Sensitivity analysis problem
Posted: Sun Aug 23, 2015 11:28 am
Dear Dynare users,
I'm having a problem in interpreting global sensitivity analysis outputs and Smirnov tests results
I searched for Ratto's paper (2008) treating the issue, but unfortunately I couldn't have access to it.
How can I interpret these results ?
Is the p-value is interpreted as being inferior to the significance threshold, and therefore we reject null hypotesis, which is that those parameters' cdf is similar to acceptable behavior parameters' cdf ?
how about those driving indeterminacy and instability ?
Thank you
Smirnov statistics in driving acceptable behaviour
delta_2 d-stat = 0.522 p-value = 0.000
rho_inf d-stat = 0.416 p-value = 0.000
Smirnov statistics in driving indeterminacy
alppha d-stat = 0.171 p-value = 0.000
delta_2 d-stat = 0.307 p-value = 0.000
mu d-stat = 0.132 p-value = 0.000
rho_inf d-stat = 0.302 p-value = 0.000
Smirnov statistics in driving instability
alppha d-stat = 0.323 p-value = 0.000
delta_2 d-stat = 0.315 p-value = 0.000
mu d-stat = 0.264 p-value = 0.000
rho_R d-stat = 0.131 p-value = 0.000
rho_inf d-stat = 0.142 p-value = 0.000
Starting bivariate analysis:
Correlation analysis for prior_stable
[alppha,rho_R]: corrcoef = 0.111
[delta_2,rho_inf]: corrcoef = 0.205
Correlation analysis for prior_unacceptable
[alppha,rho_R]: corrcoef = -0.160
[delta_2,rho_inf]: corrcoef = -0.585
[rho_is,rho_rstar]: corrcoef = -0.127
Correlation analysis for prior_indeterm
[alppha,delta_2]: corrcoef = -0.231
[alppha,rho_inf]: corrcoef = 0.196
[delta_2,rho_R]: corrcoef = 0.142
[delta_2,rho_inf]: corrcoef = -0.573
[mu,rho_inf]: corrcoef = -0.161
[rho_R,rho_inf]: corrcoef = -0.347
Correlation analysis for prior_unstable
[alppha,delta_2]: corrcoef = 0.279
[alppha,mu]: corrcoef = -0.357
[alppha,rho_R]: corrcoef = -0.247
[alppha,rho_inf]: corrcoef = -0.406
[delta_2,mu]: corrcoef = -0.426
[delta_2,rho_R]: corrcoef = -0.257
[delta_2,rho_inf]: corrcoef = -0.614
[mu,rho_inf]: corrcoef = 0.422
[rho_R,rho_inf]: corrcoef = 0.507
I'm having a problem in interpreting global sensitivity analysis outputs and Smirnov tests results
I searched for Ratto's paper (2008) treating the issue, but unfortunately I couldn't have access to it.
How can I interpret these results ?
Is the p-value is interpreted as being inferior to the significance threshold, and therefore we reject null hypotesis, which is that those parameters' cdf is similar to acceptable behavior parameters' cdf ?
how about those driving indeterminacy and instability ?
Thank you
Smirnov statistics in driving acceptable behaviour
delta_2 d-stat = 0.522 p-value = 0.000
rho_inf d-stat = 0.416 p-value = 0.000
Smirnov statistics in driving indeterminacy
alppha d-stat = 0.171 p-value = 0.000
delta_2 d-stat = 0.307 p-value = 0.000
mu d-stat = 0.132 p-value = 0.000
rho_inf d-stat = 0.302 p-value = 0.000
Smirnov statistics in driving instability
alppha d-stat = 0.323 p-value = 0.000
delta_2 d-stat = 0.315 p-value = 0.000
mu d-stat = 0.264 p-value = 0.000
rho_R d-stat = 0.131 p-value = 0.000
rho_inf d-stat = 0.142 p-value = 0.000
Starting bivariate analysis:
Correlation analysis for prior_stable
[alppha,rho_R]: corrcoef = 0.111
[delta_2,rho_inf]: corrcoef = 0.205
Correlation analysis for prior_unacceptable
[alppha,rho_R]: corrcoef = -0.160
[delta_2,rho_inf]: corrcoef = -0.585
[rho_is,rho_rstar]: corrcoef = -0.127
Correlation analysis for prior_indeterm
[alppha,delta_2]: corrcoef = -0.231
[alppha,rho_inf]: corrcoef = 0.196
[delta_2,rho_R]: corrcoef = 0.142
[delta_2,rho_inf]: corrcoef = -0.573
[mu,rho_inf]: corrcoef = -0.161
[rho_R,rho_inf]: corrcoef = -0.347
Correlation analysis for prior_unstable
[alppha,delta_2]: corrcoef = 0.279
[alppha,mu]: corrcoef = -0.357
[alppha,rho_R]: corrcoef = -0.247
[alppha,rho_inf]: corrcoef = -0.406
[delta_2,mu]: corrcoef = -0.426
[delta_2,rho_R]: corrcoef = -0.257
[delta_2,rho_inf]: corrcoef = -0.614
[mu,rho_inf]: corrcoef = 0.422
[rho_R,rho_inf]: corrcoef = 0.507