How to obtain parameter steady state values?
Posted: Sun Apr 01, 2012 10:25 am
Hi,
I'm able to estimate the DSGE model, which mod-file I've posted below. I have borrowed the model from a paper and I've got the mod-file and the dataset. My question is: How has the steady state values been obtained of the following parameters: gammac, gammay, QSS, phSS, pfSS, CHSS, CFSS, CH_fSS, CHTSS, GSS, pi_fSS, rSS and ySS?
//----------------------------------------------------//
// Declaration of endogenous and exogenous variables //
//----------------------------------------------------//
var y C CH CF CH_f C_f r rf bf z_y z_u z_r z_b pi pih pif pif_f ph pf w Q N vepsHhat vepsFhat G
dQSA_PCPIJAEI dQSA_PCPIJAEIMP logQUA_QI44 dQSA_YMN QUA_RN3M dAUA_WILMN_PCT_Qr;
varexo xi_u xi_y xi_C_f xi_r xi_rf xi_b xi_pif_f xi_vepsH xi_vepsF xi_G;
//----------------------------------------------------//
// Declaration of parameters //
//----------------------------------------------------//
parameters alpha beta eta h gammac gammay omega_pi omega_y omega_r phi phi_cf1 phi_cf2
phi_ch1 phi_ch2 sigma vepsilon vphi rho_u rho_r rho_rf rho_y rho_b rho_C_f rho_pif_f rho_vepsH rho_vepsF rho_G GSS QSS phSS pfSS CFSS CHSS CHTSS CH_fSS pi_fSS rSS ySS ;
alpha = 0.32; // Degree of openness
beta = 0.993; // Discount factor
sigma = 1; // Intertemporal elastisity of substitution
vphi = 3; //2.5; // Elastisity of labour supply
eta = 1.1; // Elastisity of substitution between domestic and foreign goods
chi = 2;
vepsilon= 6; // Elastisity of substitution between different types of domestic and foreign produced goods
omega_pi = 1.5; // Weight on inflation gap in taylor rule
omega_y = 0.5; // Weight on output gap in taylor rule
omega_r = 0.7; // Degree of interest rate smoothing in taylor rule
phi = 0.0002; // Parameter for risk premium on holding foreign bonds (higher phi = lower premium)
h = 0.75; // Degree of habit formation in consumption
phi_ch1 = 1; // Parameter for price change costs relative to steady state. Domestic produced goods
phi_ch2 = 1; // Parameter for price change costs relative to last period's aggregate inflation. Domestic produced goods
phi_cf1 = 1; // Parameter for price change costs relative to steady state. Foreign produced goods
phi_cf2 = 1; // Parameter for price change costs relative to last period's aggregate inflation. Foreign produced goods
rho_u = 0.5; //\
rho_y = 0.5; //|
rho_b = 0.5;
rho_G = 0.5; //|
rho_r = 0; // Durability of shocks
rho_rf = 0.5; //
rho_vepsH = 0.5; //|
rho_vepsF = 0.5; //|
rho_pif_f = 0.5; //|
rho_C_f = 0.5; ///
//SS values Dynare v.4
gammac = 0.32469; //Import share of consumption
gammay = 0.12001; //Export share of production
QSS = 0.72043;
phSS = 1.0717;
pfSS = 0.86452;
CHSS = 0.51597;
CFSS = 0.30754;
CH_fSS = 0.20674;
CHTSS = 1.7227;
GSS = 1;
pi_fSS = 1;
rSS = 1/beta;
ySS = 1.7227;
//----------------------------------------------------//
// DSGE model specification //
//----------------------------------------------------//
model(linear);
//Demand
C = (1-gammac)*CH+gammac*CF;
