1)) are the state vector and
system arrays for model i at time t.
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or in a more compact notation

SEt+j = AE(t − 1)SEt+j−1 + BE(t − 1)xt+j|t−1 + CE(t + j)ηt
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Loss function

L(Mi)(t) = Et

∑∞

j=0
βj(S′

it+jM
′
si

QMsi
Sit+j

+ x′
t+j|t−1

Rxt+j|t−1)

Conquest of U.S. Inflation – p. 20/46



Grand loss function
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Grand loss function
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Bellman equation

vt(SE) = max
x

{

−S′
EQEtSE − x′Rx + βEvt(S

∗
E)

}

subject to

S∗
E = AE(t − 1)SE + BE(t − 1)x + CE(t − 1)η
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Decision rule

xt|t−1 = −fE(t−1)·SEt−1 = −fE(t−1)1S1t−1−f2
E(t−1)S2t−1−f3

E(t−1)S3t−1.
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Decision rule

xt|t−1 = −fE(t−1)·SEt−1 = −fE(t−1)1S1t−1−f2
E(t−1)S2t−1−f3

E(t−1)S3t−1.

If the composite model is ‘detectable’ and ‘stabilizable,’ then the
policy rule fE can be computed using standard algorithms
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Data

• Inflation: log difference in chain weighted GDP deflator

• Unemployment: civilian unemployment rate

• quarterly, seasonally adjusted, 1948:Q1–2002:Q4

• u∗
t = u∗

t−1 + .075(ut − u∗
t−1)
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Parameters

• β = 1.04.25

• α10 = .98, α20 = α30 = .01

• λ = 16 (equal weight on u, y)
• Training sample: first 12 years
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Lag orders

Inflation Unemployment

Samuelson-Solow γ1 : 4

Solow-Tobin δ1 : 3

Lucas-Sargent φ1 : 0

Conquest of U.S. Inflation – p. 29/46



Lag orders

Inflation Unemployment

Samuelson-Solow γ1 : 4 γ2 : 2

Solow-Tobin δ1 : 3 δ2 : 2

Lucas-Sargent φ1 : 0 φ2 : 2
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Inflation and αit’s
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Inflation and Optimal Policy
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Expected Loss from a Zero Inflation Policy
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Dominant Eigenvalue Under Zero Inflation
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Optimal Policy v. Zero Inflation, 1975.Q4

0 2 4 6 8

0.05

0.1

0.15

0.2

0.25

0.3

Samuelson−Solow

0 2 4 6 8
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Solow−Tobin

0 2 4 6 8
0.055

0.06

0.065

0.07

0.075

0.08
Lucas−Sargent

Forecast Horizon
0 2 4 6 8

0.055

0.06

0.065

0.07

0.075

0.08
Complete Model

Forecast Horizon

Conquest of U.S. Inflation – p. 35/46



Optimal Policy v. Zero Inflation, 1975.Q4

0 2 4 6 8

0.05

0.1

0.15

0.2

0.25

0.3

Samuelson−Solow

0 2 4 6 8
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Solow−Tobin

0 2 4 6 8
0.055

0.06

0.065

0.07

0.075

0.08
Lucas−Sargent

Forecast Horizon
0 2 4 6 8

0.055

0.06

0.065

0.07

0.075

0.08
Complete Model

Forecast Horizon

U (zero inflation) 

Conquest of U.S. Inflation – p. 36/46



Optimal Policy v. Zero Inflation, 1975.Q4
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Optimal Policy v. Zero Inflation, 1975.Q4
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Optimal Policy v. Zero Inflation, 1979.Q4

0 2 4 6 8
0

0.1

0.2

0.3

0.4
Samuelson−Solow

0 2 4 6 8
0

0.05

0.1

0.15

0.2
Solow−Tobin

0 2 4 6 8
0.05

0.06

0.07

0.08

0.09

0.1
Lucas−Sargent

Forecast Horizon
0 2 4 6 8

0.05

0.06

0.07

0.08

0.09

0.1
Complete Model

Forecast Horizon

Conquest of U.S. Inflation – p. 39/46



Optimal Policy and Policy for Worst-Case Scenarios
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Sensitivity of Bayesian Policy to the Discount Rate
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Optimal Policy v. Zero Inflation, 1992.Q4
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1978

Okun and Perry (1978) summarize things as follows:

“Thus, the mainline model and its empirical findings
reaffirm that there is a slow-growth, high unemployment
cure for inflation, but that it is an extremely expensive
one. ...Using one of Perry’s successful equations as
an example, an extra percentage point of
unemployment would lower the inflation rate by only
about 0.3 percentage point after one year and by 0.7
percentage point if maintained for three years. That
extra point of unemployment would cost over a million
jobs and some $60 billion of real production each year.”
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1978 again

Okun and Perry also summarize Perry’s reasons for rejecting
Feller’s guesses of much lower costs in terms of unemployment
that could be attained through a credible disinflationary policy: •

Perry “believes that much of the [inflation] inertia is
backward-looking rather than forward looking, and so is
not susceptible to even convincing demonstrations that
demand will be restrained in the future. [Perry’s] own
empirical evidence shows that wage developments are
better explained in terms of the recent past history of
wages and prices than on any assumption that people
are predicting the future course of wages and prices in
a way that differs from the past.” (page 6)
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More 1978 beliefs

Perry (1978, pp. 50-51) elaborates forcefully on his argument
against an expectational interpretation of Phillips curve
dynamics. Okun (1978a, p.284) says that “recession will slow
inflation, but only at the absurd cost in production of roughly
$200 billion per point.” Okun (1978b) lists the models on which
this estimate is based. Many distinguished economists are
represented on the list. At that time, $200 billion amounted to
roughly 10 percent of GDP. Inflation averaged 7.4 percent from
1974 to 1979, and extrapolating to zero inflation implies a total
cost of almost three-quarters of a year’s GDP.
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