Steady state okay, but no stable equilibrium
Posted: Sat Jan 31, 2015 5:14 pm
Hello,
I am replicating a fairly simple RBC model with a human capital sector. Particularly, I am trying to replicate this paper: https://www.aeaweb.org/aea/2013conferen ... ?pdfid=191
I have the code below and I try to solve it using logs (in exp). The steady states exist but it gives me error message:
One of the eigenvalues is close to 0/0 (the absolute value of numerator and denominator is
smaller than 1e-006!
I know I have entered the model correctly but dynare give me error message. I checked the other topics related to this but the answer is usually vague. Any help is appreciated. Below is the code I am using.
// Endogenous variables
var Y C N M L IK IH K H V Z S lambda mu YV YK YH YN IHV IHK IHM IHH;
// Exogenous variables
varexo z s;
// Parameters
parameters beta sigma A phi1 phi2 deltak deltah Ag Ah rhoz rhos sigmaz sigmas;
beta = 0.986;
sigma = 1;
A = 1.55;
phi1 = 0.36;
phi2 = 0.11;
deltak = 0.02;
deltah = 0.005;
Ag = 1;
Ah = 0.0461;
rhoz = 0.95;
rhos = 0.95;
sigmaz = 0.0007;
sigmas = 0.0007;
// Model structure
model;
exp(L) = 1-exp(M)-exp(N);
exp(L)^A*(exp(C)*exp(L)^A)^(-sigma) = exp(lambda);
A*exp(C)*exp(L)^(A-1)*(exp(C)*exp(L)^A)^(-sigma)= exp(lambda)*exp(YN);
A*exp(C)*exp(L)^(A-1)*(exp(C)*exp(L)^A)^(-sigma)= exp(mu)*exp(IHM);
exp(lambda)*exp(YV) = exp(mu)*exp(IHV);
exp(lambda) = beta*(exp(lambda(+1))*(exp((YK(+1))+1-deltak))+exp(mu(+1))*exp(IHK(+1)));
exp(mu) = beta*(exp(lambda(+1))*exp(YH(+1))+exp(mu(+1))*(exp(IHH(+1))+1-deltah));
exp(C) = exp(Y) - exp(IK);
exp(K) = exp(IK) + (1-deltak)*exp(K(-1));
exp(H) = exp(IH) + (1-deltah)*exp(H(-1));
exp(Y) = Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1))*((exp(N))^(1-phi1))*((exp(H))^(1-phi1));
exp(YV) = phi1*Ag*exp(Z)*(((V))^(phi1-1))*((exp(K(-1)))^(phi1))*((exp(N))^(1-phi1))*((exp(H))^(1-phi1));
exp(YK) = phi1*Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1-1))*((exp(N))^(1-phi1))*((exp(H))^(1-phi1));
exp(YN) = (1-phi1)*Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1))*((exp(N))^(-phi1))*((exp(H))^(1-phi1));
exp(YH) = (1-phi1)*Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1))*((exp(N))^(1-phi1))*((exp(H))^(-phi1));
exp(IH) = Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2))*((exp(M))^(1-phi2))*((exp(H))^(1-phi2));
exp(IHV) = phi2*Ah*exp(S)*((1-(V))^(phi2-1))*((exp(K(-1)))^(phi2))*((exp(M))^(1-phi2))*((exp(H))^(1-phi2));
exp(IHK) = phi2*Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2-1))*((exp(M))^(1-phi2))*((exp(H))^(1-phi2));
exp(IHM) = (1-phi2)*Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2))*((exp(M))^(-phi2))*((exp(H))^(1-phi2));
exp(IHH) = (1-phi2)*Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2))*((exp(M))^(1-phi2))*((exp(H))^(-phi2));
Z = rhoz*Z(-1)+z;
S = rhos*S(-1)+s;
end;
// Initial values
initval;
Y = 0;
C = 0;
N = 0;
M = 0;
L = 0;
K = 0;
H = 0;
IK = 0;
IH = 0;
YK = 0;
YN = 0;
YH = 0;
YV = 0;
IHK = 0;
IHM = 0;
IHH = 0;
IHV = 0;
lambda = 0;
mu = 0;
V = 0.95;
Z = 0;
S = 0;
end;
steady(solve_algo=4,maxit=1000);
model_diagnostics;
shocks;
var z = sigma;
var s = sigma;
end;
check;
stoch_simul(periods=1000);
I am replicating a fairly simple RBC model with a human capital sector. Particularly, I am trying to replicate this paper: https://www.aeaweb.org/aea/2013conferen ... ?pdfid=191
I have the code below and I try to solve it using logs (in exp). The steady states exist but it gives me error message:
One of the eigenvalues is close to 0/0 (the absolute value of numerator and denominator is
smaller than 1e-006!