CH = C-eta*(ph);
CF = C-eta*(pf);
CH_f = C_f-eta*(ph-Q);
y = (CHSS/CHTSS)*CH+(CH_fSS/CHTSS)*CH_f+(GSS/CHTSS)*G;
y = z_y+N;
//Euler
r = (sigma/(1-h))*C(+1)-((1+h)/(1-h))*sigma*C+(h*sigma/(1-h))*C(-1)+pi(+1)-z_u(+1)+z_u;
//Intratemporal
w = vphi*N+(sigma/(1-h))*C-((sigma*h)/(1-h))*C(-1);
//Producer FOCs
pih =((vepsilon*(vepsilon-1))/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*(w-z_y-ph)
+(1000*phi_ch2/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*pih(-1)
+beta*((1000*phi_ch1+1000*phi_ch2)/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*pih(+1)
-(vepsilon/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*vepsHhat;
pif =((vepsilon*(vepsilon-1))/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*(Q-pf)
+(1000*phi_cf2/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*pif(-1)
+beta*((1000*phi_cf1+1000*phi_cf2)/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*pif(+1)
-(vepsilon/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*vepsFhat;
//UIP
r -rf= Q(+1)-Q+pi(+1)-pif_f(+1)-phi*QSS*bf+z_b;
//Taylor
r = omega_r*r(-1)+((1-omega_r)/rSS)*(omega_pi*pi+omega_y*ySS*(y-y(-1)))+xi_r; //;
//Bonds
beta*QSS*bf-QSS*bf(-1)/pi_fSS = phSS*CH_fSS*(ph+CH_f)-QSS*CFSS*(Q+CF);
//Pi
//pi = (1-alpha)*phSS^(1-eta)*pih+alpha*pfSS^(1-eta)*pif;
pif = pf-pf(-1)+pi;
pih = ph-ph(-1)+pi;
//AR1-processes
G = rho_G*G(-1)+xi_G;
vepsHhat = rho_vepsH*vepsHhat(-1)+xi_vepsH;
vepsFhat = rho_vepsF*vepsFhat(-1)+xi_vepsF;
pif_f = rho_pif_f*pif_f(-1)+xi_pif_f;
C_f = rho_C_f*C_f(-1)+xi_C_f;
rf = rho_rf*rf(-1)+xi_rf;
z_u = rho_u*z_u(-1)-xi_u;
z_y = rho_y*z_y(-1)+xi_y;
z_b = rho_b*z_b(-1)+xi_b;
z_r = rho_r*z_r(-1)+xi_r;
//Observables
dQSA_PCPIJAEI -1= pih;
dQSA_PCPIJAEIMP-1=pif;
logQUA_QI44=Q;
dQSA_YMN=y-y(-1);
QUA_RN3M=r;
dAUA_WILMN_PCT_Qr=w-w(-1);
end;
varobs dQSA_PCPIJAEI dQSA_PCPIJAEIMP logQUA_QI44 dQSA_YMN QUA_RN3M dAUA_WILMN_PCT_Qr; // //
// Compute steady state
steady; //(solve_algo = 0);
// Compute eigenvalues and check Blanchard-Kahn conditions
check;
estimated_params;
rho_y, beta_pdf, 0.5, 0.2;
rho_b, beta_pdf, 0.5, 0.2;
rho_G, beta_pdf, 0.5, 0.2;
rho_vepsH, beta_pdf, 0.5, 0.2;
rho_vepsF, beta_pdf, 0.5, 0.2;
phi_ch1, inv_GAMMA_PDF, 0.15, inf; //
phi_ch2, inv_GAMMA_PDF, 0.075, inf; //
phi_cf1, inv_GAMMA_PDF, 0.15, inf; //
phi_cf2, inv_GAMMA_PDF, 0.075, inf; //
stderr xi_y,INV_GAMMA_PDF,0.02, inf; //1.94,inf;
stderr xi_b,INV_GAMMA_PDF,0.01,inf; //10,inf;
stderr xi_G,INV_GAMMA_PDF,0.012,inf; //11,inf;
stderr xi_r,INV_GAMMA_PDF,.0025,inf; //11,inf;
stderr xi_vepsH,INV_GAMMA_PDF,0.051,inf; //1,inf;
stderr xi_vepsF,INV_GAMMA_PDF,0.051,inf; //1,inf;
end;
estimation(datafile=dataest, prefilter=1, lik_init=1, mh_replic=1500000, mh_jscale=0.5);
Anders
I'm able to estimate the DSGE model, which mod-file I've posted below. I have borrowed the model from a paper and I've got the mod-file and the dataset. My question is: How has the steady state values been obtained of the following parameters: gammac, gammay, QSS, phSS, pfSS, CHSS, CFSS, CH_fSS, CHTSS, GSS, pi_fSS, rSS and ySS?
