Linearize a CES production function
Posted: Wed Apr 22, 2015 8:04 pm
Hello,
I am trying to linearize a CES production function of the form:
Y_t = [ a * L_t^p + (1-a) * K_t^p] ^(1/p)
Y_t ^p= a * L_t^p + (1-a) * K_t^p
p*ln(Y_t) = ln(a L_t^p + (1-a) K_t^p)
p(ln(Y) + (Y_t – Y)/Y) ~ ln(a L^p + (1-a) K^p) + ((p*a*L^(p-1)/ (a L^p + (1-a) K^p))(L_t –L) + ((p*(1-a)*K^(p-1)/ (a L^p + (1-a) K^p))(K_t –K)
(Y_t – Y)/Y) ~ ((a*L^(p-1)/ (a L^p + (1-a) K^p))(L_t –L) + (((1-a)*K^(p-1)/ (a L^p + (1-a) K^p))(K_t –K)
y_t ~ ((a*L^p/ (a L^p + (1-a) K^p)) l_t + (((1-a)*K^p/ (a L^p + (1-a) K^p))k_t
Is this correct?
I am concerned about the L^p and K^p , I know that they are constants but I am not sure if I can use this equation in my dynare code in this form.
I am use to seeing the C-D form
y_t = a*l_t + (1-a)*k_t
Any insight would be greatly appreciated.
Thank you in advance.
Regards,
Richard
I am trying to linearize a CES production function of the form:
Y_t = [ a * L_t^p + (1-a) * K_t^p] ^(1/p)
Y_t ^p= a * L_t^p + (1-a) * K_t^p
p*ln(Y_t) = ln(a L_t^p + (1-a) K_t^p)
p(ln(Y) + (Y_t – Y)/Y) ~ ln(a L^p + (1-a) K^p) + ((p*a*L^(p-1)/ (a L^p + (1-a) K^p))(L_t –L) + ((p*(1-a)*K^(p-1)/ (a L^p + (1-a) K^p))(K_t –K)
(Y_t – Y)/Y) ~ ((a*L^(p-1)/ (a L^p + (1-a) K^p))(L_t –L) + (((1-a)*K^(p-1)/ (a L^p + (1-a) K^p))(K_t –K)
y_t ~ ((a*L^p/ (a L^p + (1-a) K^p)) l_t + (((1-a)*K^p/ (a L^p + (1-a) K^p))k_t
Is this correct?
I am concerned about the L^p and K^p , I know that they are constants but I am not sure if I can use this equation in my dynare code in this form.
I am use to seeing the C-D form
y_t = a*l_t + (1-a)*k_t
Any insight would be greatly appreciated.
Thank you in advance.
Regards,
Richard