A stochastic RBC model with inelastic labor
Posted: Tue Jun 14, 2011 11:17 am
Hi eveybody,
I am new to dynare and I have a basic stochastic RBC model with inelastic labor.
Unfortunately, my code does not work properly.
As expected for a new user, I could not detemine the main culprit although I have checked user guide.
Could anyone help me?
Best regards...
Gokhan
MY code:
var y c k lab z i;
varexo e;
parameters beta theta delta alpha gamma rho sigma;
beta = 0.987;
theta = 0.357;
delta = 0.012;
alpha = 0.36;
gamma = 2;
rho = 0.95;
sigma = 0.007;
model;
(c^theta*(1-lab)^(1-theta))^(1-gamma)/c=beta*((c(+1)^theta*(1-lab(+1))^(1-theta))^(1-gamma)/c(+1))*
(1+alpha*z(+1)*k^(alpha-1)*lab(+1)^(alpha)+(1-delta)); // Euler equation
c^theta/(1-lab)=theta/(1-theta)*(1-alpha)*z*k(-1)^alpha*lab^(-alpha); // FOC for labor
k=z*k(-1)^alpha*lab^(1-alpha)-c+(1-delta)*k(-1); // law of capital accumulation
z=rho*z(-1)+e; //technology
y = c+i;
i = k-(1-delta)*k(-1);
end;
initval;
k = 1;
c = 1;
lab = 0.3;
z = 0;
e = 0;
end;
shocks;
var e = sigma^2;
end;
steady; // finds the steady state
check; // provides the eigenvalues
stoch_simul(periods=2100, hp_filter=1600, irf=60, order=1); // simulates the model
I am new to dynare and I have a basic stochastic RBC model with inelastic labor.
Unfortunately, my code does not work properly.
As expected for a new user, I could not detemine the main culprit although I have checked user guide.
Could anyone help me?
Best regards...
Gokhan
MY code:
var y c k lab z i;
varexo e;
parameters beta theta delta alpha gamma rho sigma;
beta = 0.987;
theta = 0.357;
delta = 0.012;
alpha = 0.36;
gamma = 2;
rho = 0.95;
sigma = 0.007;
model;
(c^theta*(1-lab)^(1-theta))^(1-gamma)/c=beta*((c(+1)^theta*(1-lab(+1))^(1-theta))^(1-gamma)/c(+1))*
(1+alpha*z(+1)*k^(alpha-1)*lab(+1)^(alpha)+(1-delta)); // Euler equation
c^theta/(1-lab)=theta/(1-theta)*(1-alpha)*z*k(-1)^alpha*lab^(-alpha); // FOC for labor
k=z*k(-1)^alpha*lab^(1-alpha)-c+(1-delta)*k(-1); // law of capital accumulation
z=rho*z(-1)+e; //technology
y = c+i;
i = k-(1-delta)*k(-1);
end;
initval;
k = 1;
c = 1;
lab = 0.3;
z = 0;
e = 0;
end;
shocks;
var e = sigma^2;
end;
steady; // finds the steady state
check; // provides the eigenvalues
stoch_simul(periods=2100, hp_filter=1600, irf=60, order=1); // simulates the model