//----------------------------------------------------//
// Declaration of endogenous and exogenous variables //
//----------------------------------------------------//
var y C CH CF CH_f C_f r rf bf z_y z_u z_r z_b pi pih pif pif_f ph pf w Q N vepsHhat vepsFhat G
dQSA_PCPIJAEI dQSA_PCPIJAEIMP logQUA_QI44 dQSA_YMN QUA_RN3M dAUA_WILMN_PCT_Qr;
varexo xi_u xi_y xi_C_f xi_r xi_rf xi_b xi_pif_f xi_vepsH xi_vepsF xi_G;
//----------------------------------------------------//
// Declaration of parameters //
//----------------------------------------------------//
parameters alpha beta eta h gammac gammay omega_pi omega_y omega_r phi phi_cf1 phi_cf2
phi_ch1 phi_ch2 sigma vepsilon vphi rho_u rho_r rho_rf rho_y rho_b rho_C_f rho_pif_f rho_vepsH rho_vepsF rho_G GSS QSS phSS pfSS CFSS CHSS CHTSS CH_fSS pi_fSS rSS ySS ;
alpha = 0.32; // Degree of openness
beta = 0.993; // Discount factor
sigma = 1; // Intertemporal elastisity of substitution
vphi = 3; //2.5; // Elastisity of labour supply
eta = 1.1; // Elastisity of substitution between domestic and foreign goods
chi = 2;
vepsilon= 6; // Elastisity of substitution between different types of domestic and foreign produced goods
omega_pi = 1.5; // Weight on inflation gap in taylor rule
omega_y = 0.5; // Weight on output gap in taylor rule
omega_r = 0.7; // Degree of interest rate smoothing in taylor rule
phi = 0.0002; // Parameter for risk premium on holding foreign bonds (higher phi = lower premium)
h = 0.75; // Degree of habit formation in consumption
phi_ch1 = 1; // Parameter for price change costs relative to steady state. Domestic produced goods
phi_ch2 = 1; // Parameter for price change costs relative to last period's aggregate inflation. Domestic produced goods
phi_cf1 = 1; // Parameter for price change costs relative to steady state. Foreign produced goods
phi_cf2 = 1; // Parameter for price change costs relative to last period's aggregate inflation. Foreign produced goods
rho_u = 0.5; //\
rho_y = 0.5; //|
rho_b = 0.5;
rho_G = 0.5; //|
rho_r = 0; // Durability of shocks
rho_rf = 0.5; //
rho_vepsH = 0.5; //|
rho_vepsF = 0.5; //|
rho_pif_f = 0.5; //|
rho_C_f = 0.5; ///
//SS values Dynare v.4
gammac = 0.32469; //Import share of consumption
gammay = 0.12001; //Export share of production
QSS = 0.72043;
phSS = 1.0717;
pfSS = 0.86452;
CHSS = 0.51597;
CFSS = 0.30754;
CH_fSS = 0.20674;
CHTSS = 1.7227;
GSS = 1;
pi_fSS = 1;
rSS = 1/beta;
ySS = 1.7227;
//----------------------------------------------------//
// DSGE model specification //
//----------------------------------------------------//
model(linear);
//Demand
C = (1-gammac)*CH+gammac*CF;
CH = C-eta*(ph);