I know I have entered the model correctly but dynare give me error message. I checked the other topics related to this but the answer is usually vague. Any help is appreciated. Below is the code I am using.
// Endogenous variables
var Y C N M L IK IH K H V Z S lambda mu YV YK YH YN IHV IHK IHM IHH;
// Exogenous variables
varexo z s;
// Parameters
parameters beta sigma A phi1 phi2 deltak deltah Ag Ah rhoz rhos sigmaz sigmas;
beta = 0.986;
sigma = 1;
A = 1.55;
phi1 = 0.36;
phi2 = 0.11;
deltak = 0.02;
deltah = 0.005;
Ag = 1;
Ah = 0.0461;
rhoz = 0.95;
rhos = 0.95;
sigmaz = 0.0007;
sigmas = 0.0007;
// Model structure
model;
exp(L) = 1-exp(M)-exp(N);
exp(L)^A*(exp(C)*exp(L)^A)^(-sigma) = exp(lambda);
A*exp(C)*exp(L)^(A-1)*(exp(C)*exp(L)^A)^(-sigma)= exp(lambda)*exp(YN);
A*exp(C)*exp(L)^(A-1)*(exp(C)*exp(L)^A)^(-sigma)= exp(mu)*exp(IHM);
exp(lambda)*exp(YV) = exp(mu)*exp(IHV);
exp(lambda) = beta*(exp(lambda(+1))*(exp((YK(+1))+1-deltak))+exp(mu(+1))*exp(IHK(+1)));
exp(mu) = beta*(exp(lambda(+1))*exp(YH(+1))+exp(mu(+1))*(exp(IHH(+1))+1-deltah));
exp(C) = exp(Y) - exp(IK);
exp(K) = exp(IK) + (1-deltak)*exp(K(-1));
exp(H) = exp(IH) + (1-deltah)*exp(H(-1));
exp(Y) = Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1))*((exp(N))^(1-phi1))*((exp(H))^(1-phi1));
exp(YV) = phi1*Ag*exp(Z)*(((V))^(phi1-1))*((exp(K(-1)))^(phi1))*((exp(N))^(1-phi1))*((exp(H))^(1-phi1));
exp(YK) = phi1*Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1-1))*((exp(N))^(1-phi1))*((exp(H))^(1-phi1));
exp(YN) = (1-phi1)*Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1))*((exp(N))^(-phi1))*((exp(H))^(1-phi1));
exp(YH) = (1-phi1)*Ag*exp(Z)*(((V))^(phi1))*((exp(K(-1)))^(phi1))*((exp(N))^(1-phi1))*((exp(H))^(-phi1));
exp(IH) = Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2))*((exp(M))^(1-phi2))*((exp(H))^(1-phi2));
exp(IHV) = phi2*Ah*exp(S)*((1-(V))^(phi2-1))*((exp(K(-1)))^(phi2))*((exp(M))^(1-phi2))*((exp(H))^(1-phi2));
exp(IHK) = phi2*Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2-1))*((exp(M))^(1-phi2))*((exp(H))^(1-phi2));
exp(IHM) = (1-phi2)*Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2))*((exp(M))^(-phi2))*((exp(H))^(1-phi2));
exp(IHH) = (1-phi2)*Ah*exp(S)*((1-(V))^(phi2))*((exp(K(-1)))^(phi2))*((exp(M))^(1-phi2))*((exp(H))^(-phi2));
Z = rhoz*Z(-1)+z;
S = rhos*S(-1)+s;
end;
// Initial values
initval;
Y = 0;
C = 0;
N = 0;
M = 0;
L = 0;
K = 0;
H = 0;
IK = 0;
IH = 0;
YK = 0;
YN = 0;
YH = 0;
YV = 0;
IHK = 0;
IHM = 0;
IHH = 0;
IHV = 0;
lambda = 0;
mu = 0;
V = 0.95;
Z = 0;
S = 0;
end;
steady(solve_algo=4,maxit=1000);
model_diagnostics;
shocks;
var z = sigma;
var s = sigma;
end;
check;
stoch_simul(periods=1000);