jpfeifer wrote:The problem typically is that the way the marginal data density is computed, you need the prior to integrate to 1. But often there is implicit prior truncation due to e.g. the Blanchard-Kahn conditions not being satisfied. Estimating different regimes is a case like that, because you a priori impose a 0 prior density to parameter draws falling into other regimes when you reject these draws (instead of using the non-zero prior density given by your explicitly specified prior). When you want to compute the marginal data densities for the particular regimes, you therefore need to keep track of the prior mass in each regime and adjust for it not being equal to 1.
Sorry to ask again, I thought it was clear yesterday: Isn't that always the case? For instance in every NKM we have some sort of Taylor principle and usually some indeterminacy cut-off, say above 1. So normal model comparison would also not work?
I think I still do not fully understand the specific nature of having different regimes. The following is from a
paper that cite Sims (2003) "Probability models for monetary policy decisions" and the training sample method:
"This poses a challenge to our analysis because, as in Lubik and Schorfheide (2004), we determine which region is favoured by the data based on the posterior probability of each region. This statistic is influenced by the prior distributuion"
So again, it is probably something with the regions but I still cannot make up my mind. Any helpful suggestions are appreciated!
Thanks again