Simulation error
Posted: Wed May 26, 2010 2:08 am
Hi,
I am a new user and running a simple model. I am getting the following partial simulation output. Kindly advise.
Configuring Dynare ...
[mex] Generalized QZ.
[mex] Sylvester equation solution.
[mex] Kronecker products.
[mex] Sparse kronecker products.
Starting Dynare ...
Starting preprocessing of the model file ...
4 equation(s) found
Processing derivation ...
Processing Order 1... done
Processing Order 2... done
Processing outputs ...
Preprocessing completed.
Starting Matlab computing ...
STEADY-STATE RESULTS:
q -0.0235798
y -0.0754553
r -0.264094
m 0
EIGENVALUES:
Modulus Real Imaginary
0.7993 0.7993 0
0.9 0.9 0
0.9799 0.9799 0
There are 0 eigenvalue(s) larger than 1 in modulus
for 0 forward-looking variable(s)
The rank condition is verified.
MODEL SUMMARY
Number of variables: 4
Number of stochastic shocks: 3
Number of state variables: 3
Number of jumpers: 0
Number of static variables: 1
MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS
Variables p g e
p 0.000000 0.000000 0.000000
g 0.000000 0.000000 0.000000
e 0.000000 0.000000 0.000020
POLICY AND TRANSITION FUNCTIONS
r q y m
??? Reference to non-existent field 'ghs2'.
Error in ==> disp_dr at 60
x = x + dr.ghs2(ivar(i))/2;
Error in ==> stoch_simul at 65
disp_dr(oo_.dr,options_.order,var_list);
Error in ==> blanchard at 123
info = stoch_simul(var_list_);
Error in ==> dynare at 102
evalin('base',fname) ;
Here is the model file:
// Blanchard's Partly Rational Model
var q y r m;
varexo p g e;
parameters a0 a1 c h s a b rho;
a0=0.01;
a1=0.05;
c=3.5;
h=5;
s=0.03;
a=0.8;
b=0.25;
rho=0.9;
// Model Equations - Endogenous Variables
model;
y=y(-1)+s*((a*q)-(b*y)+g);
q=q(-1)+(r*q)-a0-(a1*y);
r=(c*y)-h*(m-p);
m=rho*m(-1)+e;
end;
// Steady state or initial value/s
initval;
q=1;
y=0;
r=0.05;
e=0;
m=0;
end;
steady;
check;
// Define shocks
shocks;
var e = 0.00002;
end;
//Computation
stoch_simul(periods=2100);
Kindly advise.
Regards,
Adeem
I am a new user and running a simple model. I am getting the following partial simulation output. Kindly advise.
Configuring Dynare ...
[mex] Generalized QZ.
[mex] Sylvester equation solution.
[mex] Kronecker products.
[mex] Sparse kronecker products.
Starting Dynare ...
Starting preprocessing of the model file ...
4 equation(s) found
Processing derivation ...
Processing Order 1... done
Processing Order 2... done
Processing outputs ...
Preprocessing completed.
Starting Matlab computing ...
STEADY-STATE RESULTS:
q -0.0235798
y -0.0754553
r -0.264094
m 0
EIGENVALUES:
Modulus Real Imaginary
0.7993 0.7993 0
0.9 0.9 0
0.9799 0.9799 0
There are 0 eigenvalue(s) larger than 1 in modulus
for 0 forward-looking variable(s)
The rank condition is verified.
MODEL SUMMARY
Number of variables: 4
Number of stochastic shocks: 3
Number of state variables: 3
Number of jumpers: 0
Number of static variables: 1
MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS
Variables p g e
p 0.000000 0.000000 0.000000
g 0.000000 0.000000 0.000000
e 0.000000 0.000000 0.000020
POLICY AND TRANSITION FUNCTIONS
r q y m
??? Reference to non-existent field 'ghs2'.
Error in ==> disp_dr at 60
x = x + dr.ghs2(ivar(i))/2;
Error in ==> stoch_simul at 65
disp_dr(oo_.dr,options_.order,var_list);
Error in ==> blanchard at 123
info = stoch_simul(var_list_);
Error in ==> dynare at 102
evalin('base',fname) ;
Here is the model file:
// Blanchard's Partly Rational Model
var q y r m;
varexo p g e;
parameters a0 a1 c h s a b rho;
a0=0.01;
a1=0.05;
c=3.5;
h=5;
s=0.03;
a=0.8;
b=0.25;
rho=0.9;
// Model Equations - Endogenous Variables
model;
y=y(-1)+s*((a*q)-(b*y)+g);
q=q(-1)+(r*q)-a0-(a1*y);
r=(c*y)-h*(m-p);
m=rho*m(-1)+e;
end;
// Steady state or initial value/s
initval;
q=1;
y=0;
r=0.05;
e=0;
m=0;
end;
steady;
check;
// Define shocks
shocks;
var e = 0.00002;
end;
//Computation
stoch_simul(periods=2100);
Kindly advise.
Regards,
Adeem