u(z) = 0;
z=x(+1)^y;
order>1
// Define an auxiliary variable s that captures E_t[V(+1)^sigma]
s =V(+1)^(1-gamma);
f1 =(V(+1)^(1-gamma))/s;
V(+1)^(1-gamma)
E_t[V(+1)^(1-gamma)]
V(+1)^(1-gamma)
s
E_t[V(+1)^(1-gamma)]
V(+1)^(1-gamma)/E_t[V(+1)^(1-gamma)]
V(+1)^(1-gamma)/s
V(+1)^(1-gamma)/s=E_t(V(+1)^(1-gamma)/s)=1/s*E_t(V(+1)^(1-gamma))=1/s*s=1
(V(+1)^(1-gamma)/s)^(1-(1/theta))=E_t[(V(+1)^(1-gamma)/s)^(1-(1/theta))]=(1/s)^(1-(1/theta))*E_t((V(+1)^(1-gamma))^(1-(1/theta)))~=1
(1/s)^(1-(1/theta))
E_t((V(+1)^(1-gamma))^(1-(1/theta)))
exp(-V(+1)/chi)/E_t[exp(-V(+1)/chi)]
EV = -(V(+1)/chi);
exp((-V(+1)/chi)-EV)
Users browsing this forum: Google [Bot] and 9 guests