IRFs with explosive dynamics if shocks are large
Posted: Wed Jul 11, 2007 10:47 pm
Hi All,
I would like to have your advice on the following matters:
I am simulating a dsge model in Dynare (using stoch_simul, second order approx.). The Blanchard Kahn conditions are satisified and the model computes policy and transition functions. However, I notice that the impulse response functions display explosive dynamics if I set the irf shock significantly above the default value. This is the case even though the variance of the shocks is very low.
It would seem that the policy functions are not fully cancelling the dynamics associated with the "explosive" roots, but this only becomes an issue if the shock is above a certain threshold. Can this be the case?
If so, is there something I can do?
I also have a related problem: if the volatility of the shocks is high, then the correction to the constant term in the policy function (from Schmitt-Grohe and Uribe 2004) becomes very large and also leads to explosive dynamics. In principle, I am only worried about deviations from a non-stochastic steady state, so the correction to the constant should not matter. Is there a way to set that correction to 0? Or is that not appropriate?
Your help would be most appreciated.
Many thanks,
- Rafael
I would like to have your advice on the following matters:
I am simulating a dsge model in Dynare (using stoch_simul, second order approx.). The Blanchard Kahn conditions are satisified and the model computes policy and transition functions. However, I notice that the impulse response functions display explosive dynamics if I set the irf shock significantly above the default value. This is the case even though the variance of the shocks is very low.
It would seem that the policy functions are not fully cancelling the dynamics associated with the "explosive" roots, but this only becomes an issue if the shock is above a certain threshold. Can this be the case?
If so, is there something I can do?
I also have a related problem: if the volatility of the shocks is high, then the correction to the constant term in the policy function (from Schmitt-Grohe and Uribe 2004) becomes very large and also leads to explosive dynamics. In principle, I am only worried about deviations from a non-stochastic steady state, so the correction to the constant should not matter. Is there a way to set that correction to 0? Or is that not appropriate?
Your help would be most appreciated.
Many thanks,
- Rafael