Sequence of shocks in deterministic model?
Posted: Wed Nov 13, 2013 2:04 am
Hi, could anyone tell me how I can simulate slowly increasing productivity in a deterministic model like the following one? I want z to increase linearly from 0 to 0.1 over 20 periods. Thanks for your help!
var y c k i l y_l w r ;
varexo z;
parameters beta psi delta alpha sigma epsilon;
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
sigma = (0.007/(1-alpha));
epsilon = 10;
model;
(1/c) = beta*(1/c(+1))*(1+r(+1)-delta);
psi*c/(1-l) = w;
c+i = y;
y = (k(-1)^alpha)*(exp(z)*l)^(1-alpha);
w = y*((epsilon-1)/epsilon)*(1-alpha)/l;
r = y*((epsilon-1)/epsilon)*alpha/k(-1);
i = k-(1-delta)*k(-1);
y_l = y/l; end;
initval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
end;
steady;
endval;
z = 0.1;
end;
steady;
check;
simul(periods=2100);
var y c k i l y_l w r ;
varexo z;
parameters beta psi delta alpha sigma epsilon;
alpha = 0.33;
beta = 0.99;
delta = 0.023;
psi = 1.75;
sigma = (0.007/(1-alpha));
epsilon = 10;
model;
(1/c) = beta*(1/c(+1))*(1+r(+1)-delta);
psi*c/(1-l) = w;
c+i = y;
y = (k(-1)^alpha)*(exp(z)*l)^(1-alpha);
w = y*((epsilon-1)/epsilon)*(1-alpha)/l;
r = y*((epsilon-1)/epsilon)*alpha/k(-1);
i = k-(1-delta)*k(-1);
y_l = y/l; end;
initval;
k = 9;
c = 0.7;
l = 0.3;
w = 2.0;
r = 0;
z = 0;
end;
steady;
endval;
z = 0.1;
end;
steady;
check;
simul(periods=2100);