Arias, Hansen, Ohanian (2006) problem from a begginer
Posted: Fri Jun 19, 2009 4:16 am
Hi, i just started using dynare and im trying to replicate Arias, Hansen and Ohanian (2006).
The first order conditions i derived were:
1) d.L/d.c(t) ==> beta^t/c(t) = lambda(t)
2) d.L/d.c(t+1) ==> beta^(t+1)/c(t+1)=lambda(t+1)
3) d.L/d.n(t) ==> -beta^t*theta(t)*log(1-omega-h*e(t))+lambda*(alpha*exp(z1)*(u(t)*k(t))^(1-alpha)*(e(t)*u(t)*h)^(alpha-1)*n(t)*h) = 0
4) d.L/d.e(t) ==> -(beta^t*(1-n)*theta(t)*h)/(1-omega-h*e(t)) + lambda*(alpha*exp(z1)*(u(t)*k(t))^(1-alpha)*(e(t)*n(t)*h)^(alpha-1)*n(t)*h = 0
5) d.L/d.u(t) ==> lambda(t) = lambda(t+1)*((1-alpha)*exp(z1)*(u(t+1)*k(t+1))^(-alpha)*u(t+1)*(e(t+1)*n(t+1)*h)^(alpha) + (1-gamma*u(t+1)^(phi)))
6) d.L/d.k(t+1) ==> lambda*((1-alpha)*exp(z1)*(u(t)*k(t))^(-alpha)*k(t)*(e(t)*n(t)*h)^(alpha) - gamma*phi*k(t)*u(t)^(phi-1)) = 0
7) d.L/d.lambda
with that, i have the attached .mod file, but when i try to run it, it tells me that there is spurious convergence.
I have not calibrated the model and havent calculated the steady state so some parameters and init values apre probably incorrect. Could this cause the error?
If so, how can i calculate the steady state using matlab?
Thank you everyone,
Ignacio
The first order conditions i derived were:
1) d.L/d.c(t) ==> beta^t/c(t) = lambda(t)
2) d.L/d.c(t+1) ==> beta^(t+1)/c(t+1)=lambda(t+1)
3) d.L/d.n(t) ==> -beta^t*theta(t)*log(1-omega-h*e(t))+lambda*(alpha*exp(z1)*(u(t)*k(t))^(1-alpha)*(e(t)*u(t)*h)^(alpha-1)*n(t)*h) = 0
4) d.L/d.e(t) ==> -(beta^t*(1-n)*theta(t)*h)/(1-omega-h*e(t)) + lambda*(alpha*exp(z1)*(u(t)*k(t))^(1-alpha)*(e(t)*n(t)*h)^(alpha-1)*n(t)*h = 0
5) d.L/d.u(t) ==> lambda(t) = lambda(t+1)*((1-alpha)*exp(z1)*(u(t+1)*k(t+1))^(-alpha)*u(t+1)*(e(t+1)*n(t+1)*h)^(alpha) + (1-gamma*u(t+1)^(phi)))
6) d.L/d.k(t+1) ==> lambda*((1-alpha)*exp(z1)*(u(t)*k(t))^(-alpha)*k(t)*(e(t)*n(t)*h)^(alpha) - gamma*phi*k(t)*u(t)^(phi-1)) = 0
7) d.L/d.lambda
with that, i have the attached .mod file, but when i try to run it, it tells me that there is spurious convergence.
I have not calibrated the model and havent calculated the steady state so some parameters and init values apre probably incorrect. Could this cause the error?
If so, how can i calculate the steady state using matlab?
Thank you everyone,
Ignacio