Schmitt-Grohe Uribe'03 initval; versus steadystate-file
Posted: Tue Mar 26, 2013 5:47 pm
Dear all,
Here (and attached) is a Schmitt-Grohe & Uribe (2003) model whose initval; block allows dynare to solve for the steady state with all residuals being zero:
However, when I use the _steadystate.m file with exactly the same initialvalues (also attached):
dynare says it cannot find the steady state (residuals are not zero):
And the same error is generated if I substitute the ss-values found in the initval; case directly into the _steadystate.m.
Can anybody tell me why dynare can find the ss-values using initval; block but fail when the steadystate-file is used with exactly the same information?
Here (and attached) is a Schmitt-Grohe & Uribe (2003) model whose initval; block allows dynare to solve for the steady state with all residuals being zero:
- Code: Select all
var d, c, h, y, i, k, a, lambdaa, tb, ca, riskpremium, r ;
varexo e;
parameters gammaa, omegaa, rhoo, sigmae, deltaa, psii, alphaa, phii, betaa, r_w, d_bar;
alphaa = 0.32;
rhoo = 0.42;
phii = 0.028;
r_w = 0.04;
gammaa = 2;
omegaa = 1.455;
psii = 0.000742;
deltaa = 0.1;
sigmae = 0.0129;
betaa = 1/(1+r_w);
h_ss = ((1-alphaa)*(alphaa/(r_w+deltaa))^(alphaa/(1-alphaa)))^(1/(omegaa-1));
k_ss = h_ss/(((r_w+deltaa)/alphaa)^(1/(1-alphaa)));
i_ss = deltaa*k_ss;
y_ss = (k_ss^alphaa)*(h_ss^(1-alphaa));
d_bar = 0.7442;
d_ss = d_bar;
c_ss = y_ss-i_ss-r_w*d_ss;
tb_ss = y_ss-c_ss-i_ss;
model;
d = (1+exp(r(-1)))*d(-1)- exp(y)+exp(c)+exp(i)+(phii/2)*(exp(k)-exp(k(-1)))^2;
exp(y) = exp(a)*(exp(k(-1))^alphaa)*(exp(h)^(1-alphaa));
exp(k) = exp(i)+(1-deltaa)*exp(k(-1));
exp(lambdaa)= betaa*(1+exp(r))*exp(lambdaa(+1));
(exp(c)-((exp(h)^omegaa)/omegaa))^(-gammaa) = exp(lambdaa);
((exp(c)-((exp(h)^omegaa)/omegaa))^(-gammaa))*(exp(h)^omegaa) = exp(lambdaa)*(1-alphaa)*exp(y);
exp(lambdaa)*(1+phii*(exp(k)-exp(k(-1)))) = betaa*exp(lambdaa(+1))*(alphaa*exp(y(+1))/exp(k)+1-deltaa+phii*(exp(i(+1))-deltaa*exp(k)));
a = rhoo*a(-1)+e;
tb = 1-((exp(c)+exp(i))/exp(y));
ca = (1/exp(y))*(d-d(-1));
riskpremium = psii*(exp(d-d_bar)-1);
exp(r) = r_w+riskpremium;
end;
initval;
r = log((1-betaa)/betaa);
d = d_ss;
h = log(h_ss);
k = log(k_ss);
y = log(y_ss);
c = log(c_ss);
i = log(i_ss);
tb = 1-((exp(c)+exp(i))/exp(y));
lambdaa= log((exp(c)-((exp(h)^omegaa)/omegaa))^(-gammaa));
end;
shocks;
var e; stderr sigmae;
end;
resid(1);
steady;
check;
However, when I use the _steadystate.m file with exactly the same initialvalues (also attached):
- Code: Select all
%%%% Model equations to be entered here
alphaa = 0.32;
rhoo = 0.42;
phii = 0.028;
r_w = 0.04;
gammaa = 2;
omegaa = 1.455;
psii = 0.000742;
deltaa = 0.1;
sigmae = 0.0129;
betaa = 1/(1+r_w);
h_ss = ((1-alphaa)*(alphaa/(r_w+deltaa))^(alphaa/(1-alphaa)))^(1/(omegaa-1));
k_ss = h_ss/(((r_w+deltaa)/alphaa)^(1/(1-alphaa)));
i_ss = deltaa*k_ss;
y_ss = (k_ss^alphaa)*(h_ss^(1-alphaa));
d_bar = 0.7442;
d_ss = d_bar;
c_ss = y_ss-i_ss-r_w*d_ss;
tb_ss = y_ss-c_ss-i_ss;
% vars
d = d_ss;
c = log(c_ss);
h = log(h_ss);
y = log(y_ss);
i = log(i_ss);
k = log(k_ss);
a=0;
lambdaa= log((exp(c)-((exp(h)^omegaa)/omegaa))^(-gammaa));
tb = 1-((exp(c)+exp(i))/exp(y));
ca=0;
riskpremium=0;
r = log((1-betaa)/betaa);
dynare says it cannot find the steady state (residuals are not zero):
- Code: Select all
Residuals of the static equations:
Equation number 1 : -148.0734
Equation number 2 : 0
Equation number 3 : -148.0734
Equation number 4 : 0
Equation number 5 : 0
Equation number 6 : 0
Equation number 7 : -22.3611
Equation number 8 : 0
Equation number 9 : 99.613
Equation number 10 : 0
Equation number 11 : 0
Equation number 12 : 0
Error using print_info (line 55)
The steadystate file did not compute the
steady state
And the same error is generated if I substitute the ss-values found in the initval; case directly into the _steadystate.m.
Can anybody tell me why dynare can find the ss-values using initval; block but fail when the steadystate-file is used with exactly the same information?