problems after running
Posted: Mon Jan 19, 2015 8:52 am
Hello, I just started dynare as a beginner and doing in a baby step.
As I read from the userguide, my current folder in matlab is
c:\dynare\4.4.2\matlab
Also I copied the example1.mod that is given from "dynare"
I run as
>> dynare example1.mod
Then, the error message was
>> dynare example1.mod
Undefined function 'user_has_matlab_license' for input arguments of type 'char'.
Error in dynare_config (line 76)
if ~user_has_matlab_license('statistics_toolbox')
Error in dynare (line 48)
dynareroot = dynare_config;
Any comment is welcome to sort this problem out.
For your reference, I also attached dynare.m and dynare_config.m.
example1.mod is as follows. Thank you very much.
/*
* Example 1 from F. Collard (2001): "Stochastic simulations with DYNARE:
* A practical guide" (see "guide.pdf" in the documentation directory).
*/
/*
* Copyright (C) 2001-2010 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
var y, c, k, a, h, b;
varexo e, u;
parameters beta, rho, alpha, delta, theta, psi, tau;
alpha = 0.36;
rho = 0.95;
tau = 0.025;
beta = 0.99;
delta = 0.025;
psi = 0;
theta = 2.95;
phi = 0.1;
model;
c*theta*h^(1+psi)=(1-alpha)*y;
k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1)))
*(exp(b(+1))*alpha*y(+1)+(1-delta)*k));
y = exp(a)*(k(-1)^alpha)*(h^(1-alpha));
k = exp(b)*(y-c)+(1-delta)*k(-1);
a = rho*a(-1)+tau*b(-1) + e;
b = tau*a(-1)+rho*b(-1) + u;
end;
initval;
y = 1.08068253095672;
c = 0.80359242014163;
h = 0.29175631001732;
k = 11.08360443260358;
a = 0;
b = 0;
e = 0;
u = 0;
end;
shocks;
var e; stderr 0.009;
var u; stderr 0.009;
var e, u = phi*0.009*0.009;
end;
stoch_simul;
~~~~~~~~~~~~~~~~~~~
As I read from the userguide, my current folder in matlab is
c:\dynare\4.4.2\matlab
Also I copied the example1.mod that is given from "dynare"
I run as
>> dynare example1.mod
Then, the error message was
>> dynare example1.mod
Undefined function 'user_has_matlab_license' for input arguments of type 'char'.
Error in dynare_config (line 76)
if ~user_has_matlab_license('statistics_toolbox')
Error in dynare (line 48)
dynareroot = dynare_config;
Any comment is welcome to sort this problem out.
For your reference, I also attached dynare.m and dynare_config.m.
example1.mod is as follows. Thank you very much.
/*
* Example 1 from F. Collard (2001): "Stochastic simulations with DYNARE:
* A practical guide" (see "guide.pdf" in the documentation directory).
*/
/*
* Copyright (C) 2001-2010 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
var y, c, k, a, h, b;
varexo e, u;
parameters beta, rho, alpha, delta, theta, psi, tau;
alpha = 0.36;
rho = 0.95;
tau = 0.025;
beta = 0.99;
delta = 0.025;
psi = 0;
theta = 2.95;
phi = 0.1;
model;
c*theta*h^(1+psi)=(1-alpha)*y;
k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1)))
*(exp(b(+1))*alpha*y(+1)+(1-delta)*k));
y = exp(a)*(k(-1)^alpha)*(h^(1-alpha));
k = exp(b)*(y-c)+(1-delta)*k(-1);
a = rho*a(-1)+tau*b(-1) + e;
b = tau*a(-1)+rho*b(-1) + u;
end;
initval;
y = 1.08068253095672;
c = 0.80359242014163;
h = 0.29175631001732;
k = 11.08360443260358;
a = 0;
b = 0;
e = 0;
u = 0;
end;
shocks;
var e; stderr 0.009;
var u; stderr 0.009;
var e, u = phi*0.009*0.009;
end;
stoch_simul;
~~~~~~~~~~~~~~~~~~~