CF = C-eta*(pf);
CH_f = C_f-eta*(ph-Q);
y = (CHSS/CHTSS)*CH+(CH_fSS/CHTSS)*CH_f+(GSS/CHTSS)*G;
y = z_y+N;
//Euler
r = (sigma/(1-h))*C(+1)-((1+h)/(1-h))*sigma*C+(h*sigma/(1-h))*C(-1)+pi(+1)-z_u(+1)+z_u;
//Intratemporal
w = vphi*N+(sigma/(1-h))*C-((sigma*h)/(1-h))*C(-1);
//Producer FOCs
pih =((vepsilon*(vepsilon-1))/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*(w-z_y-ph)
+(1000*phi_ch2/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*pih(-1)
+beta*((1000*phi_ch1+1000*phi_ch2)/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*pih(+1)
-(vepsilon/(1000*phi_ch1+(1+beta)*1000*phi_ch2))*vepsHhat;
pif =((vepsilon*(vepsilon-1))/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*(Q-pf)
+(1000*phi_cf2/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*pif(-1)
+beta*((1000*phi_cf1+1000*phi_cf2)/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*pif(+1)
-(vepsilon/(1000*phi_cf1+(1+beta)*1000*phi_cf2))*vepsFhat;
//UIP
r -rf= Q(+1)-Q+pi(+1)-pif_f(+1)-phi*QSS*bf+z_b;
//Taylor
r = omega_r*r(-1)+((1-omega_r)/rSS)*(omega_pi*pi+omega_y*ySS*(y-y(-1)))+xi_r; //;
//Bonds
beta*QSS*bf-QSS*bf(-1)/pi_fSS = phSS*CH_fSS*(ph+CH_f)-QSS*CFSS*(Q+CF);
//Pi
//pi = (1-alpha)*phSS^(1-eta)*pih+alpha*pfSS^(1-eta)*pif;
pif = pf-pf(-1)+pi;
pih = ph-ph(-1)+pi;
//AR1-processes
G = rho_G*G(-1)+xi_G;
vepsHhat = rho_vepsH*vepsHhat(-1)+xi_vepsH;
vepsFhat = rho_vepsF*vepsFhat(-1)+xi_vepsF;
pif_f = rho_pif_f*pif_f(-1)+xi_pif_f;
C_f = rho_C_f*C_f(-1)+xi_C_f;
rf = rho_rf*rf(-1)+xi_rf;
z_u = rho_u*z_u(-1)-xi_u;
z_y = rho_y*z_y(-1)+xi_y;
z_b = rho_b*z_b(-1)+xi_b;
z_r = rho_r*z_r(-1)+xi_r;
//Observables
dQSA_PCPIJAEI -1= pih;
dQSA_PCPIJAEIMP-1=pif;
logQUA_QI44=Q;
dQSA_YMN=y-y(-1);
QUA_RN3M=r;
dAUA_WILMN_PCT_Qr=w-w(-1);
end;
varobs dQSA_PCPIJAEI dQSA_PCPIJAEIMP logQUA_QI44 dQSA_YMN QUA_RN3M dAUA_WILMN_PCT_Qr; // //
// Compute steady state
steady; //(solve_algo = 0);
// Compute eigenvalues and check Blanchard-Kahn conditions
check;
estimated_params;
rho_y, beta_pdf, 0.5, 0.2;
rho_b, beta_pdf, 0.5, 0.2;
rho_G, beta_pdf, 0.5, 0.2;
rho_vepsH, beta_pdf, 0.5, 0.2;
rho_vepsF, beta_pdf, 0.5, 0.2;
phi_ch1, inv_GAMMA_PDF, 0.15, inf; //
phi_ch2, inv_GAMMA_PDF, 0.075, inf; //
phi_cf1, inv_GAMMA_PDF, 0.15, inf; //
phi_cf2, inv_GAMMA_PDF, 0.075, inf; //
stderr xi_y,INV_GAMMA_PDF,0.02, inf; //1.94,inf;
stderr xi_b,INV_GAMMA_PDF,0.01,inf; //10,inf;
stderr xi_G,INV_GAMMA_PDF,0.012,inf; //11,inf;
stderr xi_r,INV_GAMMA_PDF,.0025,inf; //11,inf;
stderr xi_vepsH,INV_GAMMA_PDF,0.051,inf; //1,inf;
stderr xi_vepsF,INV_GAMMA_PDF,0.051,inf; //1,inf;
end;
estimation(datafile=dataest, prefilter=1, lik_init=1, mh_replic=1500000, mh_jscale=0.5);
Anders