Hi,
Im trying to solve the model presented by Martin Uribe and Stephanie Schmitt-Grohe in their paper called "Optimal Simple And Implementable Monetary and Fiscal Rules". I wrote a Dynare code taking into account the equiations, steady state values and parameters given by the authors.
I get these results:
STEADY-STATE RESULTS:
g 0.0552
z 1
c 0.275806
h 0.223127
iv 0.0876772
la 32.6373
mc 0.799726
output 0.418683
pai 0.998607
ptil 0.994516
q 1
u 0.033997
w 1.28657
x1 1.62211
x2 2.02764
s 1.00009
k 3.63806
r 1.00849
m 0.277477
vt -8.02806
EIGENVALUES:
Modulus Real Imaginary
0.5749 0.5726 0.05184
0.5749 0.5726 -0.05184
0.7942 0.7942 0
0.8556 0.8556 0
0.87 0.87 0
0.9726 0.9726 0
1.053 1.053 0
1.268 1.268 0
1.309 1.214 0.4897
1.309 1.214 -0.4897
1.348 1.348 0
Inf Inf 0
Inf Inf 0
Inf Inf 0
There are 8 eigenvalue(s) larger than 1 in modulus
for 9 forward-looking variable(s)
The rank conditions ISN'T verified!
Error using print_info (line 43)
Blanchard Kahn conditions are not satisfied:
indeterminacy
Error in stoch_simul (line 81)
print_info(info, options_.noprint);
Error in m3 (line 245)
info = stoch_simul(var_list_);
Error in dynare (line 120)
evalin('base',fname) ;
Actually, the steady state result i obtain are not far away from those given in the paper. Nevetheles, i am not solving it correctly ....can someone help.
Thanks,
Germán