Dynare ++ versus Dynare in Matlab
Posted: Thu Jun 03, 2010 8:23 pm
Hi
I would like to use the 3rd approximation in dynare++. But by testing dynare++ I ran into the following problem. When I compute the first order approximation in dynare++, the steady state values do NOT agree with the mean values. Why is that? Attached is the mod file and Matlab output.
Thanks
Lars
MOD file:
var k, c, x;
varexo e;
parameters A, beta, rhoX, delta, RRA, nu;
A = -3;
nu = 0.9;
rhoX = 0.95;
delta = 0.03;
beta = 0.99;
RRA = 4;
model;
c^(-RRA) = beta*c(+1)^(-RRA)*(exp(x(+1))*nu*k^(nu-1) + 1 - delta);
c + k = exp(x)*k(-1)^nu + (1-delta)*k(-1);
x = (1-rhoX)*A + rhoX*x(-1) + e;
end;
initval;
k = ( (1/beta+delta-1)/(exp(A)*nu) )^(1/(nu-1));
c = (1-delta)*k;
x = A;
e = 0;
end;
shocks;
var e=0.01^2;
end;
steady;
stoch_simul(order=1);
Matlab output:
dyn_ss
dyn_ss =
3.034153271995179
-3.000000000000000
0.044167191849358
>> dyn_mean
dyn_mean =
3.044558450113021
-2.998402425072781
0.044312741256193
I would like to use the 3rd approximation in dynare++. But by testing dynare++ I ran into the following problem. When I compute the first order approximation in dynare++, the steady state values do NOT agree with the mean values. Why is that? Attached is the mod file and Matlab output.
Thanks
Lars
MOD file:
var k, c, x;
varexo e;
parameters A, beta, rhoX, delta, RRA, nu;
A = -3;
nu = 0.9;
rhoX = 0.95;
delta = 0.03;
beta = 0.99;
RRA = 4;
model;
c^(-RRA) = beta*c(+1)^(-RRA)*(exp(x(+1))*nu*k^(nu-1) + 1 - delta);
c + k = exp(x)*k(-1)^nu + (1-delta)*k(-1);
x = (1-rhoX)*A + rhoX*x(-1) + e;
end;
initval;
k = ( (1/beta+delta-1)/(exp(A)*nu) )^(1/(nu-1));
c = (1-delta)*k;
x = A;
e = 0;
end;
shocks;
var e=0.01^2;
end;
steady;
stoch_simul(order=1);
Matlab output:
dyn_ss
dyn_ss =
3.034153271995179
-3.000000000000000
0.044167191849358
>> dyn_mean
dyn_mean =
3.044558450113021
-2.998402425072781
0.044312741256193