Zero lower bound with varexo_det and stochastic simulation

This forum is closed. You can read the posts but cannot write. We have migrated the forum to a new location where you will have to reset your password.
Forum rules
This forum is closed. You can read the posts but cannot write. We have migrated the forum to a new location (https://forum.dynare.org) where you will have to reset your password.

Zero lower bound with varexo_det and stochastic simulation

Postby georgia » Mon Aug 06, 2012 4:04 pm

I am trying to introduce a zero lower bound on the central bank's policy rate in a New Keynesian DSGE model:

(...)
varexo_det
impose_ZLB;
(...)
model;
(...)
i = (1-impose_zlb)*(forward-looking Taylor rule with interest rate smoothing);
(...)
end;
(...)
var impose_ZLB;
periods 1:20 21:32;
values 1 0;
(...)
stoch_simul(periods=0,order=1);
forecast;

The code runs smoothly, but the simulated path of the policy rate is NOT zero for the first 20 periods as it should be.
Any ideas how this could happen?
Thanks.
georgia
 
Posts: 3
Joined: Mon Aug 06, 2012 3:56 pm

Re: Zero lower bound with varexo_det and stochastic simulati

Postby georgia » Tue Aug 07, 2012 7:17 am

Here is a simple working example illustrating the problem:

Code: Select all

var y i pi; 
varexo RES_pi RES_i;
varexo_det impose_ZLB RES_demand;

parameters coeff_y_ystarlag coeff_i_pi coeff_i_y coeff_pi_pilag
           coeff_pi_ylag coeff_y_ylag coeff_y_igap;
                                                                                                                                           
// Taylor rule
coeff_i_pi              = 0.8;
coeff_i_y               = 0.2;
// Phillips curve
coeff_pi_pilag           = 0.5;
coeff_pi_ylag            = 0.02;
// IS curve
coeff_y_ylag             = 0.7;
coeff_y_igap             = -1;
coeff_y_ystarlag         = 0.03;

model(linear);                                                                                                                           
    i    =  (1-impose_ZLB)*(coeff_i_pi*pi + coeff_i_y*y + RES_i);
    y    =  coeff_y_igap*(i-pi) + coeff_y_ylag*y(-1) + RES_demand;
    pi   =  coeff_pi_ylag*y(-1) + coeff_pi_pilag*pi(+1) + RES_pi;
end;

shocks;
    var RES_pi ; stderr 0.1;
    var RES_i; stderr 0.3;
    var impose_ZLB;
    periods 0:20;
    values 1;
    var RES_demand;
    periods 0:5;
    values -0.5;
end;

steady;
stoch_simul(nograph,order=1);
forecast;

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//prepare plots
names   =   strvcat(M_.endo_names,M_.exo_det_names);
results =   [oo_.forecast.Mean.y'; oo_.forecast.Mean.i';oo_.forecast.Mean.pi'; oo_.forecast.Exogenous.impose_ZLB(2:end)'; oo_.forecast.Exogenous.RES_demand(2:end)'];

disp_horizon  = 20;
early_periods = 0;
time          = -early_periods:1:disp_horizon-early_periods-1;

for hh=1:4,
    subplot(2,2,hh);
    plot(time,[zeros(1,early_periods),results(hh,1:disp_horizon-early_periods)],'b.-',time,results(hh,1)+zeros(1,disp_horizon),'k:','MarkerSize',8);
    title(names(hh,:));
    axis tight
end
orient landscape
drawnow
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

georgia
 
Posts: 3
Joined: Mon Aug 06, 2012 3:56 pm

Re: Zero lower bound with varexo_det and stochastic simulati

Postby SébastienVillemot » Fri Aug 10, 2012 2:13 pm

It is impossible to simulate a ZLB model with stoch_simul (i.e. with a stochastic perturbation method). The constraint will not be enforced, as you noted. The reason is that the approximated policy function is either linear or polynomial around the steady state, but in any case it does not incorporate the constraint.

You should either use simul (perfect foresight) or extended path for correctly simulating ZLB models.
Sébastien Villemot
Economist at OFCE – Sciences Po
SébastienVillemot
 
Posts: 706
Joined: Fri Dec 07, 2007 2:29 pm
Location: Paris, France

Re: Zero lower bound with varexo_det and stochastic simulati

Postby georgia » Wed Aug 15, 2012 12:06 pm

Thanks for your response. What do you think of setting up a sequence of monetary policy shocks (in a deterministic simulation) that counteracts the endogenous response of the policy rate, which would then look as if a zero lower bound existed?
georgia
 
Posts: 3
Joined: Mon Aug 06, 2012 3:56 pm


Return to Dynare help

Who is online

Users browsing this forum: No registered users and 5 guests