DSGE open small economy model
 Posted: Fri Jun 22, 2012 3:45 pm
Posted: Fri Jun 22, 2012 3:45 pmI have been trying to work with the model from Garcia_Cicco et. al. (2010) - "Real Business Cycles in Emerging Countries?" - 
and I have the following after I run the program:
??? Error using ==> steady_ at 132
STEADY: convergence problems
Error in ==> steady at 54
steady_;
Error in ==> model2 at 156
steady;
Error in ==> dynare at 120
evalin('base',fname) ;
Does anyone know what I have done to not achieve the steady state? I even adapted some initial values to be close to the model used here.
Thanks in advance
			and I have the following after I run the program:
??? Error using ==> steady_ at 132
STEADY: convergence problems
Error in ==> steady at 54
steady_;
Error in ==> model2 at 156
steady;
Error in ==> dynare at 120
evalin('base',fname) ;
- Code: Select all
- // Model Garcia-Cicco
 %----------------------------------------------------------------
 % 1. defining variables
 %----------------------------------------------------------------
 var y, c, h, k, d, r, a, g, x;
 varexo ea, eg, rw;
 parameters gamma, theta, beta, alpha, delta, rhoa, rhog, psi, phi, omega, dbar, gbar;
 %----------------------------------------------------------------
 % 2. calibration
 %----------------------------------------------------------------
 gamma = 2.00;
 theta = 2.24;
 beta = 0.9224;
 alpha = 0.32;
 delta = 0.1255;
 rhoa = 0.765;
 rhog = 0.828;
 psi = 0.001;
 phi = 3.3;
 omega = 1.6;
 dbar = 0.007;
 gbar = 1.005;
 %----------------------------------------------------------------
 % 3. model
 %----------------------------------------------------------------
 model;
 h^(omega) = (1-alpha)*y/(theta*x(-1));
 (c(+1) - ((theta)*x*(h(+1)^(omega))/(omega)))^(gamma)/(c - ((theta)*x(-1)*(h^(omega))/(omega)))^(gamma) = beta*(1+r);
 k = beta*(c - ((theta)*x(-1)*(h^(omega))/(omega)))^(gamma)*(alpha*y(+1) + k*(1 - delta - (phi/2)*((k(+1)/k - g)^2 - 2*k(+1)/k*(k(+1)/k - g))))/((c(+1) - ((theta)*x*(h(+1)^(omega))/(omega)))^(gamma)*(1 + phi*((k/k(-1))-g)));
 y = a*(k(-1)^(alpha))*((x*h)^(1-alpha));
 ln(a) = rhoa*ln(a(-1)) + ea;
 k = y - c + (1-delta)*k(-1);
 r = rw + psi*(exp((d/x)-dbar)-1);
 g = x/x(-1);
 ln(g(+1)/gbar) = rhog*ln(g/gbar) + eg;
 end;
 %----------------------------------------------------------------
 % 4. computation
 %----------------------------------------------------------------
 initval;
 y = 0.2217;
 c = 0.1791;
 h = 0.1851;
 k = 0.3217;
 d = dbar;
 r = rw;
 a = 1;
 g = gbar;
 x = 1;
 ea = 0;
 eg = 0;
 rw = 0.04;
 end;
 steady;
 solve_algo = 1;
 shocks;
 var ea; stderr 0.027;
 var eg; stderr 0.03;
 end;
 stoch_simul;
Does anyone know what I have done to not achieve the steady state? I even adapted some initial values to be close to the model used here.
Thanks in advance