Prior distribution problem
Posted: Fri May 20, 2016 12:51 pm
Hello.
As far as I understand the following line
"stderr e_z, inv_gamma_pdf, 1, 1"
means that we set inverse gamma distribution with mean 1 and standart deviation 1 as prior for standart deviation of e_z. Are there any restrictions to parameter value of inverse gamma distribution (except mu,std > 0)?
The thing is that when I add new parameter that is absent in the system of equations then I expect to get posterior distribution of this parameter equal to its prior. When I set parameters of inverse gamma prior to 1 and 4 correspondingly then I get what I expected. But if I set parameters equal to 0.00125 and 4 correspondingly then posterior variance of the parameter of interest is far less than 16 (approximately 10^(-7)). I ran 500000 MH iterations.
Thank you in advance
Excuse me for my English
As far as I understand the following line
"stderr e_z, inv_gamma_pdf, 1, 1"
means that we set inverse gamma distribution with mean 1 and standart deviation 1 as prior for standart deviation of e_z. Are there any restrictions to parameter value of inverse gamma distribution (except mu,std > 0)?
The thing is that when I add new parameter that is absent in the system of equations then I expect to get posterior distribution of this parameter equal to its prior. When I set parameters of inverse gamma prior to 1 and 4 correspondingly then I get what I expected. But if I set parameters equal to 0.00125 and 4 correspondingly then posterior variance of the parameter of interest is far less than 16 (approximately 10^(-7)). I ran 500000 MH iterations.
Thank you in advance
Excuse me for my English