Re: Number of forward looking variables!!!
Posted: Tue Jul 09, 2013 12:22 pm
Dear jpfeifer,
I change my model to omit the law of motion for labor from the model. Now dynare shows that there are 3 eigenvalues and 2 forward looking variables, and when I use the "model_diagnostics(M_,options_,oo_)" command, it does not show any thing! Does it mean that there are some co-linear variables in the model? If yes, how can I find that witch variables are co-linear? Could you please advise me?
Thank you a lot.
Here is my model:
I change my model to omit the law of motion for labor from the model. Now dynare shows that there are 3 eigenvalues and 2 forward looking variables, and when I use the "model_diagnostics(M_,options_,oo_)" command, it does not show any thing! Does it mean that there are some co-linear variables in the model? If yes, how can I find that witch variables are co-linear? Could you please advise me?
Thank you a lot.
Here is my model:
- Code: Select all
var y_o y_T i_o i_T c a_o a_T t w_o w_T w l r_o r_T l_o l_T b k_o k_T g y_oil;
varexo e_o e_T e_oil e_g e_b;
parameters y_oil_bar y_o_bar y_T_bar c_bar i_o_bar i_T_bar l_o_bar l_T_bar l_bar k_o_bar k_T_bar
r_o_bar r_T_bar w_o_bar w_T_bar w_bar g_bar betaa rho_o rho_T rho_oil rho_b
rho1 rho2 rho3 alphaa deltaa thetaa ethaa gamaa rho_g ;
betaa = 0.99;
alphaa = 0.34;
deltaa = 0.02;
ethaa = 1.003;
thetaa = 0.4;
rho_o = 0.8;
rho_T = 0.89;
rho_oil = 0.82;
rho_g = 0.9 ;
rho1 = 0.13 ;
rho2 = 0.13 ;
rho3 = 0.15 ;
rho_b = 0.9 ;
gamaa = 1.9 ;
y_oil_bar = 10.56 ;
y_o_bar = 11.88 ;
y_T_bar = 9.29 ;
c_bar = 11.4154 ;
t_bar = 8.68 ;
k_o_bar = 13.59 ;
k_T_bar = 11.54 ;
r_o_bar = 1.9 ;
r_T_bar = 1.9 ;
i_o_bar = 10.77 ;
i_T_bar = 8.92 ;
g_bar = 10.1344 ;
l_o_bar = 25.9106 ;
l_T_bar = 23.2081 ;
l_bar = 49.1187 ;
w_o_bar = 9.8854 ;
w_T_bar = 7.2679 ;
w_bar = 17.1533 ;
model (linear);
c = w ;
b = t - c ;
c = betaa/ethaa * r_o_bar *c(+1)*r_o(+1) ;
r_o = r_T ;
k_T = 1/ethaa*((1-deltaa) * k_T(-1) + i_T_bar/k_T_bar* i_T) ;
k_o = 1/ethaa*((1-deltaa) * k_o(-1) + i_o_bar/k_o_bar* i_o) ;
b = rho_b * b(-1)+ e_b ;
l_bar*l = l_o_bar*l_o +l_T_bar*l_T ;
w_o = y_o - c -l_o ;
r_o = y_o - c -k_o ;
y_o = a_o + thetaa * k_o + (1-thetaa) * l_o ;
w_T = y_T - c -l_T ;
r_T = y_T - c -k_T ;
y_T = a_T + alphaa * k_T + (1-alphaa) * l_T ;
y_oil = rho_oil * y_oil(-1) + e_oil ;
g = rho_g * g(-1) + rho3*y_oil(-1) + e_g ;
a_o = rho_o * a_o(-1) + rho1*y_oil(-1) + e_o ;
a_T = rho_T * a_T(-1) + rho2*y_oil(-1) + e_T ;
y_T = t ;
y_o = 1/y_o_bar*(c_bar*c + i_o_bar*i_o + i_T_bar*i_T - y_oil_bar*y_oil + g_bar*g);
w_bar*w = w_o_bar*w_o + w_T_bar*w_T ;
end;
steady;
check;
shocks;
var e_o ; stderr 0.11;
var e_T ; stderr 0.062;
var e_oil ; stderr 0.21;
var e_g ; stderr 0.08;
var e_b ; stderr 0.13;
var e_T , e_oil = 0.000245;
var e_o , e_oil = -0.000511;
var e_oil , e_g = 0.0103;
end;
stoch_simul(order=1, irf=30, periods=120 , graph_format = pdf);