Please help with the basic RBC model
Posted: Thu May 02, 2013 1:45 pm
Hi,I am confused with the basic rbc code as follows, the first line in the model block is
(1/c) = beta*(1/c(+1))*(1+alpha*(k^(alpha-1))*(exp(z(+1))*l(+1))^(1-alpha)-delta);
When I change the timing into
(1/c) = beta*(1/c(+1))*(1+alpha*(k(+1)^(alpha-1))*(exp(z(+2))*l(+2))^(1-alpha)-delta);
That is , to postpone the interest rate one period, the two impulse response results are exactly the same. Could anyone tell me why the change of timing doesn’t change the result. Thanks a lot.
(1/c) = beta*(1/c(+1))*(1+alpha*(k^(alpha-1))*(exp(z(+1))*l(+1))^(1-alpha)-delta);
When I change the timing into
(1/c) = beta*(1/c(+1))*(1+alpha*(k(+1)^(alpha-1))*(exp(z(+2))*l(+2))^(1-alpha)-delta);
That is , to postpone the interest rate one period, the two impulse response results are exactly the same. Could anyone tell me why the change of timing doesn’t change the result. Thanks a lot.
- Code: Select all
% Basic RBC Model
%
% Jesus Fernandez-Villaverde
% Philadelphia, March 3, 2005
%----------------------------------------------------------------
% 0. Housekeeping (close all graphic windows)
%----------------------------------------------------------------
close all;
%----------------------------------------------------------------
% 1. Defining variables
%----------------------------------------------------------------
var y c k i l y_l z;
varexo e;
parameters beta psi delta alpha rho;
%----------------------------------------------------------------
% 2. Calibration
%----------------------------------------------------------------
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
rho = 0.95;
sigma = (0.007/(1-alpha));
%----------------------------------------------------------------
% 3. Model
%----------------------------------------------------------------
model;
(1/c) = beta*(1/c(+1))*(1+alpha*(k^(alpha-1))*(exp(z(+1))*l(+1))^(1-alpha)-delta);
psi*c/(1-l) = (1-alpha)*(k(-1)^alpha)*(exp(z)^(1-alpha))*(l^(-alpha));
c+i = y;
y = (k(-1)^alpha)*(exp(z)*l)^(1-alpha);
i = k-(1-delta)*k(-1);
y_l = y/l;
z = rho*z(-1)+e;
end;
%----------------------------------------------------------------
% 4. Computation
%----------------------------------------------------------------
initval;
k = 9;
c = 0.76;
l = 0.3;
z = 0;
e = 0;
end;
shocks;
var e = sigma^2;
end;
steady;
stoch_simul(hp_filter = 1600, order = 1);
%----------------------------------------------------------------
% 5. Some Results
%----------------------------------------------------------------
statistic1 = 100*sqrt(diag(oo_.var(1:6,1:6)))./oo_.mean(1:6);
dyntable('Relative standard deviations in %',strvcat('VARIABLE','REL. S.D.'),M_.endo_names(1:6,:),statistic1,10,8,